ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2000-12-16
    Description: The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Riechmann, J L -- Heard, J -- Martin, G -- Reuber, L -- Jiang, C -- Keddie, J -- Adam, L -- Pineda, O -- Ratcliffe, O J -- Samaha, R R -- Creelman, R -- Pilgrim, M -- Broun, P -- Zhang, J Z -- Ghandehari, D -- Sherman, B K -- Yu, G -- New York, N.Y. -- Science. 2000 Dec 15;290(5499):2105-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mendel Biotechnology, 21375 Cabot Boulevard, Hayward, CA 94545, USA. jriechmann@mendelbio.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11118137" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Arabidopsis/chemistry/*genetics ; Caenorhabditis elegans/chemistry/*genetics ; DNA/metabolism ; Drosophila melanogaster/chemistry/*genetics ; Eukaryotic Cells ; Evolution, Molecular ; Gene Duplication ; *Genome ; Genome, Plant ; Protein Binding ; Protein Structure, Tertiary ; Saccharomyces cerevisiae/chemistry/*genetics ; Transcription Factors/chemistry/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-03-10
    Description: beta-Lactamase and penicillin-binding protein 2a mediate staphylococcal resistance to beta-lactam antibiotics, which are otherwise highly clinically effective. Production of these inducible proteins is regulated by a signal-transducing integral membrane protein and a transcriptional repressor. The signal transducer is a fusion protein with penicillin-binding and zinc metalloprotease domains. The signal for protein expression is transmitted by site-specific proteolytic cleavage of both the transducer, which autoactivates, and the repressor, which is inactivated, unblocking gene transcription. Compounds that disrupt this regulatory pathway could restore the activity of beta-lactam antibiotics against drug-resistant strains of staphylococci.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, H Z -- Hackbarth, C J -- Chansky, K M -- Chambers, H F -- AI4005804/AI/NIAID NIH HHS/ -- AI46610/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 9;291(5510):1962-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Infectious Diseases, San Francisco General Hospital, Department of Medicine, University of California at San Francisco, 1001 Potrero Avenue, San Francisco, CA 94110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11239156" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Anti-Bacterial Agents/metabolism/pharmacology ; Bacterial Proteins/chemistry/metabolism ; Carrier Proteins/chemistry/genetics/*metabolism ; Catalysis ; Cell Membrane/metabolism ; Cloning, Molecular ; DNA-Binding Proteins/chemistry/metabolism ; Genes, Regulator ; Metalloendopeptidases/chemistry/metabolism ; Mutagenesis, Site-Directed ; *Penicillin-Binding Proteins ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/chemistry/genetics/*metabolism ; *Signal Transduction ; Staphylococcus aureus/*drug effects/genetics/*metabolism ; Transformation, Bacterial ; *beta-Lactam Resistance ; beta-Lactamases/*biosynthesis ; beta-Lactams
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-08-21
    Description: Haemostasis in the arteriolar circulation mediated by von Willebrand factor (VWF) binding to platelets is an example of an adhesive interaction that must withstand strong hydrodynamic forces acting on cells. VWF is a concatenated, multifunctional protein that has binding sites for platelets as well as subendothelial collagen. Binding of the A1 domain in VWF to the glycoprotein Ib alpha subunit (GPIbalpha) on the surface of platelets mediates crosslinking of platelets to one another and the formation of a platelet plug for arterioles. The importance of VWF is illustrated by its mutation in von Willebrand disease, a bleeding diathesis. Here, we describe a novel mechanochemical specialization of the A1-GPIbalpha bond for force-resistance. We have developed a method that enables, for the first time, repeated measurements of the binding and unbinding of a receptor and ligand in a single molecule (ReaLiSM). We demonstrate two states of the receptor-ligand bond, that is, a flex-bond. One state is seen at low force; a second state begins to engage at 10 pN with a approximately 20-fold longer lifetime and greater force resistance. The lifetimes of the two states, how force exponentiates lifetime, and the kinetics of switching between the two states are all measured. For the first time, single-molecule measurements on this system are in agreement with bulk phase measurements. The results have important implications not only for how platelets bound to VWF are able to resist force to plug arterioles, but also how increased flow activates platelet plug formation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117310/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117310/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jongseong -- Zhang, Cheng-Zhong -- Zhang, Xiaohui -- Springer, Timothy A -- HL-48675/HL/NHLBI NIH HHS/ -- P01 HL048675/HL/NHLBI NIH HHS/ -- England -- Nature. 2010 Aug 19;466(7309):992-5. doi: 10.1038/nature09295.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immune Disease Institute, Children's Hospital Boston and Department of Pathology, Harvard Medical School, 3 Blackfan Circle, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20725043" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arterioles/cytology/*physiology ; Blood Coagulation/*physiology ; Blood Platelets/chemistry/cytology/*metabolism ; Cell Line ; Hemorheology ; Humans ; Kinetics ; Ligands ; Membrane Glycoproteins/chemistry/*metabolism ; Mice ; Models, Chemical ; Models, Molecular ; Platelet Glycoprotein GPIb-IX Complex ; Protein Binding ; Protein Structure, Tertiary ; Tensile Strength ; von Willebrand Factor/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-01-28
    Description: The spread of H5N1 avian influenza viruses (AIVs) from China to Europe has raised global concern about their potential to infect humans and cause a pandemic. In spite of their substantial threat to human health, remarkably little AIV whole-genome information is available. We report here a preliminary analysis of the first large-scale sequencing of AIVs, including 2196 AIV genes and 169 complete genomes. We combine this new information with public AIV data to identify new gene alleles, persistent genotypes, compensatory mutations, and a potential virulence determinant.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Obenauer, John C -- Denson, Jackie -- Mehta, Perdeep K -- Su, Xiaoping -- Mukatira, Suraj -- Finkelstein, David B -- Xu, Xiequn -- Wang, Jinhua -- Ma, Jing -- Fan, Yiping -- Rakestraw, Karen M -- Webster, Robert G -- Hoffmann, Erich -- Krauss, Scott -- Zheng, Jie -- Zhang, Ziwei -- Naeve, Clayton W -- AI95357/AI/NIAID NIH HHS/ -- CA 21765/CA/NCI NIH HHS/ -- R01 GM061739/GM/NIGMS NIH HHS/ -- R01 GM069916/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Mar 17;311(5767):1576-80. Epub 2006 Jan 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16439620" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds/virology ; Computational Biology ; *Genes, Viral ; Genome, Viral ; Humans ; Influenza A Virus, H1N1 Subtype/genetics ; Influenza A Virus, H2N2 Subtype/genetics ; Influenza A Virus, H3N2 Subtype/genetics ; Influenza A Virus, H3N8 Subtype/genetics ; Influenza A Virus, H5N1 Subtype/chemistry/*genetics/pathogenicity ; Influenza A Virus, H5N2 Subtype/genetics ; Influenza A Virus, H7N7 Subtype/genetics ; Influenza A Virus, H9N2 Subtype/genetics ; Influenza A virus/chemistry/*genetics/isolation & purification/pathogenicity ; Influenza in Birds/virology ; Influenza, Human/virology ; Molecular Sequence Data ; Mutation ; Phylogeny ; RNA, Viral/genetics ; Reassortant Viruses/genetics ; Sequence Analysis, DNA ; Viral Nonstructural Proteins/*chemistry/genetics ; Viral Proteins/chemistry/genetics ; Virulence Factors/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-10-13
    Description: Human cancer is caused by the accumulation of mutations in oncogenes and tumor suppressor genes. To catalog the genetic changes that occur during tumorigenesis, we isolated DNA from 11 breast and 11 colorectal tumors and determined the sequences of the genes in the Reference Sequence database in these samples. Based on analysis of exons representing 20,857 transcripts from 18,191 genes, we conclude that the genomic landscapes of breast and colorectal cancers are composed of a handful of commonly mutated gene "mountains" and a much larger number of gene "hills" that are mutated at low frequency. We describe statistical and bioinformatic tools that may help identify mutations with a role in tumorigenesis. These results have implications for understanding the nature and heterogeneity of human cancers and for using personal genomics for tumor diagnosis and therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wood, Laura D -- Parsons, D Williams -- Jones, Sian -- Lin, Jimmy -- Sjoblom, Tobias -- Leary, Rebecca J -- Shen, Dong -- Boca, Simina M -- Barber, Thomas -- Ptak, Janine -- Silliman, Natalie -- Szabo, Steve -- Dezso, Zoltan -- Ustyanksky, Vadim -- Nikolskaya, Tatiana -- Nikolsky, Yuri -- Karchin, Rachel -- Wilson, Paul A -- Kaminker, Joshua S -- Zhang, Zemin -- Croshaw, Randal -- Willis, Joseph -- Dawson, Dawn -- Shipitsin, Michail -- Willson, James K V -- Sukumar, Saraswati -- Polyak, Kornelia -- Park, Ben Ho -- Pethiyagoda, Charit L -- Pant, P V Krishna -- Ballinger, Dennis G -- Sparks, Andrew B -- Hartigan, James -- Smith, Douglas R -- Suh, Erick -- Papadopoulos, Nickolas -- Buckhaults, Phillip -- Markowitz, Sanford D -- Parmigiani, Giovanni -- Kinzler, Kenneth W -- Velculescu, Victor E -- Vogelstein, Bert -- CA 43460/CA/NCI NIH HHS/ -- CA 57345/CA/NCI NIH HHS/ -- CA109274/CA/NCI NIH HHS/ -- CA112828/CA/NCI NIH HHS/ -- CA121113/CA/NCI NIH HHS/ -- CA62924/CA/NCI NIH HHS/ -- GM070219/GM/NIGMS NIH HHS/ -- GM07309/GM/NIGMS NIH HHS/ -- P30-CA43703/CA/NCI NIH HHS/ -- RR017698/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 16;318(5853):1108-13. Epub 2007 Oct 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ludwig Center for Cancer Genetics and Therapeutics and Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17932254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/*genetics/metabolism ; Cell Line ; Chromosome Mapping ; Colorectal Neoplasms/*genetics/metabolism ; Computational Biology ; DNA, Neoplasm ; Databases, Genetic ; Genes, Neoplasm ; Genome, Human ; Humans ; Metabolic Networks and Pathways/genetics ; Mice ; Mutation ; Neoplasm Proteins/genetics/metabolism ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-11-10
    Description: Production of type I interferon (IFN-I) is a critical host defense triggered by pattern-recognition receptors (PRRs) of the innate immune system. Deubiquitinating enzyme A (DUBA), an ovarian tumor domain-containing deubiquitinating enzyme, was discovered in a small interfering RNA-based screen as a regulator of IFN-I production. Reduction of DUBA augmented the PRR-induced IFN-I response, whereas ectopic expression of DUBA had the converse effect. DUBA bound tumor necrosis factor receptor-associated factor 3 (TRAF3), an adaptor protein essential for the IFN-I response. TRAF3 is an E3 ubiquitin ligase that preferentially assembled lysine-63-linked polyubiquitin chains. DUBA selectively cleaved the lysine-63-linked polyubiquitin chains on TRAF3, resulting in its dissociation from the downstream signaling complex containing TANK-binding kinase 1. A discrete ubiquitin interaction motif within DUBA was required for efficient deubiquitination of TRAF3 and optimal suppression of IFN-I. Our data identify DUBA as a negative regulator of innate immune responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kayagaki, Nobuhiko -- Phung, Qui -- Chan, Salina -- Chaudhari, Ruchir -- Quan, Casey -- O'Rourke, Karen M -- Eby, Michael -- Pietras, Eric -- Cheng, Genhong -- Bazan, J Fernando -- Zhang, Zemin -- Arnott, David -- Dixit, Vishva M -- New York, N.Y. -- Science. 2007 Dec 7;318(5856):1628-32. Epub 2007 Nov 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17991829" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Cell Line ; Endopeptidases/*metabolism ; Humans ; Interferon Type I/*biosynthesis/genetics ; Interferon-alpha/genetics ; Molecular Sequence Data ; NF-kappa B/metabolism ; Protein Structure, Tertiary ; RNA, Small Interfering ; Signal Transduction ; TNF Receptor-Associated Factor 3/metabolism ; Toll-Like Receptor 3/metabolism ; Ubiquitin/metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-02-03
    Description: Acetylation of histone H3 lysine 56 (H3-K56) occurs in S phase, and cells lacking H3-K56 acetylation are sensitive to DNA-damaging agents. However, the histone acetyltransferase (HAT) that catalyzes global H3-K56 acetylation has not been found. Here we show that regulation of Ty1 transposition gene product 109 (Rtt109) is an H3-K56 HAT. Cells lacking Rtt109 or expressing rtt109 mutants with alterations at a conserved aspartate residue lose H3-K56 acetylation and exhibit increased sensitivity toward genotoxic agents, as well as elevated levels of spontaneous chromosome breaks. Thus, Rtt109, which shares no sequence homology with any other known HATs, is a unique HAT that acetylates H3-K56.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, Junhong -- Zhou, Hui -- Horazdovsky, Bruce -- Zhang, Kangling -- Xu, Rui-Ming -- Zhang, Zhiguo -- New York, N.Y. -- Science. 2007 Feb 2;315(5812):653-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17272723" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; Camptothecin/pharmacology ; Catalytic Domain ; Chromosome Breakage ; DNA Damage ; *DNA Replication ; Histone Acetyltransferases/chemistry/genetics/*metabolism ; Histones/*metabolism ; Hydroxyurea/pharmacology ; Lysine/*metabolism ; Methyl Methanesulfonate/pharmacology ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Mutagens/pharmacology ; Mutation ; Recombinant Proteins/metabolism ; S Phase ; Saccharomyces cerevisiae/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism ; Sequence Homology, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-03-03
    Description: Mammals have single-rowed dentitions, whereas many nonmammalian vertebrates have teeth in multiple rows. Neither the molecular mechanism regulating iterative tooth initiation nor that restricting mammalian tooth development in one row is known. We found that mice lacking the transcription factor odd-skipped related-2 (Osr2) develop supernumerary teeth lingual to their molars because of expansion of the odontogenic field. Osr2 was expressed in a lingual-to-buccal gradient and restricted expression of bone morphogenetic protein 4 (Bmp4), an essential odontogenic signal, in the developing tooth mesenchyme. Expansion of odontogenic field in Osr2-deficient mice required Msx1, a feedback activator of Bmp4 expression. These findings suggest that the Bmp4-Msx1 pathway propagates mesenchymal activation for sequential tooth induction and that spatial modulation of this pathway provides a mechanism for patterning vertebrate dentition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2650836/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2650836/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Zunyi -- Lan, Yu -- Chai, Yang -- Jiang, Rulang -- R01 DE013681/DE/NIDCR NIH HHS/ -- R01 DE013681-06/DE/NIDCR NIH HHS/ -- R01 DE013681-07/DE/NIDCR NIH HHS/ -- R01 DE013681-08/DE/NIDCR NIH HHS/ -- R01 DE013681-09/DE/NIDCR NIH HHS/ -- R01DE013681/DE/NIDCR NIH HHS/ -- T32DE007202/DE/NIDCR NIH HHS/ -- New York, N.Y. -- Science. 2009 Feb 27;323(5918):1232-4. doi: 10.1126/science.1167418.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Oral Biology and Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19251632" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Morphogenetic Protein 4/metabolism ; Dentition ; Epithelium/embryology/metabolism ; Gene Expression ; Gene Expression Profiling ; MSX1 Transcription Factor/genetics/*metabolism ; Mesoderm/embryology/metabolism ; Mice ; Molar/embryology ; Morphogenesis ; Mutation ; *Odontogenesis ; Tooth Germ/embryology/metabolism ; Tooth, Supernumerary/*embryology ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-13
    Description: Antibody VRC01 is a human immunoglobulin that neutralizes about 90% of HIV-1 isolates. To understand how such broadly neutralizing antibodies develop, we used x-ray crystallography and 454 pyrosequencing to characterize additional VRC01-like antibodies from HIV-1-infected individuals. Crystal structures revealed a convergent mode of binding for diverse antibodies to the same CD4-binding-site epitope. A functional genomics analysis of expressed heavy and light chains revealed common pathways of antibody-heavy chain maturation, confined to the IGHV1-2*02 lineage, involving dozens of somatic changes, and capable of pairing with different light chains. Broadly neutralizing HIV-1 immunity associated with VRC01-like antibodies thus involves the evolution of antibodies to a highly affinity-matured state required to recognize an invariant viral structure, with lineages defined from thousands of sequences providing a genetic roadmap of their development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516815/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516815/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Xueling -- Zhou, Tongqing -- Zhu, Jiang -- Zhang, Baoshan -- Georgiev, Ivelin -- Wang, Charlene -- Chen, Xuejun -- Longo, Nancy S -- Louder, Mark -- McKee, Krisha -- O'Dell, Sijy -- Perfetto, Stephen -- Schmidt, Stephen D -- Shi, Wei -- Wu, Lan -- Yang, Yongping -- Yang, Zhi-Yong -- Yang, Zhongjia -- Zhang, Zhenhai -- Bonsignori, Mattia -- Crump, John A -- Kapiga, Saidi H -- Sam, Noel E -- Haynes, Barton F -- Simek, Melissa -- Burton, Dennis R -- Koff, Wayne C -- Doria-Rose, Nicole A -- Connors, Mark -- NISC Comparative Sequencing Program -- Mullikin, James C -- Nabel, Gary J -- Roederer, Mario -- Shapiro, Lawrence -- Kwong, Peter D -- Mascola, John R -- 5U19 AI 067854-06/AI/NIAID NIH HHS/ -- R01 AI033292/AI/NIAID NIH HHS/ -- U19 AI067854/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1593-602. doi: 10.1126/science.1207532. Epub 2011 Aug 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21835983" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines ; Amino Acid Sequence ; Antibodies, Neutralizing/*chemistry/genetics/*immunology/isolation & purification ; Antibody Affinity ; Antibody Specificity ; Antigens, CD4/metabolism ; Base Sequence ; Binding Sites ; Binding Sites, Antibody ; Complementarity Determining Regions/genetics ; Crystallography, X-Ray ; Epitopes ; *Evolution, Molecular ; Genes, Immunoglobulin Heavy Chain ; HIV Antibodies/*chemistry/genetics/*immunology/isolation & purification ; HIV Envelope Protein gp120/chemistry/*immunology/metabolism ; HIV Infections/immunology ; HIV-1/chemistry/*immunology ; High-Throughput Nucleotide Sequencing ; Humans ; Immunoglobulin Fab Fragments/chemistry/immunology ; Immunoglobulin Heavy Chains/chemistry/immunology ; Immunoglobulin J-Chains/genetics ; Immunoglobulin Light Chains/chemistry/immunology ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-10-05
    Description: Botrytis cinerea, the causative agent of gray mold disease, is an aggressive fungal pathogen that infects more than 200 plant species. Here, we show that some B. cinerea small RNAs (Bc-sRNAs) can silence Arabidopsis and tomato genes involved in immunity. These Bc-sRNAs hijack the host RNA interference (RNAi) machinery by binding to Arabidopsis Argonaute 1 (AGO1) and selectively silencing host immunity genes. The Arabidopsis ago1 mutant exhibits reduced susceptibility to B. cinerea, and the B. cinerea dcl1 dcl2 double mutant that can no longer produce these Bc-sRNAs displays reduced pathogenicity on Arabidopsis and tomato. Thus, this fungal pathogen transfers "virulent" sRNA effectors into host plant cells to suppress host immunity and achieve infection, which demonstrates a naturally occurring cross-kingdom RNAi as an advanced virulence mechanism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096153/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096153/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weiberg, Arne -- Wang, Ming -- Lin, Feng-Mao -- Zhao, Hongwei -- Zhang, Zhihong -- Kaloshian, Isgouhi -- Huang, Hsien-Da -- Jin, Hailing -- R01 GM093008/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 4;342(6154):118-23. doi: 10.1126/science.1239705.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24092744" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*immunology/microbiology ; Arabidopsis Proteins/genetics ; Argonaute Proteins/genetics ; Botrytis/genetics/*pathogenicity ; Gene Expression Regulation, Plant ; Host-Pathogen Interactions/genetics/*immunology ; Lycopersicon esculentum/genetics/immunology/microbiology ; Mutation ; Plant Diseases/genetics/immunology/*microbiology ; *RNA Interference ; RNA, Fungal/*genetics ; RNA, Small Interfering/*genetics ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...