ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-03-14
    Description: Many tumour cells have elevated rates of glucose uptake but reduced rates of oxidative phosphorylation. This persistence of high lactate production by tumours in the presence of oxygen, known as aerobic glycolysis, was first noted by Otto Warburg more than 75 yr ago. How tumour cells establish this altered metabolic phenotype and whether it is essential for tumorigenesis is as yet unknown. Here we show that a single switch in a splice isoform of the glycolytic enzyme pyruvate kinase is necessary for the shift in cellular metabolism to aerobic glycolysis and that this promotes tumorigenesis. Tumour cells have been shown to express exclusively the embryonic M2 isoform of pyruvate kinase. Here we use short hairpin RNA to knockdown pyruvate kinase M2 expression in human cancer cell lines and replace it with pyruvate kinase M1. Switching pyruvate kinase expression to the M1 (adult) isoform leads to reversal of the Warburg effect, as judged by reduced lactate production and increased oxygen consumption, and this correlates with a reduced ability to form tumours in nude mouse xenografts. These results demonstrate that M2 expression is necessary for aerobic glycolysis and that this metabolic phenotype provides a selective growth advantage for tumour cells in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Christofk, Heather R -- Vander Heiden, Matthew G -- Harris, Marian H -- Ramanathan, Arvind -- Gerszten, Robert E -- Wei, Ru -- Fleming, Mark D -- Schreiber, Stuart L -- Cantley, Lewis C -- R01 GM056203/GM/NIGMS NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 Mar 13;452(7184):230-3. doi: 10.1038/nature06734.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18337823" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing/*genetics ; Animals ; Cell Line, Tumor ; Cell Proliferation ; Fructosediphosphates/metabolism ; Gene Expression Regulation, Neoplastic ; Glycolysis ; Humans ; Lactic Acid/metabolism ; Lung Neoplasms/genetics/metabolism/pathology ; Male ; Mice ; Mice, Nude ; Neoplasm Transplantation ; Neoplasms/enzymology/genetics/*metabolism/*pathology ; Oxidative Phosphorylation ; Oxygen Consumption ; Pyruvate Kinase/*genetics/*metabolism ; Pyruvic Acid/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-11-05
    Description: Control of intracellular reactive oxygen species (ROS) concentrations is critical for cancer cell survival. We show that, in human lung cancer cells, acute increases in intracellular concentrations of ROS caused inhibition of the glycolytic enzyme pyruvate kinase M2 (PKM2) through oxidation of Cys(358). This inhibition of PKM2 is required to divert glucose flux into the pentose phosphate pathway and thereby generate sufficient reducing potential for detoxification of ROS. Lung cancer cells in which endogenous PKM2 was replaced with the Cys(358) to Ser(358) oxidation-resistant mutant exhibited increased sensitivity to oxidative stress and impaired tumor formation in a xenograft model. Besides promoting metabolic changes required for proliferation, the regulatory properties of PKM2 may confer an additional advantage to cancer cells by allowing them to withstand oxidative stress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471535/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471535/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anastasiou, Dimitrios -- Poulogiannis, George -- Asara, John M -- Boxer, Matthew B -- Jiang, Jian-kang -- Shen, Min -- Bellinger, Gary -- Sasaki, Atsuo T -- Locasale, Jason W -- Auld, Douglas S -- Thomas, Craig J -- Vander Heiden, Matthew G -- Cantley, Lewis C -- 1P30CA147882/CA/NCI NIH HHS/ -- P01 CA089021/CA/NCI NIH HHS/ -- P01 CA117969/CA/NCI NIH HHS/ -- P01-CA089021/CA/NCI NIH HHS/ -- P01-CA117969-04/CA/NCI NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- R01-GM056203-13/GM/NIGMS NIH HHS/ -- R03MH085679/MH/NIMH NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Dec 2;334(6060):1278-83. doi: 10.1126/science.1211485. Epub 2011 Nov 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Beth Israel Deaconess Medical Center, Department of Medicine-Division of Signal Transduction, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22052977" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcysteine/pharmacology ; Amino Acid Substitution ; Animals ; Antioxidants/*metabolism ; Cell Line ; Cell Line, Tumor ; Cell Survival ; Cysteine/chemistry ; Diamide/pharmacology ; Enzyme Activators/pharmacology ; Glucose/metabolism ; Glutathione/metabolism ; Humans ; Mice ; Mice, Nude ; Mutant Proteins/antagonists & inhibitors/chemistry/genetics/metabolism ; Neoplasm Transplantation ; Neoplasms, Experimental/metabolism/pathology ; Oxidation-Reduction ; Oxidative Stress ; Pentose Phosphate Pathway ; Protein Subunits ; Pyruvate Kinase/*antagonists & inhibitors/chemistry/genetics/metabolism ; Reactive Oxygen Species/*metabolism ; Transplantation, Heterologous
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-11-07
    Description: More than half of human colorectal cancers (CRCs) carry either KRAS or BRAF mutations and are often refractory to approved targeted therapies. We found that cultured human CRC cells harboring KRAS or BRAF mutations are selectively killed when exposed to high levels of vitamin C. This effect is due to increased uptake of the oxidized form of vitamin C, dehydroascorbate (DHA), via the GLUT1 glucose transporter. Increased DHA uptake causes oxidative stress as intracellular DHA is reduced to vitamin C, depleting glutathione. Thus, reactive oxygen species accumulate and inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Inhibition of GAPDH in highly glycolytic KRAS or BRAF mutant cells leads to an energetic crisis and cell death not seen in KRAS and BRAF wild-type cells. High-dose vitamin C impairs tumor growth in Apc/Kras(G12D) mutant mice. These results provide a mechanistic rationale for exploring the therapeutic use of vitamin C for CRCs with KRAS or BRAF mutations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778961/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778961/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yun, Jihye -- Mullarky, Edouard -- Lu, Changyuan -- Bosch, Kaitlyn N -- Kavalier, Adam -- Rivera, Keith -- Roper, Jatin -- Chio, Iok In Christine -- Giannopoulou, Eugenia G -- Rago, Carlo -- Muley, Ashlesha -- Asara, John M -- Paik, Jihye -- Elemento, Olivier -- Chen, Zhengming -- Pappin, Darryl J -- Dow, Lukas E -- Papadopoulos, Nickolas -- Gross, Steven S -- Cantley, Lewis C -- KL2 TR000458/TR/NCATS NIH HHS/ -- P01 CA117969/CA/NCI NIH HHS/ -- P01 CA117969-09/CA/NCI NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P01 CA120964-07/CA/NCI NIH HHS/ -- S10 RR022615/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Dec 11;350(6266):1391-6. doi: 10.1126/science.aaa5004. Epub 2015 Nov 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA. ; Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA. Biological and Biomedical Sciences Graduate Program, Harvard Medical School, Boston, MA 02115, USA. ; Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. ; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. ; Molecular Oncology Research Institute and Division of Gastroenterology, Tufts Medical Center, Boston, MA 02111, USA. ; Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA. ; Ludwig Center for Cancer Genetics and Therapeutics and Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA. ; Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA. ; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA. ; Department of Biostatistics and Epidemiology, Weill Cornell Medical College, New York, NY 10065, USA. ; Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA. lcantley@med.cornell.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26541605" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein/genetics ; Animals ; Ascorbic Acid/administration & dosage/pharmacology/*therapeutic use ; Cell Line, Tumor ; Colorectal Neoplasms/*drug therapy/*genetics ; Dehydroascorbic Acid/metabolism ; Female ; Glucose Transporter Type 1/metabolism ; Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism ; Glycolysis/drug effects ; Humans ; Mice ; Mice, Mutant Strains ; Mice, Nude ; Proto-Oncogene Proteins/*genetics ; Proto-Oncogene Proteins B-raf/*genetics ; Proto-Oncogene Proteins p21(ras)/genetics ; Reactive Oxygen Species/metabolism ; Xenograft Model Antitumor Assays ; ras Proteins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...