ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 550 - Earth sciences  (29)
  • English  (29)
  • Chinese
  • French
  • Greek, Modern (1453- )
  • 2010-2014  (29)
  • 1985-1989
  • 2013  (14)
  • 2011  (15)
  • 1935
Collection
Language
  • English  (29)
  • Chinese
  • French
  • Greek, Modern (1453- )
Years
  • 2010-2014  (29)
  • 1985-1989
Year
  • 1
    Publication Date: 2020-02-12
    Description: On 2012 May 20 and 29, two damaging earthquakes with magnitudes Mw 6.1 and 5.9, respectively, struck the Emilia-Romagna region in the sedimentary Po Plain, Northern Italy, causing 26 fatalities, significant damage to historical buildings and substantial impact to the economy of the region. The earthquake sequence included four more aftershocks with Mw ≥ 5.0, all at shallow depths (about 7–9 km), with similar WNW–ESE striking reverse mechanism. The timeline of the sequence suggests significant static stress interaction between the largest events. We perform here a detailed source inversion, first adopting a point source approximation and considering pure double couple and full moment tensor source models. We compare different extended source inversion approaches for the two largest events, and find that the rupture occurred in both cases along a subhorizontal plane, dipping towards SSW. Directivity is well detected for the May 20 main shock, indicating that the rupture propagated unilaterally towards SE. Based on the focal mechanism solution, we further estimate the co-seismic static stress change induced by the May 20 event. By using the rate-and-state model and a Poissonian earthquake occurrence, we infer that the second largest event of May 29 was induced with a probability in the range 0.2–0.4. This suggests that the segment of fault was already prone to rupture. Finally, we estimate peak ground accelerations for the two main events as occurred separately or simultaneously. For the scenario involving hypothetical rupture areas of both main events, we estimate Mw = 6.3 and an increase of ground acceleration by 50 per cent. The approach we propose may help to quantify rapidly which regions are invested by a significant increase of the hazard, bearing the potential for large aftershocks or even a second main shock.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Description: Results obtained from S and P receiver functions produced a clear image of the top and bottom of the subducting Nazca lithosphere beneath northern Chile. Using data from the teleseismic events recorded at 15 permanent Integrated Plate Boundary Observatory Chile (IPOC) stations, we obtained new constraints on the geometry and thickness of the descending Nazca lithosphere. We observed the subducted crust of the Nazca plate at depths ranging from 50 km beneath the Coastal Cordillera down to 110 km beneath the Western Cordillera. We found significant along‐strike variations in the geometry of the Nazca plate beneath northern Chile. On closer inspection, it appears that the oceanic Nazca plate is divided into two distinct segments as it descends beneath the continental South American plate. The transition from the relatively steeper (∼23°) and deeper slab to the north of 21°S to the flatter southern segment (∼19°) is shown reasonably clearly by our data. This feature could well be associated with variations in the curvature of the plate margin and the geometry of the Chile trench, which is mainly curved to the north of 21°S. We have also mapped the continental Moho of the South American plate at depths ranging between 60 and 70 km to the east of the Longitudinal Valley. Beneath the Coastal Cordillera, this boundary becomes invisible, probably due to the serpentinization of the forearc mantle wedge that reduces the velocity in the uppermost mantle. The base of the subducted Nazca plate was clearly identified as a sharp boundary in the results obtained from the P and S receiver functions. The thickness of the subducted oceanic Nazca plate, which has an age of ∼50 My, is estimated to be ∼50 km. Although this thickness is consistent with that predicted by thermal gradients, the explanation of the sharpness of the lithosphere‐asthenosphere boundary may require another mechanism such as hydration or melting.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Journal of Seismology
    Publication Date: 2020-02-12
    Description: An early detection of the presence of rupture directivity plays a major role in the correct estimation of ground motions and risks associated to the earthquake occurrence. We present here a simple method for a fast detection of rupture directivity, which may be additionally used to discriminate fault and auxiliary planes and have first estimations of important kinematic source parameters, such as rupture length and rupture time. Our method is based on the inversion of amplitude spectra from P-wave seismograms to derive the apparent duration at each station and on the successive modelling of its azimuthal behaviour. Synthetic waveforms are built assuming a spatial point source approximation, and the finite apparent duration of the spatial point source is interpreted in terms of rupture directivity. Since synthetic seismograms for a point source are calculated very quickly, the presence of directivity may be detected within few seconds, once a focal mechanism has been derived. The method is here first tested using synthetic datasets, both for linear and planar sources, and then successfully applied to recent Mw 6.2–6.8 shallow earthquakes in Peloponnese, Greece. The method is suitable for automated application and may be used to improve kinematic waveform modelling approaches.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-12
    Description: On 2001 May 7, following unintentional water injection, a moderate size induced earthquake struck the Ekofisk oil field, North Sea. Despite of its relatively moderate magnitude, clear low-frequency waveforms could be recorded up to more than 2000 km epicentral distance, suggesting a slow rupture at very shallow depth and wave propagation through low-velocity shallow structures. The event poses a rare opportunity to constrain rupture velocity, duration and rise time of a superficial M 〉 4 event occurring on a horizontal plane in soft, water-saturated sediments. Two previous studies discussed the earthquake point source finding vertical dip-slip focal mechanisms with opposite senses of P and T axes. A further investigation was thus required to provide a basis for a deeper discussion of the failure dynamics. We significantly improve the used data set, test different earth models and derive a point source as well as a kinematic rupture model. We carefully discuss parameter uncertainties and effects related to shallow sources and wave propagation through different crustal structures to resolve the previous controversy. We additionally provide a kinematic rupture model, based on apparent source times derived from Rayleigh and Love waves. The waveforms resolve a predominant unilateral rupture along a horizontal plane at about 2 km depth. We derive an unusually slow rupture, consequence of a slow rupture velocity of about 500 m s –1 and a long rise time of about 7 s. An independent modelling of GPS- based static displacements allows to confirm the focal mechanism polarity and to locate the centroid at the eastern side of the field, resulting in a much larger seismic moment in comparison with dynamic seismic moment. The rupture directivity is confirmed by the relative location of the centroid with respect to the epicentre, which is set at the site of water injection.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Description: The Dead Sea Transform (DST) is a major left-lateral strike-slip fault that accommodates the relative motion between the African and Arabian plates, connecting a region of extension in the Red Sea to the Taurus collision zone in Turkey over a length of about 1100 km. The Dead Sea Basin (DSB) is one of the largest basins along the DST. The DSB is a morphotectonic depression along the DST, divided into a northern and a southern sub-basin, separated by the Lisan salt diapir. We report on a receiver function study of the crust within the multidisciplinary geophysical project, DEad Sea Integrated REsearch (DESIRE), to study the crustal structure of the DSB. A temporary seismic network was operated on both sides of the DSB between 2006 October and 2008 April. The aperture of the network is approximately 60 km in the E—W direction crossing the DSB on the Lisan peninsula and about 100 km in the N—S direction. Analysis of receiver functions from the DESIRE temporary network indicates that Moho depths vary between 30 and 38 km beneath the area. These Moho depth estimates are consistent with results of near-vertical incidence and wide-angle controlled-source techniques. Receiver functions reveal an additional discontinuity in the lower crust, but only in the DSB and west of it. This leads to the conclusion that the internal crustal structure east and west of the DSB is different at the present-day. However, if the 107 km left-lateral movement along the DST is taken into account, then the region beneath the DESIRE array where no lower crustal discontinuity is observed would have lain about 18 Ma ago immediately adjacent to the region under the previous DESERT array west of the DST where no lower crustal discontinuity is recognized.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Description: The Van (Eastern Anatolia, Turkey) earthquake occurred on Sunday, October 23, 2011 with a moment magnitude of 7.2. The tectonics of this region is characterized by strike–slip faulting on the Bitlis Suture Zone, and thrusting in the Zagros fold and thrust belt. Using high-rate (1 second) GPS data from permanent GNSS stations from the CORS-TR network, co-seismic displacements of eleven stations were determined using precise point positioning during this earthquake. We used the time series of coordinate changes for fourteen CORS-TR stations, and calculated the crust movements before and after the earthquake. According to the PPP solutions computed using high frequency GPS data to determine the co-seismic motions of stations, we conclude for the Van earthquake an occurrence time of 10:41:22 (UTC). No pre-seismic horizontal movement of stations at the level more than 5 mm before the earthquake could be observed. That means that no kinematic warning or prediction before the earthquake exists. Along an east–west horizontal line north of the Van Sea with a length of about 100 km, the northern part of this line experienced extension of 0.2–1 ppm in a NW–SE direction. The southern part experienced N–S shortening of 0.5–1.5 ppm. The N–S shortening we estimated geodetically matches well with the N–S shortening and thrust focal mechanism derived independently using seismic data by the USGS. Co-seismic surface displacements derived from the GPS data are consistent with the teleseismic source model given by the USGS. The geodetic source model derived from the GPS data reproduces the same moment magnitude and centroid as the teleseismic model, but shows a higher spatial resolution of the slip distribution. We also analyzed the post-seismic surface displacements derived from the GPS data within the first two weeks after the mainshock. No reasonable slip distribution on the co-seismic fault plane could be found, indicating that the sources for the early post-seismic deformation might come from the widely scattered aftershocks.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-12
    Description: We use local earthquake data observed by the amphibious, temporary seismic MERAMEX array to derive spatial variations of seismic attenuation (Qp) in the crust and upper mantle beneath Central Java. The path-averaged attenuation values (t∗) of a high quality subset of 84 local earthquakes were calculated by a spectral inversion technique. These 1929 t∗-values inverted by a least-squares tomographic inversion yield the 3D distribution of the specific attenuation (Qp). Analysis of the model resolution matrix and synthetic recovery tests were used to investigate the confidence of the Qp-model. We notice a prominent zone of increased attenuation beneath and north of the modern volcanic arc at depths down to 15 km. Most of this anomaly seems to be related to the Eocene–Miocene Kendeng Basin (mainly in the eastern part of the study area). Enhanced attenuation is also found in the upper crust in the direct vicinity of recent volcanoes pointing towards zones of partial melts, presence of fluids and increased temperatures in the middle to upper crust. The middle and lower crust seems not to be associated with strong heating and the presence of melts throughout the arc. Enhanced attenuation above the subducting slab beneath the marine forearc seems to be due to the presence of fluids.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  25. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung
    Publication Date: 2020-02-12
    Description: For a long time the root mean square (RMS) error has been used in the EM community: - to characterize data fit for a particular model; - as a criterion to compare several models obtained from inversion. The RMS error appears to be a natural choice since we usually tackle inverse problems in a least-squares sense. Over the years, RMS became a customary criterion and gained ultimate significance. However, on the hunt for low RMS values, one often needs to introduce subjectivity by arbitrarily adjusting error floors or masking “bad” data without referring to the assumptions behind RMS. In this contribution, we revisit basic assumptions behind RMS, demonstrate its deficiency and propose alternative ways, which may provide more insight into our data and allow a more comprehensive assessment of the quality of the modelling result/resistivity model.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-12
    Description: We analyse data from seismic stations surrounding the Alboran Sea between Spain and North Africa to constrain variations of the lithosphere–asthenosphere boundary (LAB) in the region. The technique used is the receiver function technique, which uses S-to-P converted teleseismic waves at the LAB below the seismic stations. We confirm previous data suggesting a shallow (60–90 km) LAB beneath the Iberian Peninsula and we observe a similarly shallow LAB beneath the Alboran Sea where the lithosphere becomes progressively thinner towards the east. A deeper LAB (90–100 km) is observed beneath the Betics, the south of Portugal and Morocco. The structure of the LAB in the entire region does not seem to show any indication of subduction related features. We also observe good P receiver function signals from the seismic discontinuities at 410 and 660 km depth which do not indicate any upper-mantle anomaly beneath the entire region. This is in agreement with the sparse seismic activity in the mantle transition zone suggesting the presence of only weak and regionally confined anomalies.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2020-02-12
    Description: We implement the effects of gravitational self-attraction and loading (SAL) into a global baroclinic ocean circulation model and investigate effects on sea level patterns, ocean circulation, and density distributions. We compute SAL modifications as an additional force on the water masses at every time step by decomposing the field of ocean bottom pressure anomalies into spherical harmonic functions and then applying Love numbers to account for the elastic properties of the solid Earth. Considering SAL in the postprocessing turns out to be insufficient, especially in coastal waters and on subweekly time scales, where SAL modifies local sea level by around 0.6–0.8 cm on average; in the open ocean, changes mostly remain around 0.3 cm. Modifications of water velocities as well as of heat and salt distributions are modeled, yet they are small. Simple parameterizations of SAL effects currently used in a number of ocean circulation models suffer from the process's inhomogeneity in space and time. These parameterizations improve the modeled sea level patterns but fail to reproduce SAL impacts on circulation and density distributions. We therefore suggest to explicitly consider the full SAL effect in ocean circulation models, especially when investigating sea level variations faster than around 4 days.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-02-12
    Description: Frequent landsliding is one of the greatest natural hazards facing the inhabitants of Central Asia's Fergana Basin and the surrounding mountain ranges. Active tectonics in the region is rapidly building the Tien Shan, one of the highest mountain ranges on Earth, and the extreme topographic relief promotes frequent landslide activity, which causes major losses of life and property. In southwestern Kyrgyzstan alone, on average 10 people die and seven houses are destroyed each year in these sudden and rapidly moving landslides.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-02-12
    Description: Structural features of volcanic and hydrothermal systems can be used to infer the location of magma chambers or productive geothermal areas. The Hengill volcanic triple-junction complex has a well-developed geothermal system, which is being exploited to extract hot fluids that are used for electrical power and heat production. In the framework of the I-GET project, a 4-month temporary seismological network including seven high-dynamic broadband instruments was deployed and 1D transient electromagnetic soundings (TEM) and 3D magnetotelluric (MT) surveys were performed to improve the understanding of the relationships between structural features, seismic activity and fluid production at the Hengill geothermal system. The MT and TEM data set are analysed elsewhere. The analysis of the seismological data set allowed the detection and classification of more than 600 earthquakes, among which long-period (LP) earthquakes were observed for the first time in this area. This work focuses first on a joint inversion for the 3D velocity structure and determination of the locations of the hypocentres from about 250 local volcano-tectonic earthquakes with clear P- and S-wave arrival times. The results confirm those from earlier tomography studies in this area. Integrating the seismic velocity and resistivity models in a semi-quantitative approach by cross-plotting the resistivity model with the velocity ratio VP/VS delineates a structural body with a high seismic velocity ratio and low resistivity that is interpreted as the main heat source of the geothermal system.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-02-12
    Description: Amplitude ratio of 30 short-period conspicuous P5KP and PKPab phases from five intermediate depth or deep events in Fiji-Tonga recorded at European stations around 150° distance shows a mean value two to three times the ratio of the synthetic amplitudes obtained by the normal-mode theory (and ak135 model) or by full-wave theory (and PREM). There is a large variance in the results, also observed in five amplitude ratios from one event in Argentina observed at temporary stations in China around 156°. Global recordings of three major deep earthquakes in Fiji, Bonin, and Western Brazil observed at ASAR, WRA, and ZRNK arrays, at 59 North America stations and at six South Pole stations displayed conspicuous P4KP and PcP (or ScP) phases. The amplitude ratio values of P4KP vs P(S)cP are sometimes almost one order of magnitude larger than the corresponding values of the synthetics. In both cases, arrival times and slowness values (corrected for ellipticity and station elevation) at the distances up to 23° beyond the A cutoff point predicted by ray theory match both the synthetics, suggesting the observations are the AB branch of PmKP (m = 4, 5) around 1 Hz. In disagreement to ray theory, no reliable BC branch is observed neither on the recordings nor on the normal-mode synthetics. The high amplitude ratio values cannot be explained by realistic perturbations of the velocity or attenuation values of the global models in the proximity of the core-to-mantle boundary (CMB). We speculate that the focusing effects and/or strong scattering most likely associated to some anomalous velocity areas of the lowermost mantle are responsible for that. The results suggest limitations of the previous evaluations of the short-period attenuation in the outer core from PmKP amplitudes (m ≥ 3), irrespective of the fact that they are obtained by using ray theory, normal-mode or full-wave synthetics. Attempts to use PmKP arrival times in order to refine velocity structure in the proximity of CMB should be also regarded with care if the propagation times have been computed with ray theory.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-02-12
    Description: The territory of Lithuania and adjacent areas of the East European Craton have always been considered a region of low seismicity. Two recent earthquakes with magnitudes of more than 5 in the Kaliningrad District (Russian Federation) on 21 September 2004 motivated re-evaluation of the seismic hazard in Lithuania and adjacent territories. A new opportunity to study seismicity in the region is provided by the PASSEQ (Pasive Seismic Experiment) project that aimed to study the lithosphere–asthenosphere structure around the Trans-European Suture Zone. Twenty-six seismic stations of the PASSEQ temporary seismic array were installed in the territory of Lithuania. The stations recorded a number of local and regional seismic events originating from Lithuania and adjacent areas. This data can be used to answer the question of whether there exist seismically active tectonic zones in Lithuania that could be potentially hazardous for critical industrial facilities. Therefore, the aim of this paper is to find any natural tectonic seismic events in Lithuania and to obtain more general view of seismicity in the region. In order to do this, we make a manual review of the continuous data recorded by the PASSEQ seismic stations in Lithuania. From the good quality data, we select and relocate 45 local seismic events using the well-known LocSAT and VELEST location algortithms. In order to discriminate between possible natural events, underwater explosions and on-shore blasts, we analyse spatial distribution of epicenters and temporal distribution of origin times and perform both visual analysis of waveforms and spectral analysis of recordings. We show that the relocated seismic events can be grouped into five clusters (groups) according to their epicenter coordinates and origin and that several seismic events might be of tectonic origin. We also show that several events from the off-shore region in the Baltic Sea (at the coasts of the Kaliningrad District of the Russian Federation) are non-volcanic tremors, although the origin of these tremor-type events is not clear.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-02-12
    Description: We examine shear-wave splitting of SKS waveforms collected by a temporary array of 68 stations in the region of the Dead Sea basin. The observed splitting parameters exhibit systematic variations along a dense, EW-trending 60 km profile across the basin. The delay times vary significantly between 1.0 and 2.8 seconds with smaller values in the very center of the profile. The fast polarizations are oriented more-or-less parallel to the strike of the Dead Sea transform fault and vary between −10 and 20 degrees with respect to North. Finite-frequency waveform modeling reveals that the source-region of the small-scale lateral variations is likely located within the crust. The modeling further shows that purely isotropic velocity variations affect shear-wave splitting: To a large degree, the observed variations of splitting parameters can be explained by the sedimentary fill of the basin and its low isotropic seismic velocities, whereas the mantle is uniformly anisotropic. Our study indicates that precaution must be taken when interpreting short-scale lateral variations of shear wave splitting in terms of anisotropic structures in the crust or upper mantle.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-02-12
    Description: We performed a teleseismic P wave tomography study using seismic events at both teleseismic and regional distances, recorded by a temporary seismic array in the Argentine Puna Plateau and adjacent regions. The tomographic images show the presence of a number of positive and negative anomalies in a depth range of 20–300 km beneath the array. The most prominent of these anomalies corresponds to a low-velocity body, located in the crust, most clearly seen in the center of the array (27°S, 67°W) between the Cerro Peinado volcano, the Cerro Blanco caldera and the Farallon Negro in the east. This anomaly (southern Puna Magmatic Body) extends from the northern most part of the array and follows the line with the highest density of stations towards the south where it becomes smaller. It is flanked by high velocities on the west and the east respectively. On the west, the high velocities might be related to the subducted Nazca plate. On the northeast the high velocity block coincides with the position of the Hombre Muerto basin in the crust and could be indicating an area of lithospheric delamination where we detected a high velocity block at 100 km depth on the eastern border of the Puna plateau, north of Galan. This block might be related to a delamination event in an area with a thick crust of Paleozoic metamorphic rocks at the border between Puna and Eastern Cordillera. In the center of the array the Southern Puna magmatic body is also flanked by high velocities but the most prominent region is located on the east and is interpreted as part of the Sierras Pampeanas lithosphere with high velocities. The position of the Sierras Pampeanas geological province is key in this area as it appears to limit the extension of the plateau towards the south.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-02-12
    Description: Clear S-to-P converted waves from the crust–mantle boundary (Moho) and lithosphere–asthenosphere boundary (LAB) have been observed on the eastern part of the Dead Sea Basin (DSB), and are used for the determination of the depth of the Moho and the LAB. A temporary network consisting of 18 seismic broad-band stations was operated in the DSB region as part of the DEad Sea Integrated REsearch project for 1.5 years beginning in September 2006. The obtained Moho depth (∼35 km) from S-to-P receiver functions agrees well with the results from P-to-S receiver functions and other geophysical data. The thickness of the lithosphere on the eastern part of the DSB is about 75 km. The results obtained here support and confirm previous studies, based on xenolith data, geodynamic modeling, heat flow observations, and S-to-P receiver functions. Therefore, the lithosphere on the eastern part of the DSB and along Wadi Araba has been thinned in the Late Cenozoic, following rifting and spreading of the Red Sea. The thinning of the lithosphere occurred without a concomitant change in the crustal thickness and thus an upwelling of the asthenosphere in the study area is invoked as the cause of the lithosphere thinning.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-02-12
    Description: In the past decade the analysis of seismic noise has become an efficient tool to recover the Green's function between pairs of receivers by cross-correlation of seismic traces. Most studies focus on the investigation of the surface wave component of the ambient noise. Several attempts to recover the body wave part of the Green's function have been documented. In this paper I present the results of cross-correlation of seismic noise and the retrieval of refracted and reflected P-waves along a seismic line in the Karoo region (Republic of South Africa). Body wave refractions (direct phases) and reflections have been observed in the Green's functions derived from ambient noise records of up to 60 hours. The results are compared with shot gathers from a controlled source experiment (borehole explosions), carried out along the same line. The significant potential of ambient noise analysis, especially with respect to P-wave reflections will be shown and discussed.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2020-02-12
    Description: We use Global Positioning System (GPS) velocities and kinematic Finite Element models (FE-models) to infer the state of locking between the converging Nazca and South America plates in South-Central Chile (36[degree sign]S - 46[degree sign]S) and to evaluate its spatial and temporal variability. GPS velocities provide information on earthquake-cycle deformation over the last decade in areas affected by the megathrust events of 1960 (Mw= 9.5) and 2010 (Mw= 8.8). Our data confirm that a change in surface velocity patterns of these two seismotectonic segments can be related to their different stages in the seismic cycle: Accordingly, the northern (2010) segment was in a final stage of interseismic loading whereas the southern (1960) segment is still in a postseismic stage and undergoes a prolonged viscoelastic mantle relaxation. After correcting the signals for mantle relaxation, the residual GPS velocity pattern suggests that the plate interface accumulates slip deficit in a spatially and presumably temporally variable way towards the next great event. Though some similarity exist between locking and 1960 coseismic slip, extrapolating the current, decadal scale slip deficit accumulation towards the ~ 300-yr recurrence times of giant events here does neither yield the slip distribution nor the moment magnitude of the 1960 earthquake. This suggests that either the locking pattern is evolving in time (to reconcile a slip deficit distribution similar to the 1960 earthquake) or that some asperities are not persistent over multiple events. The accumulated moment deficit since 1960 suggests that highly locked patches in the 1960 segment are already capable of producing a M ~ 8 event if triggered to fail by stress transfer from the 2010 event.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    In:  Bulletin of the Seismological Society of America
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2020-02-12
    Description: Human activities, including operations related to mining and reservoir exploitation, may induce seismicity and pose a risk for population and infrastructures. While different observations are commonly used to assess the origin of earthquakes, there is a lack of rules and methods for the discrimination between natural and induced seismicity. The inversion and decomposition of the full moment tensor and the observation of relevant deviation from a pure double couple (DC) model may be an indicator for induced seismicity. We establish here a common procedure to analyse a set of natural and induced events of similar magnitude, which occurred in Germany and neighbouring regions. The procedure is based on an inversion method and on a consistent velocity model and recording network. Induced seismicity is recorded during different mining and/or reservoir exploitations. Moment tensors are inverted using a multi-step inversion approach. This method, which was successfully applied in previous studies at regional and teleseismic distances, is further developed here to account for full moment tensor analysis. We first find a best DC solution and then perform a full moment tensor inversion, fitting full waveforms amplitude spectra at regional distances. The moment tensor solution is decomposed into DC, compensated linear vector dipole and isotropic terms. The discrimination problem is then investigated through the evaluation of distributions of non-DC source components for natural and induced data sets. Results illustrate the potential of the inversion and discrimination approach. Additional detailed analyses are carried out for the two most significant induced earthquakes, and rupture models are compared with the full moment tensor solutions.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2020-02-12
    Description: Near‐field ground‐motion data are available in semi‐real time either from modern strong‐motion or continuous Global Positioning System (GPS) networks, allowing robust solutions for earthquake source parameters, which are useful for rapid disaster assessment and early warning. These wide applications require the ground‐motion data to cover a very broad frequency band that, however, is usually not available. This paper presents a case study on the 2011 Mw 9.0 Tohoku earthquake, showing how the ground‐motion information from geodetic and seismic instrumentations is complementary, and suggesting the joint use of both types of data, particularly when the network coverage is sparse. First the strong‐motion records from the two Japanese networks, K‐NET and KiK‐Net, are analyzed using an automatic empirical baseline correction tool. The static coseismic displacement data are obtained by double integration and then used to derive the permanent slip distribution on the earthquake fault. Comparisons with the corresponding GPS‐based solutions yield a quantitative estimation of uncertainties of the empirical baseline correction. Furthermore, a dozen nearby GPS and strong‐motion station pairs are selected to demonstrate that the information in their time series agrees with each other. Finally, methods for combining both types of ground‐motion observation systems are discussed, and the wide applicability of this approach is highlighted.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2020-02-12
    Description: The western Bohemian Massif is known for geodynamic phenomena such as earthquake swarms, CO2 dominated free gas emanations of upper-mantle origin, and Tertiary/ Quaternary volcanism. Among other explanations, a small-scale mantle plume has been suggested. We used data from the international passive seismic experiment BOHEMA (2001-2004) and of a previous seismic experiment to investigate the structure of the upper-mantle discontinuities at 410 km and 660 km depth (the ‘410’ and the ‘660’) beneath the Bohemian Massif with the P receiver function method. More than 4500 high-quality receiver function traces could be utilized. Two stacking techniques were used: stacking by station (common station method, CSM) and stacking by piercing points in the mantle transition zone (common conversion point method, CCM). Since the station spacing is very close, rays from different stations have similar piercing points in the mantle transition zone. Therefore CCM is sensitive in the transition zone and CSM is sensitive to the uppermost structure of the mantle. The CSM shows delayed conversion times from the 410 km discontinuity beneath the western Bohemia earthquake region, which indicate a slow uppermost mantle. When stacking our data by CCM, we observe thickening of the transition zone towards the Alpine foreland, which agrees with tomographic results by Piromallo and Morelli. The thickness of the mantle transition zone beneath the western Bohemian Massif is normal, with a faint hint to thinning in the northern part. Our conclusion is that a plume-like structure may exist in the upper mantle below the western Bohemia earthquake region, but with no or only weak imprint on the 410 km discontinuity.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2020-02-12
    Description: Based on passive seismic interferometry applied to ambient seismic noise recordings between station pairs belonging to a small-scale array, we have obtained shear wave velocity images of the uppermost materials that make up the Dead Sea Basin. We extracted empirical Green’s functions from cross-correlations of long-term recordings of continuous data, and measured inter-station Rayleigh wave group velocities from the daily correlation functions for positive and negative correlation time lags in the 0.1–0.5 Hz bandwidth. A tomographic inversion of the travel times estimated for each frequency is performed, allowing the laterally varying 3-D surface wave velocity structure below the array to be retrieved. Subsequently, the velocity-frequency curves are inverted to obtain S-wave velocity images of the study area as horizontal depth sections and longitude- and latitude-depth sections. The results, which are consistent with other previous ones, provide clear images of the local seismic velocity structure of the basin. Low shear velocities are dominant at shallow depths above 3.5 km, but even so a spit of land with a depth that does not exceed 4 km is identified as a salt diapir separating the low velocities associated with sedimentary infill on both sides of the Lisan Peninsula. The lack of low speeds at the sampling depth of 11.5 km implies that there are no sediments and therefore that the basement is near 10–11 km depth, but gradually decreasing from south to north. The results also highlight the bowl-shaped basin with poorly consolidated sedimentary materials accumulated in the central part of the basin. The structure of the western margin of the basin evidences a certain asymmetry both whether it is compared to the eastern margin and it is observed in north–south direction. Infill materials down to ∼8 km depth are observed in the hollow of the basin, unlike what happens in the north and south where they are spread beyond the western Dead Sea shore.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2020-02-12
    Description: Adapting the magnetotelluric (MT) method for monitoring the dynamic behaviour of the Andean subduction system in Northern Chile is focus of this thesis. Electromagnetic fields, sampled at nine permanent MT stations which cover an area of approximately 250 x 100 km² in the Andean fore-arc, are evaluated to monitor the electrical resistivity structure associated with the deep hydraulic system of the subduction zone. The long term monitoring of geo-electromagnetic fields reveals different types of temporal variations of vertical magnetic transfer functions (VTF) in different period ranges which are evaluated and interpreted. Computation of time series of daily VTFs of an overall length of 4 years exhibit seasonal variations with amplitudes of more than 100% of their absolute values for different components at all sites of the array. The observed seasonal variation affects almost exclusively the east-west magnetic field component for periods between 100 and 3000 seconds. These ground-based measurements of magnetic and electric fields exhibit statistically significant coherences with the interplanetary electric field (IEF) derived from solar wind and interplanetary magnetic field data of the Advanced Composition Explorer (ACE) satellite. The IEF penetrates the polar ionosphere from where it propagates towards equatorial latitudes by wave guide transmission, with ionosphere and solid Earth acting as conducting boundaries. Signal coherence between IEF and ground data peaks at periods of approximately 90 min and up to the four harmonics. Coherence values reach 0.4 at these periods and depend on the electromagnetic field component. They vary with season and local time. Transfer functions computed between IEF and ground-based electric and magnetic fields show local maxima at similar periods (90 min and harmonics). The coupling between the east-west magnetic field component and the IEF shows significant seasonal variability, much larger than for the other electromagnetic field components. We conclude that the IEF drives primarily a global circuit of Pedersen currents in the ionosphere. Resulting time-varying magnetic fields induce electric currents in the ground. Related ground-based magnetic (primarily north-south) and electric (primarily east-west) signals vary coherently at all local times and seasons. Conversely, magnetic signals caused by the IEF-driven Hall currents depend much on local time and season. We show for the first time that these ionospheric Hall currents cause no induction in the ground, but they generate magnetic signatures that are confined to the waveguide between ionosphere and Earth's surface. Geo-electromagnetic depth sounding applications as MT assume both spatial and temporal uniform external electromagnetic source fields. The seasonal variation of VTFs exhibits a systematic violation of this basic assumption in Northern Chile. The consequence is a systematic seasonal rotation and length variation of the induction arrows of the period band between 100 and 3000 seconds. If not taken into account, the structure of an electrical resistivity model of the subsurface, obtained by MT inversion, would be distorted. Removing this source field effect with a low-pass filter allows evaluation of residual variations of the VTF time-series which last longer than one year. During 2008 and 2009, I observe a significant variation of the VTFs in the southern part of the network for periods between 1500 and 4000 seconds. To simulate this variation, a 3D reference resistivity model is obtained by inversion of MT and VTF data using eight stations of the network. A region of high conductivity matches spatially with the hydrated mantle wedge. By trial and error, the 3D reference image of the deep electrical resistivity structure is modified and 3D forward modelling is applied to explain temporal variations in the VTFs similar to our observations. That requires modification of the electrical resistivity structure in a region which coincides roughly with the plate interface directly down-dip of the Mw7.7 2007 Tocopilla earthquake. We speculate that the anomalous temporal variations of the VTFs may be caused by large scale fluid relocation in the aftermath of the seismic event.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2020-02-12
    Description: In this receiver function study, we investigate the structure of the crust beneath six seismic broadband stations close to the Sunda Arc formed by subduction of the Indo-Australian under the Sunda plate. We apply three different methods to analyse receiver functions at single stations. A recently developed algorithm determines absolute shear-wave velocities from observed frequency-dependent apparent incidence angles of P waves. Using waveform inversion of receiver functions and a modified Zhu and Kanamori algorithm, properties of discontinuities such as depth, velocity contrast, and sharpness are determined. The combination of the methods leads to robust results. The approach is validated by synthetic tests. Stations located on Malaysia show high-shear-wave velocities (V S) near the surface in the range of 3.4–3.6 km s − 1 attributed to crystalline rocks and 3.6–4.0 km s − 1 in the lower crust. Upper and lower crust are clearly separated, the Moho is found at normal depths of 30–34 km where it forms a sharp discontinuity at station KUM or a gradient at stations IPM and KOM. For stations close to the subduction zone (BSI, GSI and PSI) complexity within the crust is high. Near the surface low V S of 2.6–2.9 km s − 1 indicate sediment layers. High V S of 4.2 km s − 1 are found at depth greater than 6 and 2 km at BSI and PSI, respectively. There, the Moho is located at 37 and 40 km depth. At station GSI, situated closest to the trench, the subducting slab is imaged as a north-east dipping structure separated from the sediment layer by a 10 km wide gradient in V S between 10 and 20 km depth. Within the subducting slab V S ≈ 4.7 km s − 1. At station BSI, the subducting slab is found at depth between 90 and 110 km dipping 20° ± 8° in approximately N 60° E. A velocity increase in similar depth is indicated at station PSI, however no evidence for a dipping layer is found.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2020-02-12
    Description: The Himalaya and the Tibetan Plateau are uplifted by the ongoing northward underthrusting of the Indian continental lithosphere below Tibet resulting in lithospheric stacking. The layered structure of the Tibetan upper mantle is imaged by seismic methods, most detailed with the receiver function method. Tibet is considered as a place where the development of a future craton is currently under way. Here we study the upper mantle from Germany to northern Sweden with seismic S receiver functions and compare the structure below Scandinavia with that below Tibet. Below Proterozoic Scandinavia, we found two low-velocity zones on top of each other, separated by a high-velocity zone. The top of the upper low-velocity zone at about 100 km depth extends from Germany to Archaean northern Sweden. It agrees with the lithosphere-asthenosphere boundary (LAB) below Germany and Denmark. Below Sweden it is known as the 8°discontinuity, or as a mid-lithospheric discontinuity (MLD), similar to observations in North America. Seismic tomography places the LAB near 200 km in Scandinavia, which is close to the top of our deeper low-velocity zone. We also observed the bottom of the asthenosphere (the Lehmann discontinuity) deepening from 180 km in Germany to 260 km below Sweden. Remnants of old subduction in the upper about 100 km below Scandinavia and Finland are known from controlled source seismic experiments and local earthquake studies. Recent tomographic studies indicate delamination of the lithosphere below southern Scandinavia and northern Germany. We are suggesting that the large-scale layered structure in the Scandinavian upper mantle may be caused by processes similar to the ongoing lithospheric stacking in Tibet.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...