ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 101 (1990), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Bottom Hole Temperature (BHT) observations are generally influenced by drilling-induced thermal disturbances which must be corrected for. This paper presents a correction method based on a 1-D conductive finite element model and an inverse procedure for parameter estimation. While the technique may be applied to any section of the borehole this paper focuses on the correction of bottom hole temperatures.Model parameters are mud temperature during drilling and circulation at the depth of BHT observations, borehole radius, thermal parameters of mud and formation, and the equilibrium formation temperature. Data are one or more successive BHTs and their standard deviations.Prior to inversion the model parameters are assigned reasonable values and standard deviations that reflect the confidence in those values. A high level of confidence implies small standard deviations and vice versa.The process of inversion extracts the most likely values of all free parameters including the equilibrium formation temperature. Furthermore, the initial uncertainties in all parameters and data are propagated into uncertainties in the final parameter estimates. The formation temperature estimate is an unbiased estimate of the true formation temperature when the a priori parameter estimates and their standard deviations are consistent with the actual physical conditions in the borehole and the formation.The method on average yields 5–10 per cent higher equilibrium temperature estimates than does the Horner plot method and displays a strong consistency with temperature obtained during production tests. This is of importance to the understanding of terrestrial heat flow density patterns, and thermal structure of sedimentary basins, and to the modelling of hydrocarbon generation. The theory and results from the processing of 41 BHT series from 27 industrial wells in the North Sea Central Graben are presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Earth and Planetary Science Letters 128 (1994), S. 37-46 
    ISSN: 0012-821X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-01-01
    Description: The timing of Cenozoic surface uplift in NW Europe relies on the assumption that the sedimentary response in basins is synchronous with tectonic processes in the source areas. However, many of the phenomena commonly used to infer recent uplift may as well be a consequence of climate change and sea-level fall. The timing of surface uplift therefore remains unconstrained from the sedimentary record alone, and it becomes necessary to consider the constraints imposed by physically and geologically plausible tectonic mechanisms, which have a causal relation to an initiating agent. The gradual reversal of the regional stress field following the break-up produced minor perturbations to the thermal subsidence on the Norwegian Shelf and in the North Sea. Pulses of increased compression cannot be the cause of Cenozoic land surface uplift and accelerated Neogene basin subsidence. Virtually deformation-free regional vertical movements could have been caused by changes in the density column of the lithosphere and asthenosphere following the emplacement of the Iceland plume. A transient uplift component was produced as the plume displaced denser asthenosphere at the base of the lithosphere. This component decayed as the plume material cooled. Permanent uplift as a result of igneous underplating occurred in areas of a thin lithosphere (some Palaeozoic and Mesozoic basins) or for lithosphere under extension at the time of plume emplacement (the ocean-continent boundary). In areas of a thicker lithosphere (East Greenland, Scotland and Norway) plume emplacement may have triggered a Rayleigh-Taylor instability, causing partial lithospheric delamination and associated transient surface uplift at a decreasing rate throughout Cenozoic time. A possible uplift history for the adjacent land areas hence reads: initial transient surface uplift around the break-up time at 53 Ma caused by plume emplacement, and permanent tectonic uplift caused by lithospheric delamination and associated lithospheric heating. The permanent tectonic uplift increased through Cenozoic time at a decreasing rate. Denudation acted on this evolving topography and reduced the average surface elevation, but significantly increased the elevation of the summit envelope. The marked variations in the sedimentary response in the basins were caused by climatic variations and the generally falling eustatic level. This scenario bridges the gap between the ideas of Paleocene-Eocene uplift versus repeated Cenozoic tectonic activity: the tectonic uplift history was initiated by the emplacement of the Iceland plume, but continued throughout Cenozoic time as a consequence of early plume emplacement, with climatic and eustatic control on denudation. The mechanism is consistent with topography, heat flow, crustal structure, and the Bouguer gravity of Norway, and may be applicable also to East Greenland.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-10-16
    Description: The large-scale geological evolution of the North Atlantic Realm during the past 450 Myr is largely understood, but crucial elements remain uncertain. These involve the Caledonian orogeny, the formation of the North Atlantic and accompanying igneous activity, and the present-day high topography surrounding the North Atlantic. Teleseismic receiver function interpretation in the Central Fjord Region of East Greenland recently suggested the presence of a fossil Caledonian subduction complex, including a slab of eclogitised mafic crust and an overlying wedge of serpentinised mantle peridotite. Here we further investigate this topic using inverse receiver functions modelling. The obtained velocity models are tested with regard to their consistency with the regional gravity field and topography. We find that the obtained receiver function model is generally consistent with gravity and isostasy. The western part of the section, with topography of 〉1000 m, is clearly supported by the 40-km-thick crust. The eastern part requires additional buoyancy as provided by the hydrated mantle wedge. The geometry, velocities and densities are consistent with interpretation of the lithospheric structure as a fossil subduction zone complex. The spatial relations with Caledonian structures suggest a Caledonian origin. The results indicate that topography is isostatically compensated by density variations within the lithosphere, and that significant dynamic topography is not required at the present-day.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-09-11
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-11-08
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-03-15
    Description: The postorogenic collapse of the early Paleozoic Caledonian orogeny is well documented; however, several different plate tectonic models exist for the convergent phase involving closure of the Iapetus Ocean and the collision of Laurentia and Baltica. Receiver function analysis of 11 broadband seismometers along a 270 km transect in the East Greenland Caledonides reveals the existence of an east-dipping high velocity slab. Numerical modeling demonstrates that relict subducted and eclogitized crust is a plausible explanation. Thus, eastward subduction preceded subsequent west-dipping subduction during the formation of the East Greenland and Scandinavian Caledonides. This is a key constraint for understanding the Caledonian and continental margin evolution in the North Atlantic realm.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-11-14
    Description: The relative traveltime residuals of more than 20 000 arrival times of teleseismic P and S waves measured over a period of more than 10 yr in five separate temporary and two permanent seismic networks covering the Scandinavian (Scandes) Mountains and adjacent areas of the Baltic Shield are inverted to 3-D tomograms of P and S velocities and the V P / V S ratio. Resolution analysis documents that good 3-D resolution is available under the dense network south of 64° latitude (Southern Scandes Mountains), and patchier, but highly useful resolution is available further north, where station coverage is more uneven. A pronounced upper-mantle velocity boundary (UMVB) that transects the study region is defined. It runs from SE Norway (east of the Oslo Graben) across the mountains to the Norwegian coast near Trondheim (around the Møre–Trøndelag Fault Complex), after which it follows closely along the coast further north. Seismic velocities in the depth interval 100–300 km change significantly across the UMVB from low relative V P and even lower relative V S on the western side, to high relative V P and even higher relative V S to the east. This main velocity boundary therefore also separates relatively high V P / V S ratio to the west and relatively low V P / V S to the east. Under the Southern Scandes Mountains (most of southern Norway), we find low relative V P , even lower relative V S and hence high V P / V S ratios. These velocities are indicative of thinner lithosphere, higher temperature and less depletion and/or fluid content in a relatively shallow asthenosphere. At first sight, this might support the idea of a mantle buoyancy source for the high topography. Under the Northern Scandes Mountains, we find the opposite situation: high relative V P , even higher relative V S and hence low V P / V S ratios, consistent with thick, dry, depleted lithosphere, similar to that in most of the Baltic Shield area. This demonstrates significant differences in upper-mantle conditions between the Southern and Northern Scandes Mountains, and it shows that upper-mantle velocity anomalies are very poor predictors of topography in this region. An important deviation from this principal pattern is found near the topographic saddle between the Southern and Northern Scandes Mountains. Centred around 64°N, 14°E, a zone of lower S velocity and hence higher V P / V S ratio is detected in the depth interval between 100 and 300 km. This ‘Trøndelag–Jämtland mantle anomaly’ (TJMA) is still interpreted as part of relatively undisturbed lithosphere of shield affinity because of high relative P velocity, but the relatively low V P / V S ratios indicate lower depletion, possibly higher fluid content, and most likely lower viscosity relative to the adjacent shield units. We suggest that this mantle anomaly may have influenced the collapse of the Caledonian Mountains, and in particular guided the location and development of the Møre–Trøndelag Fault Complex. The TJMA is therefore likely to have played an important role in the development of the ‘two-dome architecture’ of the Scandes Mountains.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-11-19
    Description: Plate tectonic reconstructions are usually constrained by the correlation of lineaments of surface geology and crustal structures. This procedure is, however, largely dependent on and complicated by assumptions on crustal structure and thinning and the identification of the continent-ocean transition. We identify two geophysically and geometrically similar upper mantle structures in the North Atlantic and suggest that these represent remnants of the same Caledonian collision event. The identification of this structural lineament provides a sub-crustal piercing point and hence a novel opportunity to tie plate tectonic reconstructions. Further, this structure coincides with the location of some major tectonic events of the North Atlantic post-orogenic evolution such as the occurrence of the Iceland Melt Anomaly and the separation of the Jan Mayen microcontinent. We suggest that this inherited orogenic structure played a major role in the control of North Atlantic tectonic processes.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-09-02
    Description: This study presents P - and S -wave velocity variations for the upper mantle in southern Scandinavia and northern Germany based on teleseismic traveltime tomography. Tectonically, this region includes the entire northern part of the prominent Tornquist Zone which follows along the transition from old Precambrian shield units to the east to younger Phanerozoic deep sedimentary basins to the southwest. We combine data from several separate temporary arrays/profiles (276 stations) deployed over a period of about 15 yr and permanent networks (31 stations) covering the areas of Denmark, northern Germany, southern Sweden and southern Norway. By performing an integrated P - and S -traveltime analysis, we obtain the first high-resolution combined 3-D V P and V S models, including variations in the V P / V S ratio, for the whole of this region of study. Relative station mean traveltime residuals vary within ±1 s for P wave and ±2 s for S wave, with early arrivals in shield areas of southern Sweden and later arrivals in the Danish and North German Basins, as well as in most of southern Norway. In good accordance with previous, mainly P -velocity models, a marked upper-mantle velocity boundary (UMVB) is accurately delineated between shield areas (with high seismic mantle velocity) and basins (with lower velocity). It continues northwards into southern Norway near the Oslo Graben area and further north across the Southern Scandes Mountains. This main boundary, extending to a depth of at least 300 km, is even more pronounced in our new S -velocity model, with velocity contrasts of up to ±2–3 per cent. It is also clearly reflected in the V P / V S ratio. Differences in this ratio of up to about ±2 per cent are observed across the boundary, with generally low values in shield areas to the east and relatively higher values in basin areas to the southwest and in most of southern Norway. Differences in the V P / V S ratio are believed to be a rather robust indicator of upper-mantle compositional differences. For the depth interval of about 100–300 km, thick, depleted, relatively cold shield lithosphere is indicated in southern Sweden, contrasting with more fertile, warm mantle asthenosphere beneath most of the basins in Denmark and northern Germany. Both compositional and temperature differences seem to play a significant role in explaining the UMVB between southern Norway and southern Sweden. In addition to the main regional upper-mantle velocity contrasts, a number of more local anomaly features are also outlined and discussed.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...