ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (649)
  • Oxford University Press  (649)
  • American Association for the Advancement of Science
  • American Chemical Society (ACS)
  • Espoo : Geologian tutkimuskeskus
  • Irkutsk : Ross. Akad. Nauk, Sibirskoe Otd., Inst. Zemnoj Kory
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • Lower Hutt : Institute of Geological and Nuclear Sciences
  • 2015-2019  (587)
  • 2005-2009  (62)
  • 1970-1974
  • 1955-1959
  • Journal of Plant Ecology  (165)
  • 92885
  • Biology  (649)
Collection
  • Articles  (649)
Publisher
  • Oxford University Press  (649)
  • American Association for the Advancement of Science
  • American Chemical Society (ACS)
  • Espoo : Geologian tutkimuskeskus
  • Irkutsk : Ross. Akad. Nauk, Sibirskoe Otd., Inst. Zemnoj Kory
  • +
Years
Year
Topic
  • Biology  (649)
  • 1
    Publication Date: 2019-12-02
    Description: Aims Morphological variation of leaves is a key indicator of plant response to climatic change. Leaf size and shape are associated with carbon, water and energy exchange of plants with their environment. However, whether and how leaf size and shape responded to climate change over the past decades remains poorly studied. Moreover, many studies have only explored inter- but not intraspecific variation in leaf size and shape across space and time. Methods We collected 〉6000 herbarium specimens spanning 98 years (1910–2008) in China for seven representative dicot species and measured their leaf length and width. We explored geographical patterns and temporal trends in leaf size (i.e. leaf length, leaf width and length × width product) and shape (i.e. length/width ratio), and investigated the effects of changes in precipitation and temperature over time and space on the variation in leaf size and shape. Important Findings After accounting for the effects of sampling time, leaf size decreased with latitude for all species combined, but the relationship varied among species. Leaf size and shape were positively correlated with temperature and precipitation across space. After accounting for the effects of sampling locations, leaf size of all species combined increased with time. Leaf size changes over time were mostly positively correlated with precipitation, whereas leaf shape changes were mostly correlated with temperature. Overall, our results indicate significant spatial and temporal intraspecific variation in leaf size and shape in response to climate. Our study also demonstrates that herbarium specimens collected over a considerable period of time provide a good resource to study the impacts of climate change on plant morphological traits.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-05-10
    Description: Aims Plant height is a key functional trait related to aboveground biomass, leaf photosynthesis and plant fitness. However, large-scale geographical patterns in community-average plant height (CAPH) of woody species and drivers of these patterns across different life forms remain hotly debated. Moreover, whether CAPH could be used as a predictor of ecosystem primary productivity is unknown. Methods We compiled mature height and distributions of 11 422 woody species in eastern Eurasia, and estimated geographic patterns in CAPH for different taxonomic groups and life forms. Then we evaluated the effects of environmental (including current climate and historical climate change since the Last Glacial Maximum (LGM)) and evolutionary factors on CAPH. Lastly, we compared the predictive power of CAPH on primary productivity with that of LiDAR-derived canopy-height data from a global survey. Important Findings Geographic patterns of CAPH and their drivers differed among taxonomic groups and life forms. The strongest predictor for CAPH of all woody species combined, angiosperms, all dicots and deciduous dicots was actual evapotranspiration, while temperature was the strongest predictor for CAPH of monocots and tree, shrub and evergreen dicots, and water availability for gymnosperms. Historical climate change since the LGM had only weak effects on CAPH. No phylogenetic signal was detected in family-wise average height, which was also unrelated to the tested environmental factors. Finally, we found a strong correlation between CAPH and ecosystem primary productivity. Primary productivity showed a weaker relationship with CAPH of the tallest species within a grid cell and no relationship with LiDAR-derived canopy height reported in the global survey. Our findings suggest that current climate rather than historical climate change and evolutionary history determine the geographical patterns in CAPH. However, the relative effects of climatic factors representing environmental energy and water availability on spatial variations of CAPH vary among plant life forms. Moreover, our results also suggest that CAPH can be used as a good predictor of ecosystem primary productivity.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-10-21
    Description: Aims We aimed to elucidate the driving forces underlying the geographical distribution of spruce forests, as well as the morphological and phylogenetic divergence among spruce species in China. Methods One hundred and seventy two sites across the entire range of spruce forests in China (23°–53° N, 75°–134° E, 250–4300 m a.s.l.) were sampled for species composition, geographical coordinates, and topographic and climatic variables. Sixteen spruce taxa, which are naturally distributed in China, were respectively grouped into morphologically defined sections and phylogenetically distinct clades. Multivariate approaches, including two-way indicator species analysis, principal components analysis, detrended correspondence analysis, canonical correspondence analysis (CCA), and partial CCA, were used for data analysis. Important Findings The 172 samples grouped into 13 spruce forests, the geographical distributions of which were closely related to climate and geographical location. The variation in species composition explained by the geographical coordinates (32.01%) was significantly higher than that explained by the climatic (27.76%) and topographic variables (23.32%). Of the three morphologically defined sections, sect. Omorica occurred mainly in wetter habitats with a mean annual precipitation of ca. 229 mm and 426 mm higher than the habitats of sect. Casicta and sect. Picea (P 〈 0.01), respectively. Of the two phylogenetically distinct clades, Clade-II (an older clade) occurred in habitats with warm winters and cool summers whose mean temperature in the coldest month was ca. 8–10°C higher, yet accumulated temperature during the growing season (≥ 5°C) was ca. 297–438°C lower, than the habitats of Clade-III (a younger clade) (P 〈 0.01). Our data support the hypothesis that geographical location may be a greater determinant of variation in species composition. In addition, moisture conditions tend to be the key determinants that account for the divergence among the morphologically defined sections, while the phylogenetic divergence among spruce species is mainly affected by temperature conditions. While the clades or sections of the spruce species in question carry strong climatic signals, their divergences are subject to different selective pressures.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
  • 6
    Publication Date: 2019-06-05
    Description: Aims Grasslands used for animal husbandry are chosen depending on the nutritive values of dominant herbage species. However, the influence of grazing in combination with precipitation and growing season on the nutritive values of dominant species has not been explicated. Methods To unveil the influence of the different grazing intensities on the nutritional values, an ecological study was formulated, namely fencing (G0), light grazing (G1), moderate grazing (G2) and high grazing (G3). This ambitious study was undertaken on the nutritive values of the four dominant species of herbage in an alpine meadow on the Qinghai-Tibet Plateau (QTP) during growing season (June–September) for two successive years, namely 2015 (rainy year) and 2016 (droughty year). Important Findings We found that (i) the nutritive value of Kobresia capillifolia, Polygonum viviparum and Caragana sinica was noticeably increased by grazing, but negligible effect on Potentilla fruticosa nutritive value was recorded. (ii) During the rainy year (2015), compared with G0, Polygonum viviparum and Potentilla fruticosa displayed 5.4 and 1.5% increases in the crude protein (CP) content and 8.5 and 2.4% increases in vitro true digestibility (IVTD), respectively, while the neutral detergent fibre (NDF) decreased by 13.5 and 0.9%, respectively. During the droughty year (2016), compared with G0, C. sinica and Potentilla fruticosa showed increases in the CP content by 4.3 and 1.3% and increases in the IVTD by 10.7 and 0.4%, respectively, during G3, while the NDF decreased by 6.0 and 1.0%, respectively. (iii) The nutritive values of all species were higher in the years when the rains were good. However, the nutritive values suffered heavily during drought conditions. Besides, the highest and lowest values of nutrition were detected in June and in September, respectively. The inter-seasonal and the inter-annual changes in the nutritional values of species were higher for K. capillifolia and Polygonum viviparum than for Potentilla fruticosa and C. sinica, suggesting that Potentilla fruticosa and C. sinica had higher water-use efficiency. (iv) Grazing clearly reduced the drought tolerance of three species and showed no effects on Potentilla fruticosa. (v) Grazing clearly increased the inter-month variation in the nutritional value of K. capillifolia and Polygonum viviparum but showed no effects on Potentilla fruticosa or C. sinica. Evidently, the grazing effects impacting the nutritional value of the dominant species of herbage exhibited conspicuous inter-annual and seasonal variations with species-specific influences and responses. Our findings are expected to have far-reaching implications enabling the authorities to arrive at strategic decisions and designing of relevant policies for the efficient management of the ecosystems ensuring the speed restoration of the QTP under severe grazing and extreme climatic circumstances.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-31
    Description: Aims Different plant functional groups display diverging responses to the same environmental gradients. Here, we assess the effects of environmental and spatial predictors on species turnover of three functional groups of Brazilian savannas (Cerrado) plants—trees, palms and lianas—across the transition zone between the Cerrado and Amazon biomes in central Brazil. Methods We used edaphic, climatic and plant composition data from nine one-hectare plots to assess the effects of the environment and space on species turnover using a Redundancy Analysis and Generalized Dissimilarity Modeling (GDM), associated with variance partitioning. Important Findings We recorded 167 tree species, 5 palms and 4 liana species. Environmental variation was most important in explaining species turnover, relative to geographic distance, but the best predictors differed between functional groups: geographic distance and silt for lianas; silt for palms; geographic distance, temperature and elevation for trees. Geographic distances alone exerted little influence over species turnover for the three functional groups. The pure environmental variation explained most of the liana and palm turnover, while tree turnover was largely explained by the shared spatial and environmental contribution. The effects of geographic distance upon species turnover leveled off at about 300 km for trees, and 200 km for lianas, whereas they were unimportant for palm species turnover. Our results indicate that environmental factors that determine floristic composition and species turnover differ substantially between plant functional groups in savannas. Therefore, we recommend that studies that aim to investigate the role of environmental conditions in determining plant species turnover should examine plant functional groups separately.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-11-20
    Description: Aims Understanding the regional pattern of leaf stoichiometry and its contributing variables are of importance for predicting plant responses to global change and modelling the productivity and nutrient fluxes of ecosystems. In this study, we investigated leaf stoichiometry of plants that sampled from Hexi Corridor, a typical arid region in China, and tried to explore the contribution variables on leaf stoichiometry along the geographic, climatic, and soil gradients. Methods In August 2012, 70 sites in Hexi Corridor were investigated. Plant leaves and soils from five equivalent plots within each site were sampled. C, N, and P contents of leaf and soil were measured. Important findings Compared with leaf N and P contents in regional and global scales, leaf N content in Hexi Corridor was close to them with the value of 20.19 mg g-1, while leaf P content was lower than them with the value of 1.34 mg g-1. Overall, leaf N:P value in Hexi Corridor was 15.70. Individually, leaf N:P values of shrubs and herbs were 16.81 and 14.80, respectively. Scaling exponents for leaf N vs. P of overall and shrubs in Hexi Corridor were 1.29, higher than the scaling exponent of herbs (1.08). Leaf stoichiometry of shrubs and herbs did not show significant latitudinal and longitudinal patterns, meanwhile, it has no significant correlation with mean annual precipitation (MAP), mean annual temperature (MAT), and soil elements. However, only leaf stoichiometry of herbs has significant correlation with altitude and aridity degree. These results indicate that plants in Hexi Corridor are possibly co-limited by N and P, while shrubs are mainly limited by soil P and herbs are limited by soil N. Scaling relationship reveals that leaf N vs. P of herbs is isometric. With increasing altitude, the quadratic regression for leaf C and N contents and the linear regression for leaf P content of herbs reflect the difference responses of the three elements on the variation of MAT along the altitude and it could be explained by plant physiology hypothesis and biogeochemical hypotheses. With decreasing aridity, leaf N and N:P of herbs increased significantly, inferring that herbs growth would be limited by P increasingly and strengthening the increasing nitrogen availability with increasing precipitation. In conclusion, different altitude and aridity patterns for leaf stoichiometry of herbs and shrubs reveal the plastic survive strategies of different xerophytes in Hexi Corridor. Moreover, leaf stoichiometry of herbs in Hexi Corridor could be as indicator of the changing environment that caused by aridity.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-11-06
    Description: Aims Ecosystem engineers substantially modify the environment via their impact on abiotic conditions and the biota, resulting in facilitation of associated species that would not otherwise grow. Yet, reciprocal effects are poorly understood as studies of plant–plant interactions usually estimate only benefits for associated species, while how another trophic level may mediate direct and indirect feedback effects for ecosystem engineers is hardly considered. Methods We ran a field experiment with two ecosystem engineers (Arenaria tetraquetra and Hormathophylla spinosa) blooming either alone or with associated plants to decompose net effects and to test the hypothesis that pollinator-mediated interactions provide benefits that balance costs of facilitation by ecosystem engineers. Important Findings We found that net costs of facilitation are accompanied by pollinator-mediated benefits. Despite ecosystem engineers producing fewer flowers per plant, they were visited by more and more diverse pollinators per flower when blooming with associated plants than when blooming alone. Although seed production per plant was higher when ecosystem engineers bloomed alone, fruit set and seed set varied between species. In one case (A. tetraquetra), fruit and seed sets were negatively affected by the presence of associated plants, whereas, in another case (H. spinosa), fruit set and seed set were higher and unaffected when ecosystem engineers bloomed with associated plants, respectively. Our findings suggest that besides experiencing direct costs, ecosystem engineers can also benefit from facilitating other species via increasing their own visibility to pollinators. Thus, we highlight that pollination interactions can compensate for costs of facilitation depending on ecosystem engineer species. This study illuminates how the outcome of direct plant–plant interactions might be mediated by indirect interactions including third players.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-04-20
    Description: Aims Mongolian pine (Pinus sylvestris var. mongolica) and Xiaozhuan poplar (Populus × xiaozhuanica) are two predominant afforestation tree species in the semi-arid sandy lands of northeast China, which are characterized by poor soil nutrients. Plant litter decomposition plays a critical role in regulating nutrient cycling in terrestrial ecosystems. Admixture of broadleaf litter to conifer litter is expected to improve litter decomposition and soil fertility, and thus productivity. However, the effects on the decomposition of litter mixture of the above two tree species are not well understood. Therefore, it is essential to assess the decomposition performance of litter mixture with the aim of improving forest nutrient management and the establishment of mixed plantation. Appropriate forest management practice is critical for the sustainability of site productivity in plantation forests. Methods We conducted a field litterbag decomposition transplant experiment for single pine litter, single poplar litter and their mixture in a pine stand, a poplar stand and an adjacent grassland for 16 months in the Keerqin Sandy Lands, northeast China. Important Findings After 16 months of incubation, there remained significantly more litter mass of pine (73.8%) than of poplar (67.2%). The mass remaining was positively correlated with litter carbon (C):nitrogen (N), C:phosphorus (P) and lignin:N ratios, and negatively with litter N and P concentrations, which suggests that initial litter chemical properties were an important factor affecting litter decay. Generally, net N and P immobilizations were observed during decomposition. This indicates that litter decomposition in this area was N-limited as N was progressively immobilized, and then tended to induce P limitation. Thus, we strongly recommend prohibiting litter harvesting by local residents to maintain soil fertility in this nutrient-poor area. Our results do not support the home-field advantage hypothesis, as illustrated by the fact that, in most cases, mass loss of litter from native habitat was comparable to that in transplanted habitats during decomposition. Furthermore, a dominant additive effect was detected, indicating that the establishment of mixed plantation may not be appropriate for these two species.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
  • 12
    Publication Date: 2019-01-14
    Description: Aims Geographic patterns of the intensity of plant herbivory in relation to climate factors have garnered little general support and appear to be species specific. However, plant–herbivore interactions are also driven by resource availability, such as soil nutrient content, and it remains unclear whether broad-scale variation in soil factors is reflected in herbivore consumption rates across species’ ranges. Additionally, we know little of how intraspecific variation in tissue quality associates with edaphic and climatic factors, and how this variation controls herbivore consumption. The resource availability hypothesis (RAH) predicts that plant individuals growing in low-resource environments will have lower leaf nutritional quality and more constitutive defenses, which will result in lower rates of leaf consumption. Methods We collected leaves from the old-field dominant species, Solidago altissima L., from 20 sites across 10 degrees of latitude in the Eastern USA to determine the percentage leaf area consumed by insect folivores. We obtained soil and climate data for each site, as well as plant functional and defensive traits, including specific leaf area (SLA), leaf carbon:nitrogen (C:N), and trichome density. Important Findings Although we found no significant latitudinal trend of leaf consumption rate, there was strong evidence that leaf herbivory decreased with leaf C:N and trichome density, which themselves decreased with soil N, supporting our hypothesis that the RAH applies for intraspecific variation across spatial gradients. Additionally, high precipitation seasonality and soil nitrogen predicted decreased herbivory. The results suggest that spatial variation in herbivory can be driven by factors other than herbivore communities and climatic gradients, and that bottom-up processes, where plant traits and soil fertility control leaf consumption, must be incorporated into spatial predictions of herbivory.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-02
    Description: Aims With the global atmospheric nitrogen (N) deposition increasing, the effect of N deposition on terrestrial plant diversity has been widely studied. Some studies have reviewed the effects of N deposition on plant species diversity; however, all studies addressed the effects of N deposition on plant community focused on species richness in specific ecosystem. There is a need for a systematic meta-analysis covering multiple dimensions of plant diversity in multiple climate zones and ecosystems types. Our goal was to quantify changes in species richness, evenness and uncertainty in plant communities in response to N addition across different environmental and experimental contexts. Methods We performed a meta-analysis of 623 experimental records published in English and Chinese journals to evaluate the response of terrestrial plant diversity to the experimental N addition in China. Three metrics were used to quantify the change in plant diversity: species richness (SR), evenness (Pielou index) uncertainty (Shannon index). Important Findings Results showed that (i) N addition negatively affected SR in temperate, Plateau zones and subtropical zone, but had no significant effect on Shannon index in subtropical zones; (ii) N addition decreased SR, Shannon index and Pielou index in grassland, and the negative effect of N addition on SR was stronger in forest than in grassland; (iii) N addition negatively affected plant diversity (SR, Shannon index and Pielou index) in the long term, whereas it did not affect plant diversity in the short term. Furthermore, the increase in N addition levels strengthened the negative effect of N deposition on plant diversity with long experiment duration; and (iv) the negative effect of ammonium nitrate (NH4NO3) addition on SR was stronger than that of urea (CO(NH2)2) addition, but the negative effect of NH4NO3 addition on Pielou index was weaker than that of CO(NH2)2 addition. Our results indicated that the effects of N addition on plant diversity varied depending on climate zones, ecosystem types, N addition levels, N type and experiment duration. This underlines the importance of integrating multiple dimensions of plant diversity and multiple factors into assessments of plant diversity to global environmental change.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
  • 15
    Publication Date: 2019-10-24
    Description: Aims Seeds of many invasive plants germinate more quickly than those of native species, likely facilitating invasion success. Assessing the germination traits and seed properties simultaneously for introduced and native populations of an invasive plant is essential to understanding biological invasions. Here, we used Triadica sebifera as a study organism to examine intraspecific differences in seed germination together with seed characteristics. Methods We measured physical (volume, mass, coat hardness and coat thickness of seeds) and chemical (crude fat, soluble protein, sugar, gibberellins [GA] and abscisic acid [ABA] of kernels) properties of T. sebifera seeds collected in 2017 from 12 introduced (United States) populations and 12 native (China) populations and tested their germination rates and timing in a greenhouse experiment in China. Furthermore, we conducted an extra experiment in the United States using seeds collected in 2016 and 2017 to compare the effects of study sites (China vs. United States) and seed collection time (2016 vs. 2017) on seed germination. Important Findings Seeds from the introduced range germinated faster than those from the native range. Physical and chemical measurements showed that seeds from the introduced range were larger, had higher GA concentrations and GA:ABA ratio, but lower crude fat concentrations compared to those from the native range. There were no significant differences in seed mass, coat hardness and coat thickness or kernel ABA, soluble protein or sugar concentrations between seeds from introduced vs. native ranges. Germination rates were correlated between United States and China greenhouses but germination rates for populations varied between collection years. Our results suggest that larger seeds and higher GA likely contribute to faster germination, potentially facilitating T. sebifera invasion in the introduced range.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
  • 17
    Publication Date: 2019-11-28
    Description: Aims Mechanisms of plant drought resistance include both tolerance and avoidance. Xylem vulnerability to embolism and turgor loss point are considered traits that confer tolerance, while leaf abscission and deciduousness characterizes the avoidance strategy. While these mechanisms are thought to trade-off expressing a continuum among species, little is known on how variation in the timing and duration of leaf shedding in response to drought affect the relationship between xylem and leaf tolerance. In the present study, we explored the extent to which drought tolerance differs between two oak (Quercus) species that exhibit different leaf shedding behaviours. Particularly, we predicted that Q. deserticola Trel., which loses leaves at the end of the dry season (late-deciduous) and is thus exposed to a greater risk of cavitation, would be more drought tolerant and more conservative in its water use than Q. laeta Liebm., which loses its leaves for only a short period of time in the middle of the dry season (brevideciduous). Methods The study was conducted in central Mexico in a single population of each of the two oak species, separated from each other by a distance of 1.58 km, and by an altitudinal difference of 191 m. Quercus deserticola (late deciduous) is more frequent down slope, while Q. laeta (brevideciduous) tends to occur at higher elevations along the gradient. We assessed seasonal differences (rainy versus dry season) in native stem hydraulic conductivity, and tested for variation in xylem vulnerability to cavitation, leaf water use and leaf turgor loss point between the two species. Important Findings The two oak species did not differ in traits conferring drought tolerance, including xylem vulnerability to embolism, leaf turgor loss point, or stomatal conductance. However, both species had different performance during the dry season; the brevideciduous species had lower negative impact in the xylem function than the late-deciduous species. Overall, seasonal changes in plant physiological performance between the two oak species were determined by a reduction in the canopy leaf area.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-12-23
    Description: Aims Accurate estimates of bamboo biomass and net primary productivity (NPP) are required to evaluate the carbon sequestration potential of bamboo forests. However, relevant data that are important for climate change mitigation, have rarely been collected in regions outside of East Asia and India. Information on seasonal patterns of NPP and its components will enable the quantification of factors that influence the carbon balance in bamboo forests. In this study, we quantified the aboveground biomass (AGB) and aboveground NPP of five major bamboo species in northern Laos using monthly data collected over a 12-month period. Methods All live culms in 10, 2 m × 2 m plots (for one monopodial bamboo species: Indosasa sinica) and 30 clumps per species (for four sympodial bamboo species: Bambusa tulda, Cephalostachyum virgatum, Dendrocalamus membranaceus and Gigantochloa sp.) were numbered and measured at breast height. We set 10 or 20 litter traps per species to collect litterfall. Censuses of dead and recruited culms and litterfall collection were performed once per month for 12 months. Important Findings The AGB was highest in I. sinica (59.87 Mg ha−1) and lowest in C. virgatum (11.54 Mg ha−1), and was mostly below the plausible global range for bamboos (32–256 Mg ha−1). The sympatric distribution of multiple bamboo species at the study sites may have suppressed the AGB in four of the five studied species. The aboveground NPP estimates were between 3.43 and 14.25 Mg ha−1 yr−1; those for D. membranaceus (8.20 Mg ha−1 yr−1) and I. sinica (14.25 Mg ha−1 yr−1) were comparable to mean global estimates for temperate evergreen forests (8.78 Mg ha−1 yr−1) and tropical moist forests (10.56 Mg ha−1 yr−1). High culm recruitment rates (15.20–23.39% yr−1) were major contributors to aboveground NPP estimates. Seasonal patterns of aboveground NPP were largely influenced by the phenology of the new culms. In the four sympodial bamboo species, new culms began to emerge following the onset of persistent rainfall, mainly in July and August. However, the sprouting of new culms in the monopodial species I. sinica followed a trend of increasing temperatures, mainly in March and April. Thus, our results indicate that bamboos have considerable potential for sequestering carbon in northern Laos, but that this potential may be affected by climate change.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-05-07
    Description: Aims The impacts of future global warming of 1.5°C and 2°C on the productivity and carbon (C) storage of grasslands in China are not clear yet, although grasslands in China support ~45 million agricultural populations and more than 238 million livestock populations, and are sensitive to global warming. Methods This study used a process-based terrestrial ecosystem model named ORCHIDEE to simulate C cycle of alpine meadows and temperate grasslands in China. This model was driven by high-resolution (0.5° × 0.5°) climate of global specific warming levels (SWL) of 1.5°C and 2°C (warmer than pre-industrial level), which is downscaled by EC-EARTH3-HR v3.1 with sea surface temperature and sea-ice concentration as boundary conditions from IPSL-CM5-LR (low spatial resolution, 2.5° × 1.5°) Earth system model (ESM). Important Findings Compared with baseline (1971–2005), the mean annual air temperature over Chinese grasslands increased by 2.5°C and 3.7°C under SWL1.5 and SWL2, respectively. The increase in temperature in the alpine meadow was higher than that in the temperate grassland under both SWL1.5 and SWL2. Precipitation was also shown an increasing trend under SWL2 over most of the Chinese grasslands. Strong increases in gross primary productivity (GPP) were simulated in the Chinese grasslands, and the mean annual GPP (GPPMA) increased by 19.32% and 43.62% under SWL1.5 and SWL2, respectively. The C storage increased by 0.64 Pg C and 1.37 Pg C under SWL1.5 and SWL2 for 50 years simulations. The GPPMA was 0.670.390.88 (0.82) (model meanminmax (this study)), 0.850.451.24 (0.97) and 0.940.611.30 (1.17) Pg C year−1 under baseline, SWL1.5 and SWL2 modeled by four CMIP5 ESMs (phase 5 of the Coupled Model Inter-comparison Project Earth System Models). In contrast, the mean annual net biome productivity was −18.55−40.374.47 (−3.61),18.65−2.0364.03 (10.29) and 24.158.3838.77 (24.93) Tg C year−1 under baseline, SWL1.5 and SWL2 modeled by the four CMIP5 ESMs. Our results indicated that the Chinese grasslands would have higher productivity than the baseline and can mitigate climate change through increased C sequestration under future global warming of 1.5°C and 2°C with the increase of precipitation and the global increase of atmospheric CO2 concentration.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-12-23
    Description: Aims Established invasive plant species have more diverse gene pools than single populations in their home range. This genetic and often phenotypic variation allows for natural selection to act and produce rapid adaptations as an invasive species interacts with other members of the community. For an invasive flowering plant, interactions with pollinators may lead to adaptations to a heterogeneous pollinator community. The variation in the pollinator community in the invaded range is similar to variation in the native range, suggesting that adaptations may mirror patterns seen in the home range. In this study, we investigated variation in flower size in Cytisus scoparius, an invasive leguminous shrub, along an elevation gradient. Methods This study took place in the Capitol State Forest in Washington State. We measured flower widths and the proportion of visited flowers, using 10 plants per field site. Sites were located along an elevation gradient and were visited three times to measure phenological variation on a per-plant basis. Important Findings We saw positive selection for flower size, albeit without a distinct pattern of higher selection at higher elevations. The pattern of natural selection could be seen both in terms of pollinator visitation rates and in seed production. We also found that the largest contributor to changes in seed production was not elevation or flower size but management practices.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-12-27
    Description: Aims To explain how plant community copes with a recurring anthropogenic forest fire in Himalayan Chir pine forest, it is important to understand their postfire regeneration strategies. The primary aim of the study was to know: (i) how fire impact soil seed bank composition and (ii) how much soil seed bank composition differs with standing vegetation after the forest fire. Methods Soil samples were collected from burned and adjoining unburned sites in blocks using three layers down to 9 cm depth immediately after a forest fire and incubated in the net-house for seedling emergence. Same sites were revisited during late monsoon/early autumn season to know the species composition of standing vegetation recovered after a forest fire. Important Findings Soil contained viable seeds of 〉70 species. The average seed bank density was 8417 and 14 217 seeds/m2 in the burned and unburned site, respectively. In both sites, it decreased with increasing soil depth. Overall fire had no significant impact on seed density; however, taking individual layers into consideration, fire had a significant impact on seed density only in the uppermost soil layer. The species richness of soil seed bank and standing vegetation was 73 and 100, respectively (with 35 shared species), resulting in a similarity of about 40%. In contrast, 〉80% species in soil seed bank was found similar between burned and unburned sites. Further, there were no significant differences in species richness of standing vegetation in burned (87 spp.) and unburned (78 spp.) sites. Our results showed that fire had an insignificant impact on soil seed bank composition and restoration potential of a plant species from seeds. The understory herb and shrub plant community’s ability to form a fire-resistant viable soil seed bank and capable to recover in the postfire rainy season, explains how they reduce the risk of recurring fire damage in maintaining their population.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-08-22
    Description: Aims Persian walnut (Juglans regia L.), an interesting forest species for the veneering industry, requires adequate management to produce valuable high-quality logs. Since species associations and management level can improve stand productivity, the novelty of this work was to assess Persian walnut performance in different planting mixtures and in pure plantations conditioned to management intensity. Methods Growth, straightness and survival measurements were taken annually for 7 years after planting pure and mixed plantations under two contrasting management scenarios. Diseases were recorded at Age 7 in all plantations. Under each management intensity, besides the monoculture, three mixtures were tested: a mixture of only main forest species, main forest species plus one arboreal companion species, Black alder (Alnus glutinosa L.) and main species plus the shrub Russian olive (Elaeagnus angustifolia L.) as nurse species. A test of interaction between plantation type and management scenario was conducted using repeated growth data. Important Findings The interaction was significant, indicating the presence of different mechanisms underlying plantation effects under high and low management level. Compared with pure plantations, Persian walnut associated with the nurse shrub exhibited 78% higher height and 53% higher diameter growth in plantations under low management. Health benefits (lower presence of walnut blight than in the monoculture) and better straightness were also found in the association including the shrub when the management intensity was not high. These beneficial effects in the presence of Russian olive were not present under high management intensity (irrigation, fertilization, tutoring and frequent pruning). Site-specific designs for Persian walnut plantations would depend on the foreseen management intensity.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-05-10
    Description: Aims Our aims were 3-fold: (i) to determine whether global change has altered the composition and structure of the plant community found in the sessile oak forests on the NE Iberian Peninsula over the last decades, (ii) to establish whether the decline in forest exploitation activities that has taken place since the mid-20th century has had any effect on the forests and (iii) to ascertain whether there is any evidence of impact from climate warming. Methods We assess changes in the plant community by comparing a current survey of sessile oak forest with a historical data set obtained from previous regional studies dating from 1962 to 1977. We analyse the regional changes in the community in terms of biodiversity variables, species composition and plant traits. Furthermore, plants traits such as plant life forms and chorological groups are used to discern any effects from land-use changes and climate warming on the plant community. Important Findings There has been a loss of diversity in the community and, in the hottest region, there is also a loss of species richness. The composition of the community suggests that, although significant changes have taken place over recent decades, these changes differ between regions as a result of the low impact global change has had in the western regions. For instance, while the tree canopy cover in the western sessile oak forests remains stable, the eastern sessile oak forests are still recovering from the former exploitation that led to a loss of their rich and abundant herbaceous stratum. In fact, the recovery process in the Catalan Pre-Coastal Range has constituted an increase in the Euro-Siberian plants typical to this community. Moreover, in the eastern forests, there is evidence that climate warming has impacted the thermophilization of the sessile oak forests found on the Coastal Range.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-05-01
    Description: Aims Assessment of factors regulating root decomposition is needed to understand carbon and nutrient cycling in forest ecosystems. The objective of this study is to examine the effects of soil depth and root diameter on root decomposition and to analyze the relationship of root decomposition with factors such as soil environmental conditions and initial litter quality. Methods Two decomposition experiments were conducted in natural pine (Pinus densiflora) and oak (Quercus serrata) forests over a 2-year period using the litterbag technique. For the soil depth experiment, 216 litterbags containing fine roots (∅ = 0–2 mm) were buried at 0–10-, 10–20- and 20–30-cm soil depths. Soil properties and soil enzyme activities and microbial biomass at each soil depth were analyzed. For the root diameter experiment, 216 litterbags containing roots 0–1-, 1–2- and 2–3-mm in diameter were buried at 10-cm soil depth. The initial litter qualities (carbon (C), nitrogen (N), calcium (Ca) and phosphorus (P) concentrations) for each of the root diameter classes were analyzed. Litterbags were retrieved after 3, 6, 12 and 24 months in each forest type. Important Findings The root decomposition rate was significantly altered by soil depth and root diameter. After 2 years, the root decay constant at 0–10-cm depth (pine: 0.35 and oak: 0.41) was significantly higher than that at 10–20-cm (0.31 and 0.37) and 20–30-cm (0.32 and 0.33) depths in the P. densiflora and Q. serrata forests. Enzyme activities and microbial biomass declined with soil depth, which may be associated with decreasing soil moisture and organic matter. The decay constant for the 0–1-mm roots (pine: 0.32 and oak: 0.37) was higher than that of 1–2-mm (0.29 and 0.33) and 2–3-mm roots (0.26 and 0.33) for the P. densiflora and Q. serrata forests. Difference in initial P concentration and C/N ratio among the different diameter roots were linearly related with root decomposition. In particular, the increasing C/N ratio with root diameter resulted in decreases in the decomposition rate. These results indicate the surface soil microbial activities and initial C/N ratio of root litter as important drivers of C dynamics in temperate pine and oak forests.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-01-10
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-28
    Description: Aims Clipping or mowing for hay, as a prevalent land-use practice, is considered to be an important component of global change. Root production and turnover in response to clipping have great implications for the plant survival strategy and grassland ecosystem carbon processes. However, our knowledge about the clipping effect on root dynamics is mainly based on root living biomass, and limited by the lack of spatial and temporal observations. The study aim was to investigate the effect of clipping on seasonal variations in root length production and mortality and their distribution patterns in different soil layers in semiarid grassland on the Loess Plateau. Methods Clipping was performed once a year in June to mimic the local spring livestock grazing beginning from 2014. The minirhizotron technique was used to monitor the root production, mortality and turnover rate at various soil depths (0–10, 10–20, 20–30 and 30–50 cm) in 2014 (from 30 May to 29 October) and 2015 (from 22 April to 25 October). Soil temperature and moisture in different soil layers were also measured during the study period. Important Findings Our results showed that: (i) Clipping significantly decreased the cumulative root production (P 〈 0.05) and increased the cumulative root mortality and turnover rates of the 0–50 cm soil profile for both years. (ii) Clipping induced an immediate and sharp decrease in root length production and an increase in root length mortality in all soil layers. However, with plant regrowth, root production increased and root mortality decreased gradually, with the root production at a depth of 30–50 cm even exceeding the control in September–October 2014 and April–May 2015. (iii) Clipping mainly reduced root length production and increased root length mortality in the upper 0–20 cm soil profile with rapid root turnover. However, roots at deeper soil layers were either little influenced by clipping or exhibited an opposite trend with slower turnover rate compared with the upper soil profile, leading to the downward transport of root production and living root biomass. These findings indicate that roots in deeper soil layers tend to favour higher root biomass and longer fine root life spans to maximize the water absorption efficiency under environmental stress, and also suggest that short-term clipping would reduce the amount of carbon through fine root litter into the soil, especially in the shallow soil profile.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-05-27
    Description: Aims Organisms on islands are thought to escape biotic pressure and lose defensive capabilities. However, broadscale, evidence-based tests of this idea are rare. In this study, we asked: (i) whether the proportion of spinescent plant species differed between islands and mainlands and (ii) whether the proportion of spinescent species increased with increasing island area and with decreasing island distance to mainland. Methods We compiled species lists for 18 island–mainland pairs around Australia. We classified 1129 plant species as spinescent or non-spinescent using published species descriptions. Important Findings There was no significant difference between the proportion of spinescent species found on islands and on mainlands. Proportions of spinescent species were not significantly related to island area or distance to mainland. Our results suggest that spinescence is just as important to island plants as it is to mainland plants, even for plants inhabiting small or distal islands. This is unexpected, given prevailing thought and previous work on island–mainland comparisons. Our study demonstrates the importance of testing well-accepted yet untested ideas.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-05-22
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-03-07
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-03-21
    Description: Aims The leaves of almost all terrestrial plant species are colonized by endophytic fungi. Compared to agronomic grasses, which usually harbor few endophytes, native grasses generally possess greater endophyte species diversity. Existing studies examining endophyte effects on natural grasses under competition normally considered the infection status (infected or uninfected), and rarely considered endophyte species. Methods We examined the effects of endophyte infection and of endophyte species on the interspecific competitive ability of a subdominant species, Achnatherum sibiricum, at two nitrogen levels (high nitrogen and low nitrogen). Achnatherum sibiricum plants infected by two different species of endophyte (Epichloë sibirica and E. gansuensis) and uninfected plants were grown in monoculture and binary mixtures with a dominant species, Stipa grandis (six individuals per species for monocultures and three + three individuals of each species in mixtures). Shoot and root biomass, tiller number and total phenolic concentration were measured after 3 months. Moreover, the aggressivity index was calculated to compare the competitive ability of A. sibiricum relative to S. grandis. Important Findings Both E. gansuensis (Eg)- and E. sibirica (Es)-infected A. sibiricum plants showed a greater competitive ability than the uninfected plants under high nitrogen supply, while the opposite result occurred under low nitrogen supply. At high nitrogen levels, Eg plants had a higher tiller number and a greater shoot biomass inhibitory effect on S. grandis than Es plants had when growing in mixture, while Es plants showed better root growth performance than Eg and uninfected plants under mixture conditions at all nitrogen levels. A higher concentration of phenolic compounds in Eg plants than in Es plants might contribute to the higher inhibitory effect of Eg plants on competing plants. Our study indicates that the interaction between endophyte infection and nitrogen availability can alter the competitive ability of the host plant A. sibiricum but that these two endophyte species work in different ways, which may influence the coexistence of A. sibiricum with the dominant species.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-11-20
    Description: Aims Habitat loss and fragmentation are the main threats to biodiversity in tropical forests. Agroecosystems such as shaded cocoa plantations (SCP) provide refuge for tropical forest biota. However, it is poorly known whether the interspecific ecological interactions are also maintained in these transformed habitats. We evaluated the diversity, reproductive status and photosynthetic metabolism (CAM or C3) of the epiphytic orchid community, and their interactions with host trees (phorophytes) in SCP compared to tropical rainforest (TRF). Methods In southeastern Mexico, three sites each in TRF and SCP were studied, with four 400 m2 plots established at each site to record all orchids and their phorophytes. We determined the reproductive (adult) or non-reproductive (juvenile) status of each orchid individual in relation to the presence or absence, respectively, of flowers/fruits (or remnants), and assigned the photosynthetic pathway of each orchid species based in literature. We used true diversity and ecological networks approaches to analyze orchid diversity and orchid–phorophyte interactions, respectively. Important Findings In total, 607 individuals belonging to 47 orchid species were recorded. Orchid diversity was higher in TRF (19 effective species) than in SCP (11 effective species) and only seven species were shared between the two habitats. CAM orchid species were more frequent in SCP (53%) than in TRF (14%). At the community level the proportion of non-reproductive and reproductive orchid species and the nested structure and specialization level of the TRF orchid–phorophyte network were maintained in SCP. However, only a subset of TRF epiphytic orchids remains in SCP, highlighting the importance of protecting TRF. Despite this difference, shaded agroecosystems such as SCP can maintain some of the diversity and functions of natural forests, since the SCP epiphytic orchid community, mainly composed of CAM species, and its phorophytes constitute a nested interaction network, which would confer robustness to disturbances.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-06-17
    Description: Aims Clonal growth is associated with invasiveness in introduced plant species, but few studies have compared invasive and noninvasive introduced clonal species to investigate which clonal traits may underlie invasiveness. To test the hypothesis that greater capacity to increase clonal growth via physiological integration of connected ramets increases invasiveness in clonal plants, we compared the effects of severing connections on accumulation of mass in the two species of the creeping, succulent, perennial, herbaceous genus Carpobrotus that have been introduced on sand dunes along the Pacific Coast of northern California, the highly invasive species Carpobrotus edulis and the co-occurring, noninvasive species Carpobrotus chilensis. Methods Pairs of ramets from four mixed populations of the species from California were grown in a common garden for 3 months with and without severing the stem connecting the ramets. To simulate the effect of clones on soils in natural populations, the older ramet was grown in sand amended with potting compost and the younger in sand alone. Important Findings Severance decreased net growth in mass by ~60% in C. edulis and ~100% in C. chilensis, due mainly to the negative effect of severance on the shoot mass of the younger ramet within a pair. Contrary to the hypothesis, this suggests that physiological integration increases growth more in the less invasive species. However, severance also decreased allocation of mass to roots in the older ramet and increased it in the younger ramet in a pair, and the effect on the younger ramet was about twice as great in C. edulis as in C. chilensis. This indicates that the more invasive species shows greater phenotypic plasticity in response to physiological integration, in particular greater capacity for division of labor. This could contribute to greater long-term growth and suggests that the division of labor may be a trait that underlies the association between clonal growth and invasiveness in plants.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-03-12
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-01-07
    Description: Aims The relative roles of ecological processes in structuring beta diversity are usually quantified by variation partitioning of beta diversity with respect to environmental and spatial variables or gamma diversity. However, if important environmental or spatial factors are omitted, or a scale mismatch occurs in the analysis, unaccounted spatial correlation will appear in the residual errors and lead to residual spatial correlation and problematic inferences. Methods Multi-scale ordination (MSO) partitions the canonical ordination results by distance into a set of empirical variograms which characterize the spatial structures of explanatory, conditional and residual variance against distance. Then these variance components can be used to diagnose residual spatial correlation by checking assumptions related to geostatistics or regression analysis. In this paper, we first illustrate the performance of MSO using a simulated data set with known properties, thus making statistical issues explicit. We then test for significant residual spatial correlation in beta diversity analyses of the Gutianshan (GTS) 24-ha subtropical forest plot in eastern China. Important Findings Even though we used up to 24 topographic and edaphic variables mapped at high resolution and spatial variables representing spatial structures at all scales, we still found significant residual spatial correlation at the 10 m × 10 m quadrat scale. This invalidated the analysis and inferences at this scale. We also show that MSO provides a complementary tool to test for significant residual spatial correlation in beta diversity analyses. Our results provided a strong argument supporting the need to test for significant residual spatial correlation before interpreting the results of beta diversity analyses.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-16
    Description: The Tibetan Plateau (TP) holds fundamental ecological and environmental significances to China and Asia. The TP also lies in the core zone of the belt and road initiative. To protect the TP environment, a comprehensive screening on current ecological research status is entailed. The teased out research gap can also be utilized as guidelines for the recently launched major research programs, i.e. the second TP scientific expedition and silk and belt road research plan. The findings showed that the TP has experienced significant temperature increase at a rate of 0.2°C per decade since 1960s. The most robust warming trend was found in the northern plateau. Precipitation also exhibited an increasing trend but with high spatial heterogeneity. Changing climates have caused a series of environmental consequences, including lake area changes, glacier shrinkage, permafrost degradation and exacerbated desertification. The rising temperature is the main reason behind the glaciers shrinkage, snow melting, permafrost degradation and lake area changes on the TP and neighboring regions. The projected loss of glacial area on the plateau is estimated to be around 43% by 2070 and 75% by the end of the century. Vegetation was responsive to the changed environments, varied climates and intensified human activities by changing phenology and productivity. Future global change study should be more oriented toward integrating various research methods and tools, and synthesizing diverse subjects of water, vegetation, atmosphere and soil.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-06-06
    Description: Aims Seeds of Rumex crispus from six provenances were studied in relation to their germination under drought and presence of nitrogen in the germination and emergence media. We also investigated whether adaptation to soil increases the ability of the species to colonize and establish in contrasting environments along a longitudinal gradient in western Spain by means of a reciprocal transplantation experiment. Methods We conducted a germination trial in the lab to test for the germination responses to water scarcity along a polyethylene glycol gradient and to varying concentrations of nitrogen compounds. Simultaneously reciprocal transplantations experiment was conducted, where seeds from six provenances were grown in the soils from the very same provenances. Seedling emergence, survivorship and fitness-related variables were measured in all plots. Important Findings We found that R. crispus has a cold-stratification requirement that enhances its germination. Significant differences between the six provenances were detected for time-to-germination, total seedling emergence, plant mortality and reproductive effort in all the experiments. The differences between provenances with respect to germination were confirmed by the significant statistical analyses of the variance, thus providing evidence that seeds from parent plants grown in different environmental conditions have an intrinsically different abilities to germinate and establish. Soil nitrogen content where seed germination and seedlings establish also play an important role in their performance in terms of survivorship and reproduction, being the higher levels of inorganic nitrogen and of microbial biomass those that increased biomass production, enhanced inflorescence formation and reduced plant mortality. We conclude that one of the main reasons for the spread and maintenance of R. crispus would be the increased levels of nitrogen in agricultural soils.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-10-03
    Description: Aims In contrast to temperate regions, the reasons for growth reductions of individual tree species along elevational gradients in tropical mountain ranges are poorly known, especially for tropical conifers. We aimed at testing whether climatic or edaphic conditions are responsible for the reduced growth of Pinus kesiya, a widely distributed pine species of southern and south-eastern Asia, at higher elevations. Methods We analysed the stem diameter increment and the isotope discrimination against 13C (△ 13C) in tree rings of P. kesiya along an elevational gradient of ~900 to ~2000 m a.s.l. in the mountain ranges of South-Central Vietnam, and related growth to △  13C and to climatic and edaphic variables. Important findings We found no consistent correlation patterns between the basal area increment (BAI) of the trees and temperature or precipitation. In contrast, across the elevational gradient, we obtained significantly negative correlations of BAI with △  13C and with the C/N ratios and the δ 15N signature of the upper mineral soil. BAI was positively correlated with the concentrations of plant-available phosphorus (Pa) and of “base” cations (calcium, magnesium, potassium) in the soil. We conclude that lower temperatures at higher elevations exert an indirect effect on tree growth by inducing higher C/N ratios and by reducing the rate of nitrogen (N) and P mineralization, which may be further hampered by lower concentrations of “base” cations (upon enhanced leaching by precipitation) and a negative feedback from low availability of mineralized N and P at higher elevations. Our results may be transferable to the uppermost growth limit of P. kesiya and to other montane regions of the species’ occurrence.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-11-15
    Description: Aims Natural hybridization between invasive and native species, as a form of adaptive evolution, threatens biodiversity worldwide. However, the potential invasive mechanisms of hybrids remain essentially unexplored, especially insights from soil chemical properties and soil microbial communities. Methods In a field experiment, soil microbial community, potassium-solubilizing bacteria, phosphorus-solubilizing bacteria, enzyme activities, and light-saturated photosynthetic rate were measured in invasive Sphagneticola trilobata and its hybrid with native Sphagneticola calendulacea in 2 years. Important Findings In general, soil dissolved organic carbon and the biomass of phosphorus-solubilizing bacteria were significantly higher under the hybrid treatment than S. trilobata and S. calendulacea. However, there were no significant differences in acid phosphatase, total PLFAs, bacterial PLFAs, fungi PLFAs, cellulase, and urase in these treatments. The hybrids had significantly higher light-saturated photosynthetic rate, photosynthetic nitrogen-, phosphorus-, potassium- use efficiencies than the invasive S. trilobata, but no significant difference with S. calendulacea. The total biomass and root biomass of hybrids were higher than S. calendulacea. Our results indicate that the hybrids species have a higher invasive potential than S. calendulacea, which may aggravate the local extinction of S. calendulacea in the future.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-02-13
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-12-16
    Description: Aims There are different components of carbon (C) pools in a natural forest ecosystem: biomass, soil, litter and woody debris. We asked how these pools changed with elevation in one of China’s ecologically important forest ecosystem, i.e. beech (Fagus L., Fagaceae) forests, and what were the underlying driving factors of such variation. Methods The four C pools in nine beech forests were investigated along an elevational gradient (1095–1930 m) on Mt. Fanjingshan in Guizhou Province, Southwest China. Variance partitioning was used to explore the relative effects of stand age, climate and other factors on C storage. In addition, we compared the four C pools to other beech forests in Guizhou Province and worldwide. Important Findings The total C pools of beech forest ecosystems ranged from 190.5 to 504.3 Mg C ha–1, mainly attributed to biomass C (accounting for 33.7–73.9%) and soil C (accounting for 23.9–65.5%). No more than 4% of ecosystem C pools were stored in woody debris (0.05–3.1%) and litter (0.2–0.7%). Ecosystem C storage increased significantly with elevation, where both the biomass and woody debris C pools increased with elevation, while those of litter and soil exhibited no such trend. For the Guizhou beech forests, climate and stand age were found to be key drivers of the elevational patterns of ecosystem and biomass C storage, while for beech forests globally, stand age was the most important predictor. Compared to beech forests worldwide, beech forests in Guizhou Province displayed a relatively higher biomass C accumulation rate, which may be explained by a much higher precipitation in this area. The present study provides basic data for understanding the C budgets of Chinese beech forests and their possible roles in regional C cycling and emphasizes the general importance of stand age and climate on C accumulation.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-12-23
    Description: Aims Grazing exerts profound effects on grassland ecosystem service and functions by regulating species composition and diversity, and structuring community assembly worldwide. However, adaptions of phylogenetic diversity and phylogenetic community structure to long-term grazing disturbance remain poorly studied, especially for ecosystems distributed in extreme environments. Methods Here, we conducted an experiment with multigrazing intensities to explore the impacts of grazing disturbance on plant phylogenetic diversity and community structure in an alpine grassland of the Tibetan Plateau. Important Findings Grazing disturbance enriched plant species richness (SR), and stimulated species turnover from regional species pool, consequently changing community species composition. Under low intensities, grazing exerted no obvious effects on phylogenetic diversity and community structure, whereas communities changed from overdispersion to clustering under high grazing intensity. High grazing intensity resulted in stronger environmental filtering, which consequently selected those species with high resilience to grazing disturbance. The observed clustering structure was associated with the colonizing species which were closely related to resident species, and locally extinct species, and distantly related to residents. At the plant functional trait level, high grazing intensity increased species colonization largely by altering the effect of root depth on species colonization compared to light grazing. Our results highlight that solely utilization of SR and diversity cannot fully represent grassland communities responses to grazing. The effects of species turnover on community phylogenetic diversity and structure are entailed to be explored in the future grazing studies.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-12-07
    Description: Aims Fruit color polymorphisms are widespread in plants, but what maintains them is largely unclear. One hypothesis is that some morphs are preferred by dispersers while others have higher pre- or postdispersal fitness. This leads to the prediction that fruit color morphs will differ in pre- or postdispersal fitness. Methods We compared genetic and clonal diversity, mating system, morphological traits that might be associated with resistance to freezing, and germination, survival and seed production of progeny of the red and white fruit morphs in a population of a diploid, wild strawberry, Fragaria pentaphylla, from south-central China. Important Findings The red morph was much more abundant than the white but did not show higher genetic diversity as measured by observed and effective numbers of alleles, Shannon information index, or expected or observed heterozygosities. AMOVA showed that most of the genetic variation in the population was within rather than between morphs. Morphs did not differ in mating system parameters, and no significant biparental inbreeding was found in either morph. Gene flow between two morphs was high (Nm = 6.89). Seeds of the red morph germinated about 2 days earlier and had a 40% higher rate of germination than those of the white morph, but survival of seedlings and seed production by surviving offspring did not differ between morphs. The whole postdispersal fitness of the red morph was about two times higher than that of the white morph. Red morphs had hairier petioles but not more surface wax on leaves. Overall, results showed partial evidence for difference in pre- and postdispersal fitness between fruit color morphs in F. pentaphylla. Differences in fitness independent of dispersal may thus partially account for fruit color polymorphism in all cases.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-08-16
    Description: Aims Invasive species, which recently expanded, may help understand how climatic niche can shift at the time scale of the current global change. Here, we address the climatic niche shift of an invasive shrub (common gorse, Ulex europaeus) at the world and regional scales to assess how it could contribute to increasing invasibility. Methods Based on a 28 187 occurrences database, we used a combination of 9 species distribution models (SDM) to assess regional climatic niche from both the native range (Western Europe) and the introduced range in different parts of the world (North-West America, South America, North Europe, Australia and New Zealand). Important Findings Despite being restricted to annual mean temperature between 4°C and 22°C, as well as annual precipitation higher than 300 mm/year, the range of bioclimatic conditions suitable for gorse was very large. Based on a native versus introduced SDM comparison, we highlighted a niche expansion in North-West America, South America and to a lesser degree in Australia, while a niche displacement was assessed in North Europe. These niche changes induced an increase in potential occupied areas by gorse by 49, 111, 202 and 283% in Australia, North Europe, North-West America and South America, respectively. On the contrary, we found no evidence of niche change in New Zealand, which presents similar climatic condition to the native environment (Western Europe). This study highlights how niche expansion and displacement of gorse might increase invasibility at regional scale. The change in gorse niche toward new climatic conditions may result from adaptive plasticity or genetic evolution and may explain why it has such a high level of invasibility. Taking into account the possibility of a niche shift is crucial to improve invasive plants management and control.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-05-15
    Description: Aims The latest China Vegetation Classification System (China-VCS) for natural/semi-natural vegetation has eight hierarchical levels: Association 〈 Association-group 〈 Subformation 〈 Formation 〈 Formation-group 〈 Vegetation-subtype 〈 Vegetation-type 〈 Vegetation-type-group. The classification is based on dominant species and their growth forms and has been completed at the formation level. The principal challenge today in Chinese vegetation classification is to develop the China-VCS at levels below the formation in a way that is consistent with current international standards. We explored the following question: how can existing vegetation plot data help develop the China-VCS and improve its compatibility with other international classification systems? Methods We compiled 401 plots having plant cover and/or aboveground biomass measurements collected in six Stipa steppe formations and divided them into those with cover data (299 plots) and/or biomass data (283 plots). We applied a combination of hierarchical clustering and ordination to partition the cover and biomass data sets into formations and constituent associations. We then used supervised noise clustering to improve the classification and to identify the core plots representing each association. Diagnostic species were also identified at both association and formation levels. Finally, we compared the classification results based on cover and biomass data sets and combined these results into a comprehensive classification framework for the six formations. Important Findings Our results using cover data were comparable with those using biomass data at both formation and association levels. Three Stipa formations were classified into associations based on cover data, two based on biomass data and one based on both biomass and cover data. Twenty-seven associations were defined and proposed within the six formations, using cover or biomass data as consistent classification sections (CCSs). Both dominant species in the dominant stratum and diagnostic species from multiple strata of the core plots were used to characterize vegetation types at both formation and association levels, improving the compatibility of our classification with the International Vegetation Classification. Temperature and precipitation were found to be important climatic factors determining the distribution pattern and species composition of Stipa-dominated vegetation. We propose a framework for plot-based vegetation classification in the China-VCS, using our work with Stipa-dominated steppe vegetation as an example. We applied the concept of CCS to make optimal use of available data representing both plant cover and biomass. This study offers a model for developing the China-VCS to the association level in a way that is consistent with current international standards.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-04-26
    Description: Aims Climate change can significantly affect the vegetation worldwide. Thus, paleovegetation and paleoclimate reconstruction should consider the quantitative relationship between modern vegetation and climate. The specific objectives of this study were (i) to assess the influence of environmental variables on pollen assemblages in the Kanas region, (ii) to reconstruct the evolution of vegetation over the past 3000 years using pollen records and (iii) to quantify historical climate change (including mean annual temperature and total annual precipitation) using a weighted averaging partial least squares regression method (WAPLS) applied to fossil pollen data from the Kanas wetland in Xinjiang, China. Methods A total of 65 surface and 50 fossil samples were collected from the Kanas wetland and analysed for 14C, pollen and grain size. By combining these data with those obtained from 214 samples of surface pollen assemblages in north Xinjiang, the late Holocene climate was reconstructed using a WAPLS model. Important Findings The vegetation in Kanas was dominated by forest for the past 3000 years, undergoing an arbour-vegetation transition from predominantly pine to spruce over that period. The WAPLS model showed that the paleoclimate progressed from cold-wet to warm-dry and subsequently back to cold-wet. Prior to 1350 calibrated years before the present (cal. yr BP), the climate of Kanas was cold and wet, and conditions became increasingly warm and dry until 870 cal. yr BP. The temperature reconstruction model indicated that a ‘Little Ice Age’ occurred ~380 cal. yr BP. These data will help us improve the understanding of abrupt climate change and provide important information regarding the prediction of climate.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-01-17
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-01-16
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
  • 49
  • 50
  • 51
    Publication Date: 2019-05-29
    Description: Aims Tree species richness has been reported to have positive effects on aboveground biomass and productivity, but little is known about its effects on soil organic carbon (SOC) accumulation. Methods To close this gap, we made use of a large biodiversity–ecosystem functioning experiment in subtropical China (BEF-China) and tested whether tree species richness enhanced SOC accumulation. In 2010 and 2015, vertically layered soil samples were taken to a depth of 30 cm from 57 plots ranging in tree species richness from one to eight species. Least squares-based linear models and analysis of variance were used to investigate tree diversity effects. Structural equation modeling was used to explore hypothesized indirect relationships between tree species richness, leaf-litter biomass, leaf-litter carbon content, fine-root biomass and SOC accumulation. Important Findings Overall, SOC content decreased by 5.7 and 1.1 g C kg−1 in the top 0–5 and 5–10 cm soil depth, respectively, but increased by 1.0 and 1.5 g C kg−1 in the deeper 10–20 and 20–30 cm soil depth, respectively. Converting SOC content to SOC stocks using measures of soil bulk density showed that tree species richness did enhance SOC accumulation in the different soil depths. These effects could only to some extent be explained by leaf-litter biomass and not by fine-root biomass. Our findings suggest that carbon storage in new forests in China could be increased by planting more diverse stands, with the potential to contribute to mitigation of climate warming.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-01-23
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-04-02
    Description: Aims Community assembly links plant traits to particular environmental conditions. Numerous studies have adopted a trait-based approach to understand both community assembly processes and changes in plant functional traits along environmental gradients. In most cases these are long-established, natural or semi-natural environments. However, increasingly human activity has created, and continues to create, a range of new environmental conditions, and understanding community assembly in these ‘novel environments’ will be increasingly important. Methods Built in 2006, the Three Gorges Dam, largest hydraulic project in China, created a new riparian area of 384 km2, with massively altered hydrology. This large, newly created ecosystem is an ideal platform for understanding community assembly in a novel environment. We sampled environment variables and plant communities within 103 plots located in both the reservoir riparian zone (RRZ) and adjacent non-flooded and semi-natural upland (Upland) at the Three Gorges Reservoir Area. We measured six traits from 168 plant species in order to calculate community-level distribution of trait values. We expected that the altered hydrology in RRZ would have a profound effect on the community assembly process for the local plants. Important Findings Consistent with previous work on community assembly, the distribution of trait values (range, variance, kurtosis and the standard deviation of the distribution neighbor distances) within all plots was significantly lower than those from random distributions, indicating that both habitat filtering and limiting similarity simultaneously shaped the distributions of traits and the assembly of plant communities. Considering the newly created RRZ relative to nearby sites, community assembly was different in two main ways. First, there was a large shift in the mean trait values. Compared to Upland communities, plant communities in the RRZ had higher mean specific leaf area (SLA), higher nitrogen per unit leaf mass (Nmass), and lower maximum height (MH). Second, in the RRZ compared to the Upland, for the percentage of individual plots whose characteristic of trait values was lower than null distributions, the reductions in the community-level range for SLA, Nmass, nitrogen per unit leaf area (Narea) and phosphorus per unit leaf area (Parea) were much larger, suggesting that the habitat filter in this newly created riparian zone was much stronger compared to longer established semi-natural upland vegetation. This stronger filter, and the restriction to a subset of plants with very similar trait values, has implications for predicting riparian ecosystems’ responses to the hydrological alterations and further understanding for human’s effect on plant diversity and plant floras.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-04-03
    Description: Aims Change in nitrogen (N) availability regulates phosphorus (P) acquisition and potentially alters the competition among native species and invasive weeds. This study determines how current and projected N deposition affect the growth, the intraspecific and interspecific competitive ability of native and invasive plants in calcareous soils with low P availability. Methods A controlled greenhouse experiment was conducted using sparingly soluble hydroxyapatite (HAP) to simulate the calcareous soils with low P availability. The growth and competitive intensity between an invasive weed (Solidago canadensis) and a native weed (Pterocypsela laciniata) exposed to two levels of N addition representative of current and future N deposition in China were experimentally determined. Important Findings P acquisition and the growth of both S. canadensis and P. laciniata growing alone significantly increased with increasing N level. However, the effect of N addition was reduced when intraspecific or interspecific competition existed. N addition altered the competitive relationship between S. canadensis and P. laciniata allowing S. canadensis to out-compete P. laciniata due to variation in P acquisition from HAP. Elevated N deposition might assist the invasion of S. canadensis in the widely distributed calcareous soils under environmental changes.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-15
    Description: Aims Climate change in the near future may become a major threat to high-altitude endemics by greatly altering their distribution. Our aims are to (i) assess the potential impacts of future climate change on the diversity and distribution of seed plants endemic to the Tibetan Plateau and (ii) evaluate the conservation effectiveness of the current National Nature Reserves (NNRs) in protecting the endemic plants in the face of climate change. Methods We projected range shifts of 993 endemic species to the years 2050 and 2070 under two representative concentration pathway scenarios using an ensemble species distribution modeling framework and evaluated range loss, species-richness change and coverage of the current conservation network considering two dispersal scenarios. Important Findings In a full-dispersal scenario, 72–81% of the species would expand their distribution by 2070, but 6–20% of the species would experience 〉30% range loss. Most species would shift to the west. The projected species net richness would increase across the region on average. In a no-dispersal scenario, 15–59% of the species would lose 〉30% of their current habitat by 2070. Severe species loss may occur in the southeastern and the eastern peripheral plateau. Seventeen percent of species ranges are covered by the NNRs on average and may increase in the future if species disperse freely. We found a significant difference of species redistribution patterns between different dispersal scenarios and highlighted the importance of migration in this region.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-03-07
    Description: Aims Knowledge of genetic structure of natural populations and its determinants may provide key insights into the ability of species to adapt to novel environments. In many genetic studies, the effects of climate could not be disentangled from the effects of geographic proximity. We aimed to understand the effects of temperature and moisture on genetic diversity of populations and separate these effects from the effects of geographic distance. We also wanted to explore the patterns of distribution of genetic diversity in the system and assess the degree of clonality within the populations. We also checked for possible genome size variation in the system. Methods We studied genetic variation within and among 12 populations of the dominant grass Festuca rubra distributed across a unique regional-scale climatic grid in western Norway, Europe and explored the importance of temperature, precipitation and geographic distance for the observed patterns. We also explored the distribution of genetic diversity within and among populations, identified population differentiation and estimated degree of clonality. The analyses used microsatellites as the genetic marker. The analyses were supplemented by flow cytometry of all the material. Important Findings All the material corresponds to hexaploid cytotype, indicating that ploidy variation does not play any role in the system. The results indicate that temperature and precipitation were better predictors of genetic relatedness of the populations than geographic distance, suggesting that temperature and precipitation may be important determinants of population differentiation. In addition, precipitation, alone and in interaction with temperature, strongly affected population genotypic diversity suggesting increased clonality towards the coldest and especially the coldest wettest climates. At the same time, individuals from the coldest and wettest climates also had the highest individual genetic diversity, suggesting that only the most heterozygous individuals survive under these harsh climates. Most of the genetic variation was distributed within populations, suggesting that most populations have sufficient genetic diversity to adapt to novel climatic conditions. The alpine populations, i.e. populations which are likely the most endangered by climate change, however, lack this potential due to the high levels of clonality as detected in our study.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-12
    Description: Aims Assessing the role of a dominant native bamboo species on tree species diversity and structure in the medium term. Methods Over a 7-year period, we studied the natural regeneration of two dominant forest types in Southern Brazil (Araucaria Forest or AF; Bamboo Forest or BF) after a bamboo (Merostachys skvortzovii Send.) die-off between 2004 and 2006. The study was carried out in the Embrapa Research Station in Caçador, Santa Catarina State, Brazil. Important Findings The die-off provided ideal conditions for the establishment of several species and it kickstarted forest succession dynamics, which in turn affected regeneration diversity. Tree species richness was relatively stable with a transitory increase between 2007 and 2014 in both AF and BF. However, species richness rose in BF because of a relative increase in abundance of some species (especially late and secondary species) while a plunge in some pioneer species drove an increase in diversity. Overall, we found that BF has a lower diversity of recruits and that density declined over time, while AF is more diverse, with a more stable density. In BF, the bamboo die-off created optimal conditions for initial regeneration development (mainly fast-growing pioneer trees), which quickly transited to higher size classes. Yet, after this initial stage of pioneer recruitment, the number of recruits dropped followed by a virtual absence of growth regardless of the species group as a result of a quick bamboo reestablishment. As bamboo recreated a dense understory it reduced species diversity to original levels, suggesting a self-maintaining cycle that halts forest succession. On the other hand, the bamboo die-off had little impact on AF where a slow recruitment process typical of old-growth forests was observed. The results indicate that the die-off event had a temporary effect on species diversity i.e. restricted to forests where bamboos are dominant in a similar process described in other southern South American forests. As the first study to observe the medium-term forest dynamics related to bamboo die-off, we can conclude that when being dominant, native bamboos can hinder forest regeneration, maintaining lower levels of diversity and arresting forest succession that lasts well beyond the short-term, post-die-off effects. Many forest fragments in the region are dominated by bamboos, thus their potential for conservation is at risk and requires appropriate management.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-08-26
    Description: Aims Recent studies have revealed heritable phenotypic plasticity through vegetative generations. In this sense, changes in gene regulation induced by the environment, such as DNA methylation (i.e. epigenetic changes), can result in reversible plastic responses being transferred to the offspring generations. This trans-generational plasticity is expected to be especially relevant in clonal plants, since reduction of sexual reproduction can decrease the potential for adaptation through genetic variation. Many of the most aggressive plant invaders are clonal, and clonality has been suggested as key to explain plant invasiveness. Here we aim to determine whether trans-generational effects occur in the clonal invader Alternanthera philoxeroides, and whether such effects differ between populations from native and non-native ranges. Methods In a common garden experiment, parent plants of A. philoxeroides from populations collected in Brazil (native range) and Iberian Peninsula (non-native range) were grown in high and low soil nutrient conditions, and offspring plants were transplanted to control conditions with high nutrients. To test the potential role of DNA methylation on trans-generational plasticity, half of the parent plants were treated with the demethylating agent, 5-azacytidine. Important Findings Trans-generational effects were observed both in populations from the native and the non-native ranges. Interestingly, trans-generational effects occurred on growth variables (number of ramets, stem mass, root mass and total mass) in the population from the native range, but on biomass partitioning in the population from the non-native range. Trans-generational effects of the population from the native range may be explained by a ‘silver-spoon’ effect, whereas those of the population from the non-native range could be explained by epigenetic transmission due to DNA methylation. Our study highlights the importance of trans-generational effects on the growth of a clonal plant, which could help to understand the mechanisms underlying expansion success of many clonal plants.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-11-20
    Description: Aims Cistus albidus reproductive traits have been studied on typical Mediterranean shrublands along a water availability gradient in Northeastern Iberian Peninsula. Germination of this species is known to be highly favoured by fire. Moreover, Mediterranean species are particularly dependent on water availability. Therefore, we establish the hypothesis that in addition to fire disturbance, seedling recruitment in this Mediterranean seeder will be improved in drought-induced episodes resulting in generalized canopy die-off. Methods Individuals of several populations of C. albidus were collected and the size, weight and number of fruits and seeds were measured. Germination tests were also carried out on five pre-germination treatments: seeds’ exposure to heat shock, imbibition, two cycles of imbibition/desiccation and the combination of heat shock and imbibition and imbibition/desiccation cycles. Moreover, the number of seedlings after a drought event was surveyed in the field and correlated with canopy die-off. Important findings Our study shows the variability of the C. albidus reproductive traits, such as germination rate or fruit production, along the water availability gradient. This variability resulted in a decrease in fruit production but an increase in successful germination under drier conditions. Cistus albidus seeds increased germination with heat, demonstrating their ability to successfully establish after fire. However, recruitment was not exclusively fire dependent since seedling establishment was higher under C. albidus canopies that had collapsed after the extreme drought. Finally, adult density increased C. albidus die-off and mortality, as well as seedling establishment. These results suggest that this species exhibits a trade-off between different reproductive outcomes (i.e. seed production vs. viability), which in turn is determined by climate. This study also provides evidence of how intra-specific competition, climate, particularly drought events and fire disturbance, can determine the success of key early stages of the life history of a common, representative Mediterranean fire-prone seeder shrub.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-09-06
    Description: Aims Plant litter decomposition is a key ecosystem process that determines carbon and nutrient cycling in terrestrial ecosystems. As a main component of litter, cellulose is a vital energy source for the microbes associated with litter decomposition. The important role of cellulolytic enzymes in litter cellulose degradation is well understood, but seasonal patterns of cellulose degradation and whether cumulative enzyme activities and litter quality forecast cellulose degradation in an alpine meadow remain elusive, which limits our understanding of cellulose degradation in herbaceous plant litter. Methods A two-year field litterbag experiment involving three dominant species (Ajuga ovalifolia, Festuca wallichanica, and Pedicularis roylei) was conducted in an alpine meadow of the eastern Tibetan Plateau to explore the seasonal patterns of cellulose degradation and how cumulative cellulolytic enzyme activities and initial litter quality impact cellulose degradation. Important findings Our study demonstrates that cellulose degraded rapidly and exceeded 50% during the first year, which mainly occurred in the first growing season (31.9%–43.3%). At two years of decomposition, cellulose degradation was driven by cumulative endoglucanase (R2 = 0.70), cumulative cellobiohydrolase (R2 = 0.59) and cumulative 1,4-β-glucosidase (R2 = 0.57). In addition, the concentrations of cellulose, dissolved organic carbon, total phenol, lignin and lignin/N accounted for 52%–78% of the variation in cellulose degradation during the two years of decomposition. The best model for predicting cellulose degradation was the initial cellulose concentration (R2 = 0.78). The enzymatic efficiencies and the allocation of cellulolytic enzyme activities were different among species. The cellulolytic enzyme efficiencies were higher in the litter of F. wallichanica with relatively lower quality. For the complete cellulose degradation of the leaf litter, A. ovalifolia and F. wallichanica required 4-fold and 6.7-fold more endoglucanase activity, 3-fold and 4.5-fold more cellobiohydrolase activity and 1.2-fold and 1.4-fold more 1,4-β-glucosidase activity, respectively, than those required by P. roylei. Our results demonstrated that although microbial activity and litter quality both have significant impacts on cellulose degradation in an alpine meadow, using cellulose concentration to predict cellulose degradation is a good way to simplify the model of cellulose degradation and C cycling during litter decomposition.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
  • 62
    Publication Date: 2019-04-23
    Description: Aims Evapotranspiration (ET) is an important component of the terrestrial water cycle and is easily affected by external disturbances, such as climate change and grazing. Identifying ET responses to grazing is instructive for determining grazing activity and informative for understanding the water cycle. Methods This study utilized 2 years (2014 and 2017) of eddy covariance data to test how grazing regulated ET for an alpine meadow ecosystem on the Tibetan Plateau (TP) by path analysis. Important Findings Radiation dominated ET with a decision coefficient of 64–74%. The soil water content (SWC) worked as the limiting factor in the fenced site. However, in the grazing site, the limiting factor was the vapor pressure deficit (VPD). Grazing had large effects on ET because it greatly affected the water conditions. The SWC and VPD were enhanced by 14.63% and 4.36% in the grazing site, respectively. Therefore, sufficient water was supplied to ET, especially during drought, and strengthened the transpiration pull. As a result, a favorable micrometeorological environment was created for ET. Grazing shifted the limiting factor of ET from the SWC to VPD, which weakened the limiting effect of the water conditions on ET and advanced the ET peak time. In addition, grazing altered the compositions of ET by changing the community structure, which directly resulted in an increased ET. In summary, grazing enhanced ET through altering the community structure and micrometeorological environments. The findings of this study further improve our understanding of the driving mechanisms of grazing on ET and will improve our predictions for the global water cycle.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-20
    Description: Aims Land cover changes can disrupt water balance and alter the partitioning of precipitation into surface runoff, evapotranspiration and groundwater recharge. The widely planted Eucalyptus trees in south-western China have the potential to bring about hydrologic impacts. Our research aims to elucidate the hydrologic balance characteristics of the introduced exotic Eucalyptus grandis × Eucalyptus urophylla plantation and to assess whether its high productivity results from high water use efficiency (WUE) or large water consumption. Methods A 400-m2 experimental plot was established in an E. grandis × E. urophylla plantation in south-western China. Water balance components, including stand transpiration (Tr), evapotranspiration (Et) and runoff (R) were obtained as follows: Tr was estimated based on sap flow measurements, Et was estimated as the average of surface transpiration and evaporation weighted by the fractional green vegetation cover using a modeling approach, and R was collected using the installed metal frame. Net primary productivity (NPP) was obtained from allometric equation and annual diameter at breast height (DBH) increment determination. Important Findings Annual Et and Tr were 430 ± 31 and 239 ± 17 mm, respectively. Annual Tr accounts for 56 ± 8% of total evapotranspiration on average. WUE (NPP/Tr) of the E. grandis × E. urophylla was estimated to be 3.3–3.9 mmol·mol−1. Based on the comparative analysis of Tr and WUE, E. grandis × E. urophylla had a high productivity due to its high WUE without exhibiting prodigal water use. Meteorological factors including vapor pressure deficit and global solar radiation (Rs) were key factors regulating Et and Tr in our research site. Annual surface runoff, Et and canopy interception occupied 7%, 27–30% and 16% of total precipitation, while the remaining 46–50% of precipitation was used for sustaining groundwater recharge and altering soil water storage. The higher runoff coefficient (7.1%) indicated the weaker capability of E. grandis × E. urophylla to reserve water resource than natural forests and less disturbed plantations. The planting and protection of understory vegetation may decrease the surface runoff and exert beneficial effects on water conservation capacity of Eucalyptus plantation.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-03-06
    Description: Aims We aim to understand how small-scale genotypic richness and genotypic interactions influence the biomass and potential invasiveness of the invasive grass, Phalaris arundinacea under two different disturbance treatments: intact plots and disturbed plots, where all the native vegetation has been removed. Specifically, we address the following questions (i) Does genotypic richness increase biomass production? (ii) Do genotypic interactions promote or reduce biomass production? (iii) Does the effect of genotypic richness and genotypic interactions differ in different disturbance treatments? Finally (iv) Is phenotypic variation greater as genotypic richness increases? Methods We conducted a 2-year common garden experiment in which we manipulated genotype richness using eight genotypes planted under both intact and disturbed conditions in a wetland in Burlington, Vermont (44°27′23″N, 73°11′29″W). The experiment consisted of a randomized complete block design of three blocks, each containing 20 plots (0.5 m 2 ) per disturbed treatment. We calculated total plot biomass and partitioned the net biodiversity effect into three components: dominance effect, trait-dependent complementarity and trait-independent complementarity. We calculated the phenotypic variance for each different genotype richness treatment under the two disturbance treatments. Important Findings Our results indicate that local genotypic richness does not increase total biomass production of the invasive grass P. arundinacea in either intact or disturbed treatments. However, genotypic interactions underlying the responses showed very different patterns in response to increasing genotypic richness. In the intact treatment, genotypic interactions resulted in the observed biomass being greater than the predicted biomass from monoculture plots (e.g., overyielding) and this was driven by facilitation. However, facilitation was reduced as genotypic richness increased. In the disturbed treatment, genotypic interactions resulted in underyielding with observed biomass being slightly less than expected from the performance of genotypes in monocultures; however, underyielding was reduced as genotypic richness increased. Thus, in both treatments, higher genotypic richness resulted in plot biomass nearing the additive biomass from individual monocultures. In general, higher genotypic richness buffered populations against interactions that would have reduced biomass and potentially spread. Phenotypic variance also had contrasting patterns in intact and disturbed treatments. In the intact treatment, phenotypic variance was low across all genotypic richness levels, while in the disturbed treatment, phenotypic variance estimates increased as genotypic richness increased. Thus, under the disturbed treatment, plots with higher genotypic richness had a greater potential response to selection. Therefore, limiting the introduction of new genotypes, even if existing genotypes of the invasive species are already present, should be considered a desirable management strategy to limit the invasive behavior of alien species.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-03-06
    Description: Aims Are there trends of increasing/decreasing dispersion of single, categorical traits related to early/late-successional species between stages of community development? If yes, are these trends dependent on species pool extension and habitat scale? Is there a consistent reduction in single trait convergence or divergence in any seral stage when scaling down from ecological to local species pool? Methods Presence of all vascular species rooted within plots of 5 × 5 m was recorded in assemblages of exposed mining spoils (EMS) and heathlands (HTL), which form a chronosequence on two abandoned ore tailing heaps located close to each other in the south-eastern Carpathians (Romania). Fifteen nominal, trait attributes of plant species co-occurring in the two seral assemblages were collected from available databases and subsequently classified as either successionally ‘pioneer’ or ‘mature’. The strength of single trait convergence or divergence was estimated by comparison with null plant assemblages at patch type (meta-community) level by reference to the ecological or local species pool, and at community level. Important Findings At patch type level, all pioneer and mature trait attributes (apart from short life span), with significant variation between the two seral stages, increased and, respectively, decreased in dispersion irrespective of species pool extension. However, these trends were more conspicuous when using the ecological species pool, very likely due to relaxation in abiotic filtering and dispersal limitation. At community level, no consistent trends were observed between EMS and HTL assemblages, probably because most trait attributes were sorted by microenvironmental filters displaying high variation, like topography or habitat patch geometry. In both seral stages, there was a general weakening of trait convergence or divergence at patch type level when scaling down from the ecological to the local species pool, which was due to niche space contraction. At community level, there was a trend of rise in dispersion of pioneer attributes along the observed chronosequence, presumably imputable to increasing competition for light and underground water, but an opposite trend of dispersion drop in mature attributes was not so evident. Based on these findings, we proposed two rules of thumb concerning the expected changes in dispersion of trait attributes at patch level along successions and between levels of species pool extension. In conclusion, trends in the successional dynamics of pioneer and mature trait dispersion are clearly detectable at meta-community level, especially by reference to the ecological species pool. Habitat scale and species pool extension are key factors to consider and report when estimating the magnitude of single trait dispersion.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-03-06
    Description: Aims Plant invasions represent a unique opportunity to study the mechanisms underlying community assembly rules and species distribution patterns. While a superior competitive ability has often been proposed as a major driver of successful plant invasions, its significance depends crucially on the timing of any competitive interaction. We assess whether a mismatch in germination phenology can favor the establishment of alien species, allowing them to exploit vacant niches where competition is low. As well as having important effects on the survival, growth and fitness of a species, asymmetric competition and potential soil legacies resulting from early or late germination can also impact on species recruitment. However, early or late germination comes at a cost, increases the risks of exposure to unfavorable conditions and requires an enhanced abiotic resistance if it is to lead to successful establishment. Important Findings While there are several anecdotal accounts of early and late germination for invasive species, there are limited comparative data with resident species growing under natural conditions. Available evidence from grassland communities indicates that a short-term germination advantage or priority (few days/weeks) provides invasive species with a strong competitive advantage over native species and is a critical factor in many invasions. While the exploitation of periods of low competition is a plausible mechanism for the successful establishment of many invasive plants, direct evidence for this strategy is still scarce. This is particularly true with regard to the exploitation of late germination niches. Consequently, long-term comparative monitoring of the germination phenology of invasive and native plants in situ is needed to assess its significance in a range of ecosystems and its impact on community dynamics.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-03-06
    Description: Aims Plants control leaf phenology to maximize annual photosynthetic product. Although ferns play an important ecological role in many habitats, especially forests, their phenology traits have been poorly studied. Here, we investigate the leaf phenology of two ferns of the forest understorey and analyse the relationship between the timing of leaf emergence and spore dispersal and the effect of between-year climatic variation. Methods We compared the leafing and sporing phenologies of two ferns with very large (〉2 m), overwintering leaves: Culcita macrocarpa and Woodwardia radicans. We regularly monitored individuals of six populations in the northwestern Iberian Peninsula during a 3-year study. We studied eight phenology variables: leafing start date, leafing end date, leaf expansion time, number of new leaves per individual, between-individual synchrony, within-individual synchrony, percentage of fertile leaves and spore release date. We also determined leaf mass per area (LMA) and gathered data on air temperature and humidity. Important findings Both C. macrocarpa and W. radicans produce few leaves (~2 leaves individual −1 year −1 ), which expand simultaneously for a very long period (from midwinter to early summer), are retained for more than 1 year (37 and 19 months, respectively) and have relatively high LMAs. Such traits, together with large leaf size, have also been found in seed plants from the forest understorey and represent adaptations to this light-limited environment. Spores of both study ferns are simultaneously released in late winter, with little between-year variation caused by differences in air humidity. This remarkable similarity between species suggests that the convergence in timing of leaf emergence favours the convergence in timing of spore dispersal.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-03-06
    Description: Aims The positive relationship between plant biodiversity and community productivity is well established. However, our knowledge about the mechanisms underlying these positive biodiversity effects is still limited. One of the main hypotheses is that complementarity in resource uptake is responsible for the positive biodiversity effects: plant species differ in resource uptake strategy, which results in a more complete exploitation of the available resources in space and time when plant species are growing together. Recent studies suggest that functional diversity of the community, i.e. the diversity in functional characteristics (‘traits’) among species, rather than species richness per se , is important for positive biodiversity effects. However, experimental evidence for specific trait combinations underlying resource complementarity is scarce. As the root system is responsible for the uptake of nutrients and water, we hypothesize that diversity in root traits may underlie complementary resource use and contribute to the biodiversity effects. Methods In a common garden experiment, 16 grassland species were grown in monoculture, 4-species mixtures differing in root trait diversity and 16-species mixtures. The 4-species mixtures were designed to cover a gradient in average rooting depth. Above-ground biomass was cut after one growing season and used as a proxy for plant productivity to calculate biodiversity effects. Important Findings Overall, plant mixtures showed a significant increase in biomass and complementarity effects, but this varied greatly between communities. However, diversity in root traits (measured in a separate greenhouse experiment and based on literature) could not explain this variation in complementarity effects. Instead, complementarity effects were strongly affected by the presence and competitive interactions of two particular species. The large variation in complementarity effects and significant effect of two species emphasizes the importance of community composition for positive biodiversity effects. Future research should focus on identifying the traits associated with the key role of particular species for complementarity effects. This may increase our understanding of the links between functional trait composition and biodiversity effects as well as the relative importance of resource complementarity and other underlying mechanisms for the positive biodiversity effects.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-03-06
    Description: Aim The ability to quantitatively measure the continuum of macroscale patterns of species invasion is a first step toward deeper understanding of their causal factors. We took advantage of two centuries worth of herbarium data, to evaluate a set of metrics to measure macroscale patterns, allowing cross-species comparisons of invasive expansion across large geographic areas. Methods We used herbarium specimens to reconstruct county-level invasion histories for two non-native plants ( Alliaria petiolata and Lonicera japonica ), with distinct spatiotemporal distribution patterns over the past two centuries. Using county centroids from species’ initial occurrences, we quantified point pattern metrics from multiple disciplines (e.g. urban crime analysis, landscape ecology etc.) that are historically used at smaller spatial scales, to evaluate their ability to detect macroscale spatial diffusion and amount of directional expansion. Metrics were further assessed for their ease of use, data requirements, independence from other metrics and intuitiveness of interpretation. Important Findings We identified four suitable metrics for distinguishing differences in spatial patterns: (i) standard distance, (ii) number of patches, (iii) Euclidean nearest neighbor summary class statistic coefficient of variation and (iv) mean center that when applied to county-level presence data allowed us to determine the directions by which distributions expanded and if distributions increased via outward expansion, infilling and/or jump dispersal events. These metrics when compared during the same invasion phase are capable of quantifying macroscale variability among species in their distributional and dispersal patterns. Being able to quantify differences among species in these patterns is important in understanding the drivers of species dispersal patterns. These metrics therefore represent a simple yet thorough toolset for achieving this goal.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-03-06
    Description: Aims Mediterranean coastal dunes are habitats of great conservation interest, with a distinctive and rich flora. In the last century, Acacia spp., native from Australia, have been introduced in Portugal, with the objective of stabilizing sand dunes, and since have become dominant in numerous sand dune habitats. This invasion process led to the reduction of native plant species richness, changed soil characteristics and modified habitat’s microclimatic characteristics. The aim of this research was to typify and compare, in Mediterranean sand dune ecosystems, the ecophysiological responses to drought of Helichrysum italicum and Corema album , two native species, and Acacia longifolia , an exotic invasive species. We addressed the following specific objectives: (i) to compare water relations and water use efficiencies, (ii) to evaluate water stress, (iii) to assess water use strategies and water sources used by plants and (iv) to evaluate the morphological adaptations at leaf and phyllode level. Methods In order to obtain an integrative view of ecophysiological patterns, water relations and performance measuring methods have been applied: predawn (ψ PD ) and midday (ψ MD ) water potential, chlorophyll a fluorescence, oxygen isotopic composition of xylem, rain and groundwater (δ 18 O) and leaf carbon isotopic discrimination (Δ 13 C). The leaf characteristics of the three species, as well as the histochemistry of non-glandular trichome cell walls, were also studied to identify morpho-traits related to drought resistance. Important Findings The results support our initial hypothesis: although A. longifolia clearly possesses a degree of resistance to water stress, such ability is provided by a different water strategy, when compared to native species. Natives relied on morphological adaptations to restrict water loss, whereas the invasive species adjusted the water uptake as a way to balance their limited ability of restricting water loss. We corroborate that woody native species (i) have a conservative water-saving strategy and minor seasonal variations relative to invasive species, (ii) use enriched water sources during drought periods, indicating different water sources and root systems comparing with invasive species and (iii) present drought leaf morpho-functional adaptations related with limiting water loss. Comparing the physiological performance of invasive and native species can offer causal explanations for the relative success of alien plant invasions on sand dunes ecosystems.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-03-06
    Description: Aims European frogbit ( Hydrocharis morsus-ranae L.) is an aquatic plant originating from Europe that has emerged as an invasive species, spreading in the USA and Canada since it was first brought to North America in 1932. It can now be found in many water bodies, from small ponds and long rivers to large lakes such as Lake Ontario and Lake Erie. The continuous spread of this species indicates its success as an invasive species despite legislative attempts to limit its distribution. Catling et al. (Catling PM, Miltrow G, Haber E, et al . (2003) The biology of Canadian weeds. 124. Hydrocharis morsus-ranae L. Can J Plant Sci 83:1001–16) wrote a thorough review about this invasive species in North America. Our review aims for a compilation of the most recent available data and recent studies on H. morsus-ranae L. and focuses primarily on its environmental uses, ecological impacts and management. The purpose of this review is to offer an organized and updated report on European frogbit that can be used towards future studies with the goal of eradicating this invasive species and providing insights on management of other invasive plants. Important Findings Our findings reveal that European forgbit’s ecological effects on other species and the invaded environment were shown to be less harmful than previously feared. European frogbit had negative impacts on native plants and reduced dissolved oxygen concentration. However, water chemistry, phytoplankton and zooplankton communities were actually not affected by European frogbit. For fungi, bacteria and macroinvertebrates, studies have showed complex and sometimes conflicting results. We also specifically discussed the new method to control this species using shading and the more recent studies on biological control. Shading with a shade cloth has been shown to effectively remove European frogbit and had minor environmental effects. However, using biological control to combat the spread of the invasive frogbit seems not as successful as we wished.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-03-06
    Description: Aims Successful invasive plants are often assumed to display significant levels of phenotypic plasticity. Three possible strategies by which phenotypic plasticity may allow invasive plant species to thrive in changing environments have been suggested: (i) via plasticity in morphological or physiological traits, invasive plants are able to maintain a higher fitness than native plants in a range of environments, including stressful or low-resource habitats: a ‘Jack-of-all-trades’ strategy; (ii) phenotypic plasticity allows the invader to better exploit resources available in low stress or favorable habitats, showing higher fitness than native ones: a ‘Master-of-some’ strategy and (iii) a combination of these abilities, the ‘Jack-and-Master’ strategy. Methods We evaluated these strategies in the successful invader Taraxacum officinale in a controlled experiment mimicking natural environmental gradients. We set up three environmental gradients consisting of factorial arrays of two levels of temperature/light, temperature/water and light/water, respectively. We compared several ecophysiological traits, as well as the reaction norm in fitness-related traits, in both T . officinale and the closely related native Hypochaeris thrincioides subjected to these environmental scenarios. Important Findings Overall, T. officinale showed significantly greater accumulation of biomass and higher survival than the native H. thrincioides , with this difference being more pronounced toward both ends of each gradient. T. officinale also showed significantly higher plasticity than its native counterpart in several ecophysiological traits. Therefore, T. officinale exhibits a Jack-and-Master strategy as it is able to maintain higher biomass and survival in unfavorable conditions, as well as to increase fitness when conditions are favorable. We suggest that this strategy is partly based on ecophysiological responses to the environment, and that it may contribute to explaining the successful invasion of T. officinale across different habitats.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-03-06
    Description: Aims Several studies have shown that plant height changes along environmental gradients. However, altitudinal patterns of plant height across species are still unclear, especially in regions sensitive to climate change. As canopy height decreases dramatically near the tree line in alpine areas, we hypothesize that plant height across all species also decreases with increasing altitude, and distinct thresholds exist along this gradient. Methods Using a large dataset of maximum plant height and elevation range (400 to 6000 m a.s.l.) of 4295 angiosperms from the regional flora of the Tibetan Plateau, we regressed plant height for every 100 m belt against elevation to explore the relationships. To identify the approximate boundaries where dramatic changes in plant height occurs for herbaceous plants, shrubs, trees, woody plants and all angiosperms, we used piecewise linear regression. Phylogenetically independent contrast was used to test the potential evolutionary influences on altitudinal patterns at the family level. Important Findings Results showed that for herbaceous plants, shrubs, trees, woody plants and all angiosperms, plant height decreases significantly as altitude increases. In addition, we found that altitude, a proxy for many environmental factors, had obvious thresholds (breakpoints) dictating patterns of plant height. The results of phylogenetically independent contrast also emphasized the importance of evolutionary history in determining the altitudinal patterns of plant height for some growth forms. Our results highlight the relative intense filtering effect of environmental factors in shaping patterns of functional traits and how this could vary for different ranges of environmental variables.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2018-03-06
    Description: Almost everyone now seems to have a view about alien plant introductions and their significance and there is an ever increasing body of information, both in the scientific and popular press, about the dangers of allowing the uncontrolled spread of alien species. Virtually all possible impacts of plant invasions have been reported, including alterations in biogeochemical cycling, disruption of food webs, alterations in plant–plant, plant–insect and plant–microbe interactions and reductions in biodiversity, leading to the proposal that this is resulting in the creation of novel or emerging ecosystems that have no historical analogue ( Hobbs et al. 2009 ). Whilst not everyone agrees with the novel ecosystem concept ( Murcia 2014 ), the majority view is of a largely negative impact of alien plant introductions. This view has not been softened to any great extent by a smaller group of individuals who have questioned whether there is anything that is significantly new about alien plant invasions or their impacts and that this simply reflects the typical course of range extension that has regularly occurred since time immemorial ( Hoffmann and Courchamp 2016 ; Thomas and Palmer 2015 ). Some might even argue that the impacts of alien plant species may have been exaggerated ( Thomas and Palmer 2015 ), and some organisms might even benefit from the presence of certain invasive alien plants ( Lavoie 2017 ). Nevertheless, a significant number of plant invasions have severe detrimental effects on native plant communities and ecosystem processes, making generalizations very difficult.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018-03-06
    Description: Aims Invasive alien plants can greatly affect native communities and ecosystem processes but only a small fraction of alien plant species become invasive. Barriers to establishment and invasion include reproductive limitations. Clematis vitalba L. has been a popular horticultural species for the past century and is widely distributed and can be highly invasive. In Ireland, it is considered naturalized and potentially invasive. Despite this, little is known about its reproductive biology. Methods We carried out manipulative field experiments in Ireland and compared fruit and seed set from a number of pollination treatments, namely cross-pollination, geitonogamy, autogamy and natural pollination. We also recorded floral visitation to C. vitalba through a series of timed observations. Important Findings We found that C. vitalba is capable of uniparental reproduction via geitonogamy and autonomous selfing, albeit at a reduced rate compared with outcrossing treatments. Clematis vitalba was visited by at least 10 native pollinator taxa, with hoverflies dominating visitation. Neither fruit set nor seed set in our study population was pollen limited. Given the lack of reproductive constraint, C. vitalba may easily spread in suitable habitats. This is of concern in Ireland, given its prevalence in some of the country’s most floristically diverse regions.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2018-03-06
    Description: Aims Aquatic plants play an important role in freshwater ecosystems. Previous works have largely focused on the functional significance of plant above ground parts, with much less attention on the root structures of aquatic plants. In this study, we divided 21 aquatic plants (including five introduced plants) into multiple plant groups (different life forms, monocot/eudicot and introduced/native) with the goal of addressing two questions: (i) what root structures do aquatic plants exhibit, and (ii) are there differences among these plant groups? Methods Twenty-one aquatic plants belonging to four life forms (free-floating, emergent, floating-leaved and submerged) were collected at the near flowering stage from a typical macrophyte-dominated lake in the Yangtze River Basin, China. The following root topological parameters were quantified: altitude ( a ), path length ( p e ), magnitude (M), mean topological length ( b ), topological index (TI) and normed indices q a and q b . Important Findings The root topological indices TI, q a and q b for the 21 aquatic plants were 0.724 ± 0.013, 0.290 ± 0.031 and 0.152 ± 0.024 (means ± S.E.), respectively, revealing a general pattern of dichotomous branching, except for the aquatic root of Myriophyllum aquaticum (Vell.) Verdc., which displays herringbone branching. All three topological indices were significantly lower for monocots (TI = 0.700 ± 0.130, q a = 0.191 ± 0.149 and q b = 0.086 ± 0.236) than eudicots (TI = 0.752 ± 0.206, q a = 0.405 ± 0.569 and q b = 0.229 ± 0.393), indicating that the roots of monocots are typically more dichotomous-like than those of eudicots. Among the four life forms, the three topological indices for emergent plants (TI = 0.832 ± 0.006, q a = 0.616 ± 0.018 and q b = 0.381 ± 0.014) were significantly higher than those of the other three life forms. Overall, there was no difference between the topological indices of introduced and native aquatic plants, but the introduced species M. aquaticum and Alternanthera philoxeroides (Mart.) Griseb. had both aquatic and edaphic roots as well as unusual functions, which may help explain their strong viability.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-03-06
    Description: Aims The mature meadows (MMs) and the swamp meadows (SMs) are the two most important ecosystems in the eastern Tibetan Plateau, China. Besides their substantial differences in terms of soil water conditions and thereby the soil oxygen and nutrients, however, little is known about the differences in community composition, structure, traits and productivity between these two meadows. We particularly ask whether light availability mediated by physical structure heterogeneity is a key determinant of the difference in community composition and productivity between these two meadows. Methods We examined the community structure, composition, aboveground net primary productivity (ANPP), light availability in understory and the community-weighted means (CWMs) for leaf morphological and physiological traits in 12 random plots (5 m × 5 m) for each of the studied habitats. Important findings The results showed that plant community in the MM had higher variation in both vertical and horizontal structure and thus had more light availability in the understory. The MM had higher species richness and greater ANPP than the SM. The CWMs of leaf morphological and physiological traits for species in the MM featured a fast-growing strategy (i.e. higher height, leaf area and net photosynthesis rate and lower nitrogen:phosphorus ratio), in contrast to those in the SM. We also found that there were significant correlations between the CWM of traits and the ANPP, indicating that some key traits in these habitats have linked to community productivity. Our study also suggests that the heterogeneity in the community structure, which affects light availability in the understory, may play an important role in determining the community composition and productivity. In conclusion, our study revealed significant differences in community structure, composition and traits between the MM and the SM, and the light availability that related closely to community structure is the key factor to determine the composition and productivity of the community of these two habitats.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-03-06
    Description: Aims Forest vegetation variability may be explained by the complex interplay among several spatial structuring factors, including climate and topography. We modelled the spatial variability of forest vegetation assemblages and significant environmental variables along a complex environmental gradient or coenocline to produce a detailed cartographic database portraying the distribution of forests along it. Methods We combined an analysis of ordination coenoclines with kriging over 772 field data plots from the third Spanish National Forest Inventory in an Atlantic–Mediterranean transitional area (northern Spain). Important Findings The best fitted empirical semivariogram revealed a strong spatial structure of forest species composition along the complex environmental gradient considered (the climatic–topographic gradient from north to south). The steady and gradual increase of semivariance with a marked lag distance indicates a gradual turnover of forest assemblages according to the climatic–topographic variations (regional or local). Two changes in the slope of the semivariogram suggest the existence of two different scales of spatial variation. The interpolation map by Kriging of forest vegetation assemblages along the main coenocline shows a clear spatial distribution pattern of trees and shrubs in accordance with the spatial variation of significant environmental variables. We concluded that the multivariate geostatistical approach is a suitable technique for spatial analysis of forest systems employing data from national forest inventories based on a regular network of field plots. The development of an assortment of maps describing changes in vegetation assemblages and variation in environmental variables is expected to be a suitable tool for an integrated forest management and planning.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-03-06
    Description: Aims It is known that taxonomic diversity can be predicted by the spatial configuration of the habitat, in particular by its area and degree of isolation. However, taxonomic diversity is a poor predictor of ecosystem functioning. While functional diversity is strongly linked to the functionality and stability of ecosystems, little is known about how changes in the spatial configuration of the habitat affect functional diversity. In this study, we evaluated whether the spatial configuration of forest patches predicts the functional diversity of plants in a fragmented forest. Methods Five functional leaf traits (leaf dry matter content, leaf punch force, specific leaf area, leaf size and leaf thickness) were measured for 23 dominant plant species in 20 forest patches in a naturally fragmented forest on the Yucatan Peninsula. Abundance-weighted multivariate and individual trait metrics of functional diversity were calculated and correlated with size, degree of isolation and the shape of forest patches. Important Findings Patch shape was negatively correlated with multivariate and individual trait (leaf dry matter content and leaf size) metrics of functional diversity. Patch isolation measures were also negatively correlated with individual trait (leaf dry matter content, leaf punch force and leaf size) metrics of functional diversity. In other words, greater patch shape irregularity and isolation degree impoverish plant functional variability. This is the first report of the negative effects of patch shape irregularity and isolation on the functional diversity of plant communities in a forest that has been fragmented for a long time.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2018-03-06
    Description: Aims The evolution of the outstanding variation of reproductive systems in angiosperms has been considered an important driver of lineage diversification. Closely related hermaphroditic and dioecious species with biotic pollination provide the opportunity to study and compare traits related to pollinator attraction and their consequences on reproductive components. A higher predictability of pollination syndromes is expected in dioecious species, which are dependent on pollinators, than in self-compatible hermaphroditic taxa. Dioecious species may suffer pollen limitation depending on the quality of floral rewards and the kind and abundance of pollinators, whereas no pollen limitation is expected in hermaphroditic species with autonomous self-pollination. Additionally, in the absence of pollen limitation, more or better seeds are expected in dioecious species, according to the sexual specialization hypothesis. Methods In natural populations of the hermaphroditic Fuchsia fulgens and Fuchsia arborescens and dioecious Fuchsia parviflora and Fuchsia obconica , all endemic to Mexico, we first described flower phenology, flower production and longevity and nectar volume and concentration. Then, we evaluated the correspondence between floral visitors and pollination syndromes. In hermaphrodite plants, we determined the level of herkogamy and the potential for autonomous self-pollination. Finally, we evaluated the effect of pollen limitation on fruit set and seed number and assessed seed germination for all species. Important Findings In contrast to our prediction, dioecious species did not show a higher correspondence between pollination syndromes and floral visitors than did hermaphrodites; however, male flowers exhibited a higher correspondence than female flowers. No pollen limitation was detected in dioecious species, for which visitation rate did not differ between male and female flowers. The hermaphroditic F. fulgens showed pollen limitation for seed number, despite the presence of autonomous selfing. Fruit set from autonomous pollination was higher in F. arborescens , which showed a lower level of herkogamy compared with F. fulgens . Finally, dioecious species produced fewer but heavier seeds compared with hermaphrodite species. Although Fuchsia is classified as an outcrossing genus, both hermaphroditic species showed autonomous self-pollination. The heavier but lower number of seeds per fruit in dioecious species may be related to the more efficient resource allocation expected from sexual specialization. This could play an important role in the evolution of dioecy; however, a comparative phylogenetic approach is required to confirm this hypothesis.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2018-08-09
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2018-01-31
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
  • 84
    Publication Date: 2018-10-25
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018-02-24
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2018-09-14
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
  • 88
    Publication Date: 2018-01-19
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2018-12-01
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
  • 91
    Publication Date: 2018-09-14
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-03-31
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-01-19
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
  • 95
    Publication Date: 2018-11-15
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
  • 97
  • 98
  • 99
    Publication Date: 2018-10-31
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...