ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Analytical Chemistry and Spectroscopy  (512)
  • Mice  (452)
  • SOLAR PHYSICS
  • 2000-2004  (325)
  • 1980-1984  (963)
Collection
Years
Year
  • 11
    Publication Date: 2002-02-09
    Description: The protein-protein interaction between leukocyte functional antigen-1 (LFA-1) and intercellular adhesion molecule-1 (ICAM-1) is critical to lymphocyte and immune system function. Here, we report on the transfer of the contiguous, nonlinear epitope of ICAM-1, responsible for its association with LFA-1, to a small-molecule framework. These LFA-1 antagonists bound LFA-1, blocked binding of ICAM-1, and inhibited a mixed lymphocyte reaction (MLR) with potency significantly greater than that of cyclosporine A. Furthermore, in comparison to an antibody to LFA-1, they exhibited significant anti-inflammatory effects in vivo. These results demonstrate the utility of small-molecule mimics of nonlinear protein epitopes and the protein epitopes themselves as leads in the identification of novel pharmaceutical agents.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gadek, T R -- Burdick, D J -- McDowell, R S -- Stanley, M S -- Marsters, J C Jr -- Paris, K J -- Oare, D A -- Reynolds, M E -- Ladner, C -- Zioncheck, K A -- Lee, W P -- Gribling, P -- Dennis, M S -- Skelton, N J -- Tumas, D B -- Clark, K R -- Keating, S M -- Beresini, M H -- Tilley, J W -- Presta, L G -- Bodary, S C -- New York, N.Y. -- Science. 2002 Feb 8;295(5557):1086-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioorganic Chemistry, Genentech, One DNA Way, South San Francisco, CA 94080, USA. trg@gene.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11834839" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Anti-Inflammatory Agents, Non-Steroidal/chemical ; synthesis/chemistry/metabolism/pharmacology ; Cyclosporine/pharmacology ; Dermatitis, Irritant/drug therapy ; Dinitrofluorobenzene ; Drug Design ; Enzyme-Linked Immunosorbent Assay ; Epitopes ; Female ; Humans ; Immunoglobulin Fab Fragments/immunology/pharmacology ; Immunosuppressive Agents/chemical synthesis/chemistry/metabolism/*pharmacology ; Intercellular Adhesion Molecule-1/chemistry/*immunology/*metabolism ; Lymphocyte Culture Test, Mixed ; Lymphocyte Function-Associated Antigen-1/immunology/*metabolism ; Mice ; Mice, Inbred BALB C ; Molecular Mimicry ; Mutagenesis ; Protein Structure, Secondary ; Structure-Activity Relationship ; Thiophenes/*chemical synthesis/chemistry/metabolism/*pharmacology ; beta-Alanine/analogs & derivatives/*chemical ; synthesis/chemistry/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2000-05-08
    Description: The c-Jun NH2-terminal kinase (JNK) is activated when cells are exposed to ultraviolet (UV) radiation. However, the functional consequence of JNK activation in UV-irradiated cells has not been established. It is shown here that JNK is required for UV-induced apoptosis in primary murine embryonic fibroblasts. Fibroblasts with simultaneous targeted disruptions of all the functional Jnk genes were protected against UV-stimulated apoptosis. The absence of JNK caused a defect in the mitochondrial death signaling pathway, including the failure to release cytochrome c. These data indicate that mitochondria are influenced by proapoptotic signal transduction through the JNK pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tournier, C -- Hess, P -- Yang, D D -- Xu, J -- Turner, T K -- Nimnual, A -- Bar-Sagi, D -- Jones, S N -- Flavell, R A -- Davis, R J -- New York, N.Y. -- Science. 2000 May 5;288(5467):870-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Program in Molecular Medicine, Department of Biochemistry & Molecular Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10797012" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptotic Protease-Activating Factor 1 ; Caspase 3 ; Caspase 9 ; Caspases/metabolism ; Cell Count ; Cell Division ; Cells, Cultured ; Cytochrome c Group/*metabolism ; DNA Fragmentation ; Enzyme Activation ; Fibroblasts ; Gene Targeting ; JNK Mitogen-Activated Protein Kinases ; MAP Kinase Signaling System ; Methyl Methanesulfonate/pharmacology ; Mice ; Mitochondria/metabolism ; Mitogen-Activated Protein Kinases/genetics/*metabolism ; NF-kappa B/metabolism ; *Protein-Serine-Threonine Kinases ; Proteins/metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-akt ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Tumor Suppressor Protein p53/metabolism ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2001-03-17
    Description: The role of NF-kappaB-inducing kinase (NIK) in cytokine signaling remains controversial. To identify the physiologic functions of NIK, we disrupted the NIK locus by gene targeting. Although NIK-/- mice displayed abnormalities in both lymphoid tissue development and antibody responses, NIK-/- cells manifested normal NF-kappaB DNA binding activity when treated with a variety of cytokines, including tumor necrosis factor (TNF), interleukin-1 (IL-1), and lymphotoxin-beta (LTbeta). However, NIK was selectively required for gene transcription induced through ligation of LTbeta receptor but not TNF receptors. These results reveal that NIK regulates the transcriptional activity of NF-kappaB in a receptor-restricted manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yin, L -- Wu, L -- Wesche, H -- Arthur, C D -- White, J M -- Goeddel, D V -- Schreiber, R D -- New York, N.Y. -- Science. 2001 Mar 16;291(5511):2162-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Immunology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11251123" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal ; B-Lymphocytes/metabolism ; Cells, Cultured ; DNA/metabolism ; Fibroblasts/metabolism ; Gene Targeting ; Genes, Reporter ; Interleukin-1/metabolism/pharmacology ; Ligands ; Lymphoid Tissue/abnormalities ; Lymphotoxin beta Receptor ; Mice ; Mice, Inbred C57BL ; NF-kappa B/genetics/*metabolism ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Receptors, Tumor Necrosis Factor/immunology/*metabolism ; Signal Transduction ; *Transcription, Genetic ; Tumor Necrosis Factor-alpha/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2001-11-27
    Description: Multiple sclerosis is a demyelinating disease, characterized by inflammation in the brain and spinal cord, possibly due to autoimmunity. Large-scale sequencing of cDNA libraries, derived from plaques dissected from brains of patients with multiple sclerosis (MS), indicated an abundance of transcripts for osteopontin (OPN). Microarray analysis of spinal cords from rats paralyzed by experimental autoimmune encephalomyelitis (EAE), a model of MS, also revealed increased OPN transcripts. Osteopontin-deficient mice were resistant to progressive EAE and had frequent remissions, and myelin-reactive T cells in OPN-/- mice produced more interleukin 10 and less interferon-gamma than in OPN+/+ mice. Osteopontin thus appears to regulate T helper cell-1 (TH1)-mediated demyelinating disease, and it may offer a potential target in blocking development of progressive MS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chabas, D -- Baranzini, S E -- Mitchell, D -- Bernard, C C -- Rittling, S R -- Denhardt, D T -- Sobel, R A -- Lock, C -- Karpuj, M -- Pedotti, R -- Heller, R -- Oksenberg, J R -- Steinman, L -- New York, N.Y. -- Science. 2001 Nov 23;294(5547):1731-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology and Neurological Sciences, Beckman Center for Molecular Medicine, B002, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11721059" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Encephalomyelitis, Autoimmune, ; Experimental/genetics/immunology/metabolism/pathology ; Expressed Sequence Tags ; Gene Deletion ; *Gene Expression Profiling ; Gene Library ; Humans ; Inflammation/genetics/immunology/metabolism/pathology ; Interferon-gamma/genetics/metabolism ; Interleukin-10/genetics/metabolism ; Lymphocyte Activation ; Mice ; Mice, Knockout ; Multiple Sclerosis/*genetics/immunology/*metabolism/pathology ; Oligonucleotide Array Sequence Analysis ; Osteopontin ; RNA, Messenger/genetics/metabolism ; Rats ; Sialoglycoproteins/deficiency/genetics/*metabolism ; Spinal Cord/metabolism ; Th1 Cells/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2001-10-27
    Description: Skeletal muscle adapts to decreases in activity and load by undergoing atrophy. To identify candidate molecular mediators of muscle atrophy, we performed transcript profiling. Although many genes were up-regulated in a single rat model of atrophy, only a small subset was universal in all atrophy models. Two of these genes encode ubiquitin ligases: Muscle RING Finger 1 (MuRF1), and a gene we designate Muscle Atrophy F-box (MAFbx), the latter being a member of the SCF family of E3 ubiquitin ligases. Overexpression of MAFbx in myotubes produced atrophy, whereas mice deficient in either MAFbx or MuRF1 were found to be resistant to atrophy. These proteins are potential drug targets for the treatment of muscle atrophy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bodine, S C -- Latres, E -- Baumhueter, S -- Lai, V K -- Nunez, L -- Clarke, B A -- Poueymirou, W T -- Panaro, F J -- Na, E -- Dharmarajan, K -- Pan, Z Q -- Valenzuela, D M -- DeChiara, T M -- Stitt, T N -- Yancopoulos, G D -- Glass, D J -- New York, N.Y. -- Science. 2001 Nov 23;294(5547):1704-8. Epub 2001 Oct 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591-6707, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11679633" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cloning, Molecular ; Creatine Kinase/genetics ; Creatine Kinase, MM Form ; *DNA-Binding Proteins ; Gene Deletion ; *Gene Expression Profiling ; Hindlimb Suspension ; Humans ; Immobilization ; Isoenzymes/genetics ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Muscle Denervation ; Muscle Proteins/genetics ; Muscle, Skeletal/growth & development/*metabolism/pathology/physiopathology ; Muscular Atrophy/*genetics/pathology/physiopathology ; MyoD Protein/genetics ; Myogenic Regulatory Factor 5 ; Myogenin/genetics ; Peptide Synthases/chemistry/deficiency/genetics/*metabolism ; Phenotype ; Protein Binding ; RNA, Messenger/analysis/genetics ; Rats ; Rats, Sprague-Dawley ; SKP Cullin F-Box Protein Ligases ; *Trans-Activators ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2002-02-02
    Description: The hypoxia-inducible factors (HIFs) 1alpha and 2alpha are key mammalian transcription factors that exhibit dramatic increases in both protein stability and intrinsic transcriptional potency during low-oxygen stress. This increased stability is due to the absence of proline hydroxylation, which in normoxia promotes binding of HIF to the von Hippel-Lindau (VHL tumor suppressor) ubiquitin ligase. We now show that hypoxic induction of the COOH-terminal transactivation domain (CAD) of HIF occurs through abrogation of hydroxylation of a conserved asparagine in the CAD. Inhibitors of Fe(II)- and 2-oxoglutarate-dependent dioxygenases prevented hydroxylation of the Asn, thus allowing the CAD to interact with the p300 transcription coactivator. Replacement of the conserved Asn by Ala resulted in constitutive p300 interaction and strong transcriptional activity. Full induction of HIF-1alpha and -2alpha, therefore, relies on the abrogation of both Pro and Asn hydroxylation, which during normoxia occur at the degradation and COOH-terminal transactivation domains, respectively.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lando, David -- Peet, Daniel J -- Whelan, Dean A -- Gorman, Jeffrey J -- Whitelaw, Murray L -- New York, N.Y. -- Science. 2002 Feb 1;295(5556):858-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biosciences (Biochemistry), Adelaide University, SA 5005, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11823643" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Asparagine/*metabolism ; Basic Helix-Loop-Helix Transcription Factors ; Cell Hypoxia/*physiology ; Cell Line ; Humans ; Hydroxylation ; Hypoxia-Inducible Factor 1, alpha Subunit ; Mass Spectrometry ; Mice ; Mixed Function Oxygenases/metabolism ; Molecular Sequence Data ; Mutation ; Oxygen/*physiology ; Proline/metabolism ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Trans-Activators/chemistry/genetics/*metabolism ; Transcription Factors/chemistry/genetics/*metabolism ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2000-07-15
    Description: p53 plays an essential pro-apoptotic role, a function thought to be shared with its family members p73 and p63. Here, we show that p73 is primarily present in developing neurons as a truncated isoform whose levels are dramatically decreased when sympathetic neurons apoptose after nerve growth factor (NGF) withdrawal. Increased expression of truncated p73 rescues these neurons from apoptosis induced by NGF withdrawal or p53 overexpression. In p73-/- mice, all isoforms of p73 are deleted and the apoptosis of developing sympathetic neurons is greatly enhanced. Thus, truncated p73 is an essential anti-apoptotic protein in neurons, serving to counteract the pro-apoptotic function of p53.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pozniak, C D -- Radinovic, S -- Yang, A -- McKeon, F -- Kaplan, D R -- Miller, F D -- New York, N.Y. -- Science. 2000 Jul 14;289(5477):304-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neuronal Survival, Brain Tumor Research Center, Montreal Neurological Institute, McGill University, Montreal, Canada H3A 2B4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10894779" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae/genetics ; Animals ; Apoptosis/*physiology ; Cells, Cultured ; DNA-Binding Proteins/biosynthesis/chemistry/*physiology ; Escherichia coli ; Genes, Tumor Suppressor ; Humans ; Mice ; Mice, Inbred BALB C ; Nerve Growth Factor/pharmacology ; Neurons/*physiology ; Nuclear Proteins/biosynthesis/chemistry/*physiology ; Protein Isoforms/biosynthesis/chemistry/physiology ; Recombinant Proteins ; Sympathetic Nervous System/cytology/*physiology ; Tumor Suppressor Protein p53/antagonists & inhibitors/*physiology ; Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2002-09-07
    Description: Previous studies have revealed that autoantibodies, complement components, and Fc receptors each participate in the pathogenesis of erosive arthritis in K/BxN mice. However, it is not known which cellular populations are responsive to these inflammatory signals. We find that two strains of mice deficient in mast cells, W/Wv and Sl/Sld, were resistant to development of joint inflammation and that susceptibility was restored in the W/Wv strain by mast cell engraftment. Thus, mast cells may function as a cellular link between autoantibodies, soluble mediators, and other effector populations in inflammatory arthritis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, David M -- Friend, Daniel S -- Gurish, Michael F -- Benoist, Christophe -- Mathis, Diane -- Brenner, Michael B -- 1R01 AR/AI46580-01/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Sep 6;297(5587):1689-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12215644" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arthritis/*immunology/pathology ; Autoantibodies/*immunology ; Blood Transfusion ; Bone Marrow Transplantation ; Cell Degranulation ; Joints/*immunology/pathology ; Male ; Mast Cells/*immunology/transplantation ; Mice ; Mice, Inbred C57BL
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2000-09-23
    Description: Insulin receptors (IRs) and insulin signaling proteins are widely distributed throughout the central nervous system (CNS). To study the physiological role of insulin signaling in the brain, we created mice with a neuron-specific disruption of the IR gene (NIRKO mice). Inactivation of the IR had no impact on brain development or neuronal survival. However, female NIRKO mice showed increased food intake, and both male and female mice developed diet-sensitive obesity with increases in body fat and plasma leptin levels, mild insulin resistance, elevated plasma insulin levels, and hypertriglyceridemia. NIRKO mice also exhibited impaired spermatogenesis and ovarian follicle maturation because of hypothalamic dysregulation of luteinizing hormone. Thus, IR signaling in the CNS plays an important role in regulation of energy disposal, fuel metabolism, and reproduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bruning, J C -- Gautam, D -- Burks, D J -- Gillette, J -- Schubert, M -- Orban, P C -- Klein, R -- Krone, W -- Muller-Wieland, D -- Kahn, C R -- DK31036/DK/NIDDK NIH HHS/ -- DK55326-01A2/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2000 Sep 22;289(5487):2122-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Klinik II und Poliklinik fur Innere Medizin and Center of Molecular Medicine (ZMMK) der Universitat zu Koln, Joseph Stelzmann Strasse 9, 50931 Cologne, Germany. jens.bruening@uni-koeln.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11000114" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue ; Animals ; Blood Glucose/analysis ; *Body Weight ; Brain/*metabolism ; Eating ; Female ; Hypertriglyceridemia/etiology ; Insulin/blood/*physiology ; Insulin Resistance ; Leptin/blood ; Leuprolide/pharmacology ; Luteinizing Hormone/blood ; Male ; Mice ; Mice, Knockout ; Neurons/metabolism ; Obesity/etiology ; Ovarian Follicle/physiology ; Receptor, Insulin/genetics/*physiology ; *Reproduction ; Sex Characteristics ; Signal Transduction ; Spermatogenesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2003-10-18
    Description: The Rho guanosine triphosphatases (GTPases) Rac1 and Rac2 are critical signaling regulators in mammalian cells. The deletion of both Rac1 and Rac2 murine alleles leads to a massive egress of hematopoietic stem/progenitor cells (HSC/Ps) into the blood from the marrow, whereas Rac1-/- but not Rac2-/- HSC/Ps fail to engraft in the bone marrow of irradiated recipient mice. In contrast, Rac2, but not Rac1, regulates superoxide production and directed migration in neutrophils, and in each cell type, the two GTPases play distinct roles in actin organization, cell survival, and proliferation. Thus, Rac1 and Rac2 regulate unique aspects of hematopoietic development and function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gu, Yi -- Filippi, Marie-Dominique -- Cancelas, Jose A -- Siefring, Jamie E -- Williams, Emily P -- Jasti, Aparna C -- Harris, Chad E -- Lee, Andrew W -- Prabhakar, Rethinasamy -- Atkinson, Simon J -- Kwiatkowski, David J -- Williams, David A -- DK62757/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 17;302(5644):445-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14564009" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Apoptosis ; Bone Marrow Transplantation ; Cell Adhesion ; Cell Cycle ; Cell Movement ; Cell Size ; Colony-Forming Units Assay ; Cyclin D1/metabolism ; Fibronectins/metabolism ; Hematopoiesis ; Hematopoietic Stem Cell Mobilization ; Hematopoietic Stem Cell Transplantation ; Hematopoietic Stem Cells/*physiology ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Mitogen-Activated Protein Kinases/metabolism ; Neutrophils/*physiology ; *Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-akt ; Recombination, Genetic ; Signal Transduction ; Stem Cell Factor/pharmacology ; Superoxides/metabolism ; rac GTP-Binding Proteins/genetics/*metabolism ; rac1 GTP-Binding Protein/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...