ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-09-25
    Description: The flow of information from calcium-mobilizing receptors to nuclear factor of activated T cells (NFAT)-dependent genes is critically dependent on interaction between the phosphatase calcineurin and the transcription factor NFAT. A high-affinity calcineurin-binding peptide was selected from combinatorial peptide libraries based on the calcineurin docking motif of NFAT. This peptide potently inhibited NFAT activation and NFAT-dependent expression of endogenous cytokine genes in T cells, without affecting the expression of other cytokines that require calcineurin but not NFAT. Substitution of the optimized peptide sequence into the natural calcineurin docking site increased the calcineurin responsiveness of NFAT. Compounds that interfere selectively with the calcineurin-NFAT interaction without affecting calcineurin phosphatase activity may be useful as therapeutic agents that are less toxic than current drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aramburu, J -- Yaffe, M B -- Lopez-Rodriguez, C -- Cantley, L C -- Hogan, P G -- Rao, A -- R01 AI 40127/AI/NIAID NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- R01 HL 03601/HL/NHLBI NIH HHS/ -- R43 AI 43726/AI/NIAID NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Sep 24;285(5436):2129-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10497131" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Calcineurin/*metabolism ; Calcineurin Inhibitors ; Cell Nucleus/metabolism ; Cyclosporine/pharmacology ; Cytokines/biosynthesis/genetics ; DNA-Binding Proteins/*antagonists & inhibitors/chemistry/metabolism ; Gene Expression Regulation ; Genes, Reporter ; HeLa Cells ; Humans ; Immunosuppressive Agents/chemistry/metabolism/*pharmacology ; Jurkat Cells ; Molecular Sequence Data ; NFATC Transcription Factors ; *Nuclear Proteins ; Oligopeptides/chemistry/metabolism/*pharmacology ; Peptide Library ; Peptides/chemistry/metabolism/*pharmacology ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; T-Lymphocytes/*drug effects/immunology ; Transcription Factors/*antagonists & inhibitors/chemistry/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-06-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cantley, L C -- New York, N.Y. -- Science. 2001 Jun 15;292(5524):2019-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School and Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA. cantley@helix.mgh.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11408644" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Adaptor Proteins, Signal Transducing ; Animals ; Calcium/metabolism ; Cell Membrane/*metabolism ; Cell Nucleus/*metabolism ; GTP-Binding Protein alpha Subunits, Gq-G11 ; Heterotrimeric GTP-Binding Proteins/metabolism ; Hydrolysis ; Isoenzymes/*metabolism ; Membrane Lipids/metabolism ; Mice ; Obesity/genetics/metabolism ; Phosphatidylinositol 4,5-Diphosphate/*metabolism ; Phosphatidylinositol Phosphates/metabolism ; Phospholipase C beta ; Phosphorylation ; Protein Structure, Tertiary ; Proteins/chemistry/genetics/*metabolism ; Receptor, Serotonin, 5-HT2C ; Receptors, Serotonin/metabolism ; Signal Transduction ; Transcription Factors/chemistry/genetics/*metabolism ; Type C Phospholipases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-06-01
    Description: Phosphorylated lipids are produced at cellular membranes during signaling events and contribute to the recruitment and activation of various signaling components. The role of phosphoinositide 3-kinase (PI3K), which catalyzes the production of phosphatidylinositol-3,4,5-trisphosphate, in cell survival pathways; the regulation of gene expression and cell metabolism; and cytoskeletal rearrangements are highlighted. The PI3K pathway is implicated in human diseases including diabetes and cancer, and understanding the intricacies of this pathway may provide new avenues for therapuetic intervention.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cantley, Lewis C -- R01 GM041890/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 May 31;296(5573):1655-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School and Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115-5713, USA. cantley@helix.mgh.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12040186" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Phosphoinositide-Dependent Protein Kinases ; Animals ; Cell Membrane/metabolism ; Cell Physiological Phenomena ; Diabetes Mellitus, Type 2/drug therapy/metabolism ; Humans ; Models, Biological ; Neoplasms/drug therapy/metabolism ; Phosphatidylinositol 3-Kinases/*metabolism ; Phosphatidylinositol 4,5-Diphosphate/metabolism ; Phosphatidylinositol Phosphates/chemistry/*metabolism ; Phosphorylation ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-akt ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1998-01-07
    Description: Pin1 is an essential and conserved mitotic peptidyl-prolyl isomerase (PPIase) that is distinct from members of two other families of conventional PPIases, cyclophilins and FKBPs (FK-506 binding proteins). In response to their phosphorylation during mitosis, Pin1 binds and regulates members of a highly conserved set of proteins that overlaps with antigens recognized by the mitosis-specific monoclonal antibody MPM-2. Pin1 is here shown to be a phosphorylation-dependent PPIase that specifically recognizes the phosphoserine-proline or phosphothreonine-proline bonds present in mitotic phosphoproteins. Both Pin1 and MPM-2 selected similar phosphorylated serine-proline-containing peptides, providing the basis for the specific interaction between Pin1 and MPM-2 antigens. Pin1 preferentially isomerized proline residues preceded by phosphorylated serine or threonine with up to 1300-fold selectivity compared with unphosphorylated peptides. Pin1 may thus regulate mitotic progression by catalyzing sequence-specific and phosphorylation-dependent proline isomerization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yaffe, M B -- Schutkowski, M -- Shen, M -- Zhou, X Z -- Stukenberg, P T -- Rahfeld, J U -- Xu, J -- Kuang, J -- Kirschner, M W -- Fischer, G -- Cantley, L C -- Lu, K P -- GM56203/GM/NIGMS NIH HHS/ -- GM56230/GM/NIGMS NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Dec 12;278(5345):1957-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9395400" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Isomerases/metabolism ; Antibodies, Monoclonal ; Binding Sites ; Carrier Proteins/metabolism ; Cell Cycle Proteins/chemistry/*metabolism ; DNA-Binding Proteins/metabolism ; Epitopes ; HeLa Cells ; Heat-Shock Proteins/metabolism ; Humans ; Isomerism ; *Mitosis ; Models, Molecular ; Oligopeptides/chemistry/*metabolism ; Peptide Library ; Peptidylprolyl Isomerase/chemistry/*metabolism ; Phosphoproteins/chemistry/immunology/*metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Phosphothreonine/metabolism ; Proline/*metabolism ; Protein Conformation ; Recombinant Fusion Proteins/chemistry/metabolism ; Substrate Specificity ; Tacrolimus Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1997-01-31
    Description: The regulation of the serine-threonine kinase Akt by lipid products of phosphoinositide 3-kinase (PI 3-kinase) was investigated. Akt activity was found to correlate with the amount of phosphatidylinositol-3,4-bisphosphate (PtdIns-3,4-P2) in vivo, and synthetic PtdIns-3,4-P2 activated Akt both in vitro and in vivo. Binding of PtdIns-3,4-P2 occurred within the Akt pleckstrin homology (PH) domain and facilitated dimerization of Akt. Akt mutated in the PH domain was not activated by PI 3-kinase in vivo or by PtdIns-3, 4-P2 in vitro, and it was impaired in binding to PtdIns-3,4-P2. Examination of the binding to other phosphoinositides revealed that they bound to the Akt PH domain with much lower affinity than did PtdIns-3,4-P2 and failed to increase Akt activity. Thus, Akt is apparently regulated by the direct interaction of PtdIns-3,4-P2 with the Akt PH domain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Franke, T F -- Kaplan, D R -- Cantley, L C -- Toker, A -- GM41890/GM/NIGMS NIH HHS/ -- N01-CO-74101/CO/NCI NIH HHS/ -- R01 GM041890/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Jan 31;275(5300):665-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ABL-Basic Research Program, National Cancer Institute-Frederick Cancer Research Facility and Development Center (NCI-FCRFDC), Frederick, MD 21702, USA. tfranke@bidmc.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9005852" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; COS Cells ; Dimerization ; Enzyme Activation ; Mice ; Phosphatidylinositol 3-Kinases ; Phosphatidylinositol Phosphates/*metabolism/pharmacology ; Phosphorylation ; Phosphotransferases (Alcohol Group Acceptor)/metabolism ; Platelet-Derived Growth Factor/pharmacology ; Point Mutation ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins c-akt ; Recombinant Fusion Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-09-18
    Description: Proliferating cells, including cancer cells, require altered metabolism to efficiently incorporate nutrients such as glucose into biomass. The M2 isoform of pyruvate kinase (PKM2) promotes the metabolism of glucose by aerobic glycolysis and contributes to anabolic metabolism. Paradoxically, decreased pyruvate kinase enzyme activity accompanies the expression of PKM2 in rapidly dividing cancer cells and tissues. We demonstrate that phosphoenolpyruvate (PEP), the substrate for pyruvate kinase in cells, can act as a phosphate donor in mammalian cells because PEP participates in the phosphorylation of the glycolytic enzyme phosphoglycerate mutase (PGAM1) in PKM2-expressing cells. We used mass spectrometry to show that the phosphate from PEP is transferred to the catalytic histidine (His11) on human PGAM1. This reaction occurred at physiological concentrations of PEP and produced pyruvate in the absence of PKM2 activity. The presence of histidine-phosphorylated PGAM1 correlated with the expression of PKM2 in cancer cell lines and tumor tissues. Thus, decreased pyruvate kinase activity in PKM2-expressing cells allows PEP-dependent histidine phosphorylation of PGAM1 and may provide an alternate glycolytic pathway that decouples adenosine triphosphate production from PEP-mediated phosphotransfer, allowing for the high rate of glycolysis to support the anabolic metabolism observed in many proliferating cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030121/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030121/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vander Heiden, Matthew G -- Locasale, Jason W -- Swanson, Kenneth D -- Sharfi, Hadar -- Heffron, Greg J -- Amador-Noguez, Daniel -- Christofk, Heather R -- Wagner, Gerhard -- Rabinowitz, Joshua D -- Asara, John M -- Cantley, Lewis C -- 1K08CA136983/CA/NCI NIH HHS/ -- 1P01CA120964-01A/CA/NCI NIH HHS/ -- 5 T32 CA009361-28/CA/NCI NIH HHS/ -- 5P30CA006516-43/CA/NCI NIH HHS/ -- K08 CA136983/CA/NCI NIH HHS/ -- K08 CA136983-02/CA/NCI NIH HHS/ -- P01 CA089021/CA/NCI NIH HHS/ -- P01 CA089021-10/CA/NCI NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P01 CA120964-01A1/CA/NCI NIH HHS/ -- P01 GM047467/GM/NIGMS NIH HHS/ -- P01 GM047467-20/GM/NIGMS NIH HHS/ -- P01CA089021/CA/NCI NIH HHS/ -- P01GM047467/GM/NIGMS NIH HHS/ -- P30 CA006516/CA/NCI NIH HHS/ -- P30 CA006516-43S1/CA/NCI NIH HHS/ -- R01 AI078063/AI/NIAID NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- R01-GM56302/GM/NIGMS NIH HHS/ -- R21 CA128620/CA/NCI NIH HHS/ -- R21/R33 DK070299/DK/NIDDK NIH HHS/ -- R33 DK070299/DK/NIDDK NIH HHS/ -- R33 DK070299-03/DK/NIDDK NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- T32 CA009361/CA/NCI NIH HHS/ -- T32 CA009361-28/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 17;329(5998):1492-9. doi: 10.1126/science.1188015.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20847263" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Cell Line ; Cell Line, Tumor ; *Cell Proliferation ; Female ; Glucose/*metabolism ; Glyceric Acids/metabolism ; *Glycolysis ; Histidine/metabolism ; Humans ; Isoenzymes/metabolism ; Kinetics ; Male ; Mammary Neoplasms, Animal/metabolism ; Mice ; Neoplasms/*metabolism/pathology ; Phosphoenolpyruvate/metabolism ; Phosphoglycerate Mutase/*metabolism ; Phosphopyruvate Hydratase/metabolism ; Phosphorylation ; Prostatic Neoplasms/metabolism ; Pyruvate Kinase/*metabolism ; Pyruvic Acid/metabolism ; Recombinant Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2003-02-22
    Description: We have developed a proteomic approach for identifying phosphopeptide binding domains that modulate kinase-dependent signaling pathways. An immobilized library of partially degenerate phosphopeptides biased toward a particular protein kinase phosphorylation motif is used to isolate phospho-binding domains that bind to proteins phosphorylated by that kinase. Applying this approach to cyclin-dependent kinases (Cdks), we identified the polo-box domain (PBD) of the mitotic kinase polo-like kinase 1 (Plk1) as a specific phosphoserine (pSer) or phosphothreonine (pThr) binding domain and determined its optimal binding motif. This motif is present in known Plk1 substrates such as Cdc25, and an optimal phosphopeptide containing the motif disrupted PBD-substrate binding and localization of the PBD to centrosomes. This finding reveals how Plk1 can localize to specific sites within cells in response to Cdk phosphorylation at those sites and provides a structural mechanism for targeting the Plk1 kinase domain to its substrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elia, Andrew E H -- Cantley, Lewis C -- Yaffe, Michael B -- GM52981/GM/NIGMS NIH HHS/ -- GM56203/GM/NIGMS NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Feb 21;299(5610):1228-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12595692" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; Calorimetry ; Cell Cycle Proteins ; Centrosome/metabolism ; HeLa Cells ; Humans ; Ligands ; Mitosis ; Peptide Library ; Phosphopeptides/chemistry/*metabolism ; Phosphorylation ; Phosphoserine/*metabolism ; Phosphothreonine/*metabolism ; Point Mutation ; Protein Binding ; Protein Kinases/*chemistry/genetics/*metabolism ; *Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases ; Proteomics ; Proto-Oncogene Proteins ; Signal Transduction ; cdc25 Phosphatases/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2005-11-26
    Description: The Peutz-Jegher syndrome tumor-suppressor gene encodes a protein-threonine kinase, LKB1, which phosphorylates and activates AMPK [adenosine monophosphate (AMP)-activated protein kinase]. The deletion of LKB1 in the liver of adult mice resulted in a nearly complete loss of AMPK activity. Loss of LKB1 function resulted in hyperglycemia with increased gluconeogenic and lipogenic gene expression. In LKB1-deficient livers, TORC2, a transcriptional coactivator of CREB (cAMP response element-binding protein), was dephosphorylated and entered the nucleus, driving the expression of peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha), which in turn drives gluconeogenesis. Adenoviral small hairpin RNA (shRNA) for TORC2 reduced PGC-1alpha expression and normalized blood glucose levels in mice with deleted liver LKB1, indicating that TORC2 is a critical target of LKB1/AMPK signals in the regulation of gluconeogenesis. Finally, we show that metformin, one of the most widely prescribed type 2 diabetes therapeutics, requires LKB1 in the liver to lower blood glucose levels.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074427/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074427/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shaw, Reuben J -- Lamia, Katja A -- Vasquez, Debbie -- Koo, Seung-Hoi -- Bardeesy, Nabeel -- Depinho, Ronald A -- Montminy, Marc -- Cantley, Lewis C -- CA84313/CA/NCI NIH HHS/ -- GM056203/GM/NIGMS NIH HHS/ -- GM37828/GM/NIGMS NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- R01 GM056203-09/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Dec 9;310(5754):1642-6. Epub 2005 Nov 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA. shaw@salk.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16308421" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases ; Animals ; Blood Glucose/analysis ; Diabetes Mellitus, Type 2/drug therapy/metabolism ; Enzyme Activation ; Female ; Gene Expression Regulation ; Gluconeogenesis/genetics ; Glucose/*metabolism ; HeLa Cells ; Homeostasis ; Humans ; Hyperglycemia/drug therapy/metabolism ; Hypoglycemic Agents/*pharmacology/therapeutic use ; Lipogenesis/genetics ; Liver/enzymology/*metabolism ; Male ; Metformin/*pharmacology/therapeutic use ; Mice ; Mice, Obese ; Multienzyme Complexes/*metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Signal Transduction ; Trans-Activators/genetics/metabolism ; Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1993-11-05
    Description: The shc oncogene product is tyrosine-phosphorylated by Src family kinases and after its phosphorylation interacts with the adapter protein Grb2 (growth factor receptor-bound protein 2). In turn, Grb2 interacts with the guanine nucleotide exchange factor for Ras, mSOS. Because several Src family kinases participate in T cell activation and Shc functions upstream of Ras, the role of Shc in T cell signaling was examined. Shc was phosphorylated on tyrosine after activation through the T cell receptor (TCR), and subsequently interacted with Grb2 and mSOS. The Src homology region 2 (SH2) domain of Shc directly interacted with the tyrosine-phosphorylated zeta chain of the TCR. Thus, Shc may couple TCR activation to the Ras signaling pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ravichandran, K S -- Lee, K K -- Songyang, Z -- Cantley, L C -- Burn, P -- Burakoff, S J -- AI-17258/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 5;262(5135):902-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235613" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; Cell Line ; GRB2 Adaptor Protein ; GTP-Binding Proteins/metabolism ; Humans ; Hybridomas ; *Lymphocyte Activation ; Membrane Proteins/*metabolism ; Molecular Sequence Data ; Oncogene Proteins/*metabolism ; Phosphorylation ; Proteins/metabolism ; Receptor, Epidermal Growth Factor/metabolism ; Receptors, Antigen, T-Cell/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Son of Sevenless Proteins ; T-Lymphocytes/*immunology/metabolism ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-07-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Jennifer Y -- Engelman, Jeffrey A -- Cantley, Lewis C -- R01 GM041890/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Jul 13;317(5835):206-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Harvard Medical School and Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17626872" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/pharmacology/therapeutic use ; Catalytic Domain ; Cell Membrane/enzymology ; Cell Proliferation ; Cell Survival ; Dimerization ; Enzyme Inhibitors/pharmacology/therapeutic use ; Humans ; Mutation ; Neoplasms/drug therapy/*genetics ; Phosphatidylinositol 3-Kinases/antagonists & ; inhibitors/chemistry/*genetics/*metabolism ; Phosphorylation ; Protein Structure, Tertiary ; Protein Subunits ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...