ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-09-25
    Description: The flow of information from calcium-mobilizing receptors to nuclear factor of activated T cells (NFAT)-dependent genes is critically dependent on interaction between the phosphatase calcineurin and the transcription factor NFAT. A high-affinity calcineurin-binding peptide was selected from combinatorial peptide libraries based on the calcineurin docking motif of NFAT. This peptide potently inhibited NFAT activation and NFAT-dependent expression of endogenous cytokine genes in T cells, without affecting the expression of other cytokines that require calcineurin but not NFAT. Substitution of the optimized peptide sequence into the natural calcineurin docking site increased the calcineurin responsiveness of NFAT. Compounds that interfere selectively with the calcineurin-NFAT interaction without affecting calcineurin phosphatase activity may be useful as therapeutic agents that are less toxic than current drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aramburu, J -- Yaffe, M B -- Lopez-Rodriguez, C -- Cantley, L C -- Hogan, P G -- Rao, A -- R01 AI 40127/AI/NIAID NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- R01 HL 03601/HL/NHLBI NIH HHS/ -- R43 AI 43726/AI/NIAID NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Sep 24;285(5436):2129-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10497131" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Calcineurin/*metabolism ; Calcineurin Inhibitors ; Cell Nucleus/metabolism ; Cyclosporine/pharmacology ; Cytokines/biosynthesis/genetics ; DNA-Binding Proteins/*antagonists & inhibitors/chemistry/metabolism ; Gene Expression Regulation ; Genes, Reporter ; HeLa Cells ; Humans ; Immunosuppressive Agents/chemistry/metabolism/*pharmacology ; Jurkat Cells ; Molecular Sequence Data ; NFATC Transcription Factors ; *Nuclear Proteins ; Oligopeptides/chemistry/metabolism/*pharmacology ; Peptide Library ; Peptides/chemistry/metabolism/*pharmacology ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; T-Lymphocytes/*drug effects/immunology ; Transcription Factors/*antagonists & inhibitors/chemistry/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-01-15
    Description: Phosphoinositide 3-kinase (PI3K) activation has been implicated in many cellular responses, including fibroblast growth, transformation, survival, and chemotaxis. Although PI3K is activated by several agents that stimulate T and B cells, the role of PI3K in lymphocyte function is not clear. The mouse gene encoding the PI3K adapter subunit p85alpha and its splice variants p55alpha and p50alpha was disrupted. Most p85alpha-p55alpha-p50alpha-/- mice die within days after birth. Lymphocyte development and function was studied with the use of the RAG2-deficient blastocyst complementation system. Chimeric mice had reduced numbers of peripheral mature B cells and decreased serum immunoglobulin. The B cells that developed had diminished proliferative responses to antibody to immunoglobulin M, antibody to CD40, and lipopolysaccharide stimulation and decreased survival after incubation with interleukin-4. In contrast, T cell development and proliferation was normal. This phenotype is similar to defects observed in mice lacking the tyrosine kinase Btk.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fruman, D A -- Snapper, S B -- Yballe, C M -- Davidson, L -- Yu, J Y -- Alt, F W -- Cantley, L C -- R01 GM041890/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jan 15;283(5400):393-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. dfruman@bidmc.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9888855" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD45/analysis ; Apoptosis ; B-Lymphocytes/cytology/enzymology/*immunology ; Catalytic Domain ; Cell Cycle ; Chimera ; Chromones/pharmacology ; Enzyme Inhibitors/pharmacology ; Female ; Gene Targeting ; Immunoglobulins/*blood ; *Lymphocyte Activation ; Lymphocyte Count ; Male ; Mice ; Mice, Inbred C57BL ; Morpholines/pharmacology ; Phosphatidylinositol 3-Kinases/antagonists & inhibitors/genetics/*metabolism ; Protein-Tyrosine Kinases/genetics/metabolism ; Spleen/immunology ; T-Lymphocytes/cytology/enzymology/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-06-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cantley, L C -- New York, N.Y. -- Science. 2001 Jun 15;292(5524):2019-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School and Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA. cantley@helix.mgh.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11408644" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Adaptor Proteins, Signal Transducing ; Animals ; Calcium/metabolism ; Cell Membrane/*metabolism ; Cell Nucleus/*metabolism ; GTP-Binding Protein alpha Subunits, Gq-G11 ; Heterotrimeric GTP-Binding Proteins/metabolism ; Hydrolysis ; Isoenzymes/*metabolism ; Membrane Lipids/metabolism ; Mice ; Obesity/genetics/metabolism ; Phosphatidylinositol 4,5-Diphosphate/*metabolism ; Phosphatidylinositol Phosphates/metabolism ; Phospholipase C beta ; Phosphorylation ; Protein Structure, Tertiary ; Proteins/chemistry/genetics/*metabolism ; Receptor, Serotonin, 5-HT2C ; Receptors, Serotonin/metabolism ; Signal Transduction ; Transcription Factors/chemistry/genetics/*metabolism ; Type C Phospholipases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-06-01
    Description: Phosphorylated lipids are produced at cellular membranes during signaling events and contribute to the recruitment and activation of various signaling components. The role of phosphoinositide 3-kinase (PI3K), which catalyzes the production of phosphatidylinositol-3,4,5-trisphosphate, in cell survival pathways; the regulation of gene expression and cell metabolism; and cytoskeletal rearrangements are highlighted. The PI3K pathway is implicated in human diseases including diabetes and cancer, and understanding the intricacies of this pathway may provide new avenues for therapuetic intervention.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cantley, Lewis C -- R01 GM041890/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 May 31;296(5573):1655-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School and Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115-5713, USA. cantley@helix.mgh.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12040186" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Phosphoinositide-Dependent Protein Kinases ; Animals ; Cell Membrane/metabolism ; Cell Physiological Phenomena ; Diabetes Mellitus, Type 2/drug therapy/metabolism ; Humans ; Models, Biological ; Neoplasms/drug therapy/metabolism ; Phosphatidylinositol 3-Kinases/*metabolism ; Phosphatidylinositol 4,5-Diphosphate/metabolism ; Phosphatidylinositol Phosphates/chemistry/*metabolism ; Phosphorylation ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-akt ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-01-07
    Description: Pin1 is an essential and conserved mitotic peptidyl-prolyl isomerase (PPIase) that is distinct from members of two other families of conventional PPIases, cyclophilins and FKBPs (FK-506 binding proteins). In response to their phosphorylation during mitosis, Pin1 binds and regulates members of a highly conserved set of proteins that overlaps with antigens recognized by the mitosis-specific monoclonal antibody MPM-2. Pin1 is here shown to be a phosphorylation-dependent PPIase that specifically recognizes the phosphoserine-proline or phosphothreonine-proline bonds present in mitotic phosphoproteins. Both Pin1 and MPM-2 selected similar phosphorylated serine-proline-containing peptides, providing the basis for the specific interaction between Pin1 and MPM-2 antigens. Pin1 preferentially isomerized proline residues preceded by phosphorylated serine or threonine with up to 1300-fold selectivity compared with unphosphorylated peptides. Pin1 may thus regulate mitotic progression by catalyzing sequence-specific and phosphorylation-dependent proline isomerization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yaffe, M B -- Schutkowski, M -- Shen, M -- Zhou, X Z -- Stukenberg, P T -- Rahfeld, J U -- Xu, J -- Kuang, J -- Kirschner, M W -- Fischer, G -- Cantley, L C -- Lu, K P -- GM56203/GM/NIGMS NIH HHS/ -- GM56230/GM/NIGMS NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Dec 12;278(5345):1957-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9395400" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Isomerases/metabolism ; Antibodies, Monoclonal ; Binding Sites ; Carrier Proteins/metabolism ; Cell Cycle Proteins/chemistry/*metabolism ; DNA-Binding Proteins/metabolism ; Epitopes ; HeLa Cells ; Heat-Shock Proteins/metabolism ; Humans ; Isomerism ; *Mitosis ; Models, Molecular ; Oligopeptides/chemistry/*metabolism ; Peptide Library ; Peptidylprolyl Isomerase/chemistry/*metabolism ; Phosphoproteins/chemistry/immunology/*metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Phosphothreonine/metabolism ; Proline/*metabolism ; Protein Conformation ; Recombinant Fusion Proteins/chemistry/metabolism ; Substrate Specificity ; Tacrolimus Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1997-01-31
    Description: The regulation of the serine-threonine kinase Akt by lipid products of phosphoinositide 3-kinase (PI 3-kinase) was investigated. Akt activity was found to correlate with the amount of phosphatidylinositol-3,4-bisphosphate (PtdIns-3,4-P2) in vivo, and synthetic PtdIns-3,4-P2 activated Akt both in vitro and in vivo. Binding of PtdIns-3,4-P2 occurred within the Akt pleckstrin homology (PH) domain and facilitated dimerization of Akt. Akt mutated in the PH domain was not activated by PI 3-kinase in vivo or by PtdIns-3, 4-P2 in vitro, and it was impaired in binding to PtdIns-3,4-P2. Examination of the binding to other phosphoinositides revealed that they bound to the Akt PH domain with much lower affinity than did PtdIns-3,4-P2 and failed to increase Akt activity. Thus, Akt is apparently regulated by the direct interaction of PtdIns-3,4-P2 with the Akt PH domain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Franke, T F -- Kaplan, D R -- Cantley, L C -- Toker, A -- GM41890/GM/NIGMS NIH HHS/ -- N01-CO-74101/CO/NCI NIH HHS/ -- R01 GM041890/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Jan 31;275(5300):665-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ABL-Basic Research Program, National Cancer Institute-Frederick Cancer Research Facility and Development Center (NCI-FCRFDC), Frederick, MD 21702, USA. tfranke@bidmc.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9005852" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; COS Cells ; Dimerization ; Enzyme Activation ; Mice ; Phosphatidylinositol 3-Kinases ; Phosphatidylinositol Phosphates/*metabolism/pharmacology ; Phosphorylation ; Phosphotransferases (Alcohol Group Acceptor)/metabolism ; Platelet-Derived Growth Factor/pharmacology ; Point Mutation ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins c-akt ; Recombinant Fusion Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-03-14
    Description: Growth factors stimulate cells to take up excess nutrients and to use them for anabolic processes. The biochemical mechanism by which this is accomplished is not fully understood but it is initiated by phosphorylation of signalling proteins on tyrosine residues. Using a novel proteomic screen for phosphotyrosine-binding proteins, we have made the observation that an enzyme involved in glycolysis, the human M2 (fetal) isoform of pyruvate kinase (PKM2), binds directly and selectively to tyrosine-phosphorylated peptides. We show that binding of phosphotyrosine peptides to PKM2 results in release of the allosteric activator fructose-1,6-bisphosphate, leading to inhibition of PKM2 enzymatic activity. We also provide evidence that this regulation of PKM2 by phosphotyrosine signalling diverts glucose metabolites from energy production to anabolic processes when cells are stimulated by certain growth factors. Collectively, our results indicate that expression of this phosphotyrosine-binding form of pyruvate kinase is critical for rapid growth in cancer cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Christofk, Heather R -- Vander Heiden, Matthew G -- Wu, Ning -- Asara, John M -- Cantley, Lewis C -- R01 GM056203/GM/NIGMS NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- England -- Nature. 2008 Mar 13;452(7184):181-6. doi: 10.1038/nature06667.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18337815" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Site ; Animals ; Catalysis ; Cell Line ; Cell Proliferation/drug effects ; Cells/drug effects/metabolism ; HeLa Cells ; Humans ; Lysine/metabolism ; Models, Molecular ; Peptide Library ; Phosphotyrosine/*metabolism ; Protein Binding ; Proteomics ; Pyruvate Kinase/antagonists & inhibitors/*metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-03-14
    Description: Many tumour cells have elevated rates of glucose uptake but reduced rates of oxidative phosphorylation. This persistence of high lactate production by tumours in the presence of oxygen, known as aerobic glycolysis, was first noted by Otto Warburg more than 75 yr ago. How tumour cells establish this altered metabolic phenotype and whether it is essential for tumorigenesis is as yet unknown. Here we show that a single switch in a splice isoform of the glycolytic enzyme pyruvate kinase is necessary for the shift in cellular metabolism to aerobic glycolysis and that this promotes tumorigenesis. Tumour cells have been shown to express exclusively the embryonic M2 isoform of pyruvate kinase. Here we use short hairpin RNA to knockdown pyruvate kinase M2 expression in human cancer cell lines and replace it with pyruvate kinase M1. Switching pyruvate kinase expression to the M1 (adult) isoform leads to reversal of the Warburg effect, as judged by reduced lactate production and increased oxygen consumption, and this correlates with a reduced ability to form tumours in nude mouse xenografts. These results demonstrate that M2 expression is necessary for aerobic glycolysis and that this metabolic phenotype provides a selective growth advantage for tumour cells in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Christofk, Heather R -- Vander Heiden, Matthew G -- Harris, Marian H -- Ramanathan, Arvind -- Gerszten, Robert E -- Wei, Ru -- Fleming, Mark D -- Schreiber, Stuart L -- Cantley, Lewis C -- R01 GM056203/GM/NIGMS NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 Mar 13;452(7184):230-3. doi: 10.1038/nature06734.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18337823" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing/*genetics ; Animals ; Cell Line, Tumor ; Cell Proliferation ; Fructosediphosphates/metabolism ; Gene Expression Regulation, Neoplastic ; Glycolysis ; Humans ; Lactic Acid/metabolism ; Lung Neoplasms/genetics/metabolism/pathology ; Male ; Mice ; Mice, Nude ; Neoplasm Transplantation ; Neoplasms/enzymology/genetics/*metabolism/*pathology ; Oxidative Phosphorylation ; Oxygen Consumption ; Pyruvate Kinase/*genetics/*metabolism ; Pyruvic Acid/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-11-26
    Description: Mutations in the enzyme cytosolic isocitrate dehydrogenase 1 (IDH1) are a common feature of a major subset of primary human brain cancers. These mutations occur at a single amino acid residue of the IDH1 active site, resulting in loss of the enzyme's ability to catalyse conversion of isocitrate to alpha-ketoglutarate. However, only a single copy of the gene is mutated in tumours, raising the possibility that the mutations do not result in a simple loss of function. Here we show that cancer-associated IDH1 mutations result in a new ability of the enzyme to catalyse the NADPH-dependent reduction of alpha-ketoglutarate to R(-)-2-hydroxyglutarate (2HG). Structural studies demonstrate that when arginine 132 is mutated to histidine, residues in the active site are shifted to produce structural changes consistent with reduced oxidative decarboxylation of isocitrate and acquisition of the ability to convert alpha-ketoglutarate to 2HG. Excess accumulation of 2HG has been shown to lead to an elevated risk of malignant brain tumours in patients with inborn errors of 2HG metabolism. Similarly, in human malignant gliomas harbouring IDH1 mutations, we find markedly elevated levels of 2HG. These data demonstrate that the IDH1 mutations result in production of the onco-metabolite 2HG, and indicate that the excess 2HG which accumulates in vivo contributes to the formation and malignant progression of gliomas.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818760/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818760/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dang, Lenny -- White, David W -- Gross, Stefan -- Bennett, Bryson D -- Bittinger, Mark A -- Driggers, Edward M -- Fantin, Valeria R -- Jang, Hyun Gyung -- Jin, Shengfang -- Keenan, Marie C -- Marks, Kevin M -- Prins, Robert M -- Ward, Patrick S -- Yen, Katharine E -- Liau, Linda M -- Rabinowitz, Joshua D -- Cantley, Lewis C -- Thompson, Craig B -- Vander Heiden, Matthew G -- Su, Shinsan M -- P01 CA104838/CA/NCI NIH HHS/ -- P01 CA104838-05/CA/NCI NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 CA105463/CA/NCI NIH HHS/ -- R01 CA105463-06/CA/NCI NIH HHS/ -- R21 CA128620/CA/NCI NIH HHS/ -- England -- Nature. 2009 Dec 10;462(7274):739-44. doi: 10.1038/nature08617. Epub .〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Agios Pharmaceuticals, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19935646" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/genetics ; Brain Neoplasms/*genetics/*metabolism/pathology ; Catalytic Domain ; Cell Line ; Crystallography, X-Ray ; Disease Progression ; Enzyme Assays ; Glioma/genetics/metabolism/pathology ; Glutarates/*metabolism ; Histidine/genetics/metabolism ; Humans ; Isocitrate Dehydrogenase/*genetics/*metabolism ; Ketoglutaric Acids/metabolism ; Models, Molecular ; Mutant Proteins/*genetics/*metabolism ; Mutation/genetics ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-06-19
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3766976/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3766976/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dang, Lenny -- White, David W -- Gross, Stefan -- Bennett, Bryson D -- Bittinger, Mark A -- Driggers, Edward M -- Fantin, Valeria R -- Jang, Hyun Gyung -- Jin, Shengfang -- Keenan, Marie C -- Marks, Kevin M -- Prins, Robert M -- Ward, Patrick S -- Yen, Katharine E -- Liau, Linda M -- Rabinowitz, Joshua D -- Cantley, Lewis C -- Thompson, Craig B -- Vander Heiden, Matthew G -- Su, Shinsan M -- R01 CA105463/CA/NCI NIH HHS/ -- England -- Nature. 2010 Jun 17;465(7300):966. doi: 10.1038/nature09132.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20559394" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Glutarates/*metabolism ; Humans ; Isocitrate Dehydrogenase/*genetics ; Mutation/*genetics ; Neoplasms/*physiopathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...