ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-06-11
    Description: The generation of reprogrammed induced pluripotent stem cells (iPSCs) from patients with defined genetic disorders holds the promise of increased understanding of the aetiologies of complex diseases and may also facilitate the development of novel therapeutic interventions. We have generated iPSCs from patients with LEOPARD syndrome (an acronym formed from its main features; that is, lentigines, electrocardiographic abnormalities, ocular hypertelorism, pulmonary valve stenosis, abnormal genitalia, retardation of growth and deafness), an autosomal-dominant developmental disorder belonging to a relatively prevalent class of inherited RAS-mitogen-activated protein kinase signalling diseases, which also includes Noonan syndrome, with pleomorphic effects on several tissues and organ systems. The patient-derived cells have a mutation in the PTPN11 gene, which encodes the SHP2 phosphatase. The iPSCs have been extensively characterized and produce multiple differentiated cell lineages. A major disease phenotype in patients with LEOPARD syndrome is hypertrophic cardiomyopathy. We show that in vitro-derived cardiomyocytes from LEOPARD syndrome iPSCs are larger, have a higher degree of sarcomeric organization and preferential localization of NFATC4 in the nucleus when compared with cardiomyocytes derived from human embryonic stem cells or wild-type iPSCs derived from a healthy brother of one of the LEOPARD syndrome patients. These features correlate with a potential hypertrophic state. We also provide molecular insights into signalling pathways that may promote the disease phenotype.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885001/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885001/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carvajal-Vergara, Xonia -- Sevilla, Ana -- D'Souza, Sunita L -- Ang, Yen-Sin -- Schaniel, Christoph -- Lee, Dung-Fang -- Yang, Lei -- Kaplan, Aaron D -- Adler, Eric D -- Rozov, Roye -- Ge, Yongchao -- Cohen, Ninette -- Edelmann, Lisa J -- Chang, Betty -- Waghray, Avinash -- Su, Jie -- Pardo, Sherly -- Lichtenbelt, Klaske D -- Tartaglia, Marco -- Gelb, Bruce D -- Lemischka, Ihor R -- 5R01GM078465/GM/NIGMS NIH HHS/ -- R01 GM078465/GM/NIGMS NIH HHS/ -- R01 GM078465-03/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jun 10;465(7299):808-12. doi: 10.1038/nature09005.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Gene and Cell Medicine, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York 10029, USA. xcarvajal@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20535210" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Cell Differentiation ; Cell Line ; Cell Lineage ; Cells, Cultured ; Embryonic Stem Cells/metabolism ; Enzyme Activation ; Female ; Fibroblasts/metabolism/pathology ; Gene Expression Profiling ; Homeodomain Proteins/genetics ; Humans ; Induced Pluripotent Stem Cells/enzymology/metabolism/*pathology ; LEOPARD Syndrome/drug therapy/metabolism/*pathology ; Male ; Mitogen-Activated Protein Kinases/metabolism ; *Models, Biological ; Myocytes, Cardiac/metabolism/pathology ; NFATC Transcription Factors/genetics/metabolism ; Octamer Transcription Factor-3/genetics ; Phosphoproteins/analysis ; Polymerase Chain Reaction ; *Precision Medicine ; Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics/metabolism ; SOXB1 Transcription Factors/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-03-12
    Description: The growth factor progranulin (PGRN) has been implicated in embryonic development, tissue repair, tumorigenesis, and inflammation, but its receptors remain unidentified. We report that PGRN bound directly to tumor necrosis factor receptors (TNFRs) and disturbed the TNFalpha-TNFR interaction. PGRN-deficient mice were susceptible to collagen-induced arthritis, and administration of PGRN reversed inflammatory arthritis. Atsttrin, an engineered protein composed of three PGRN fragments, exhibited selective TNFR binding. PGRN and Atsttrin prevented inflammation in multiple arthritis mouse models and inhibited TNFalpha-activated intracellular signaling. Collectively, these findings demonstrate that PGRN is a ligand of TNFR, an antagonist of TNFalpha signaling, and plays a critical role in the pathogenesis of inflammatory arthritis in mice. They also suggest new potential therapeutic interventions for various TNFalpha-mediated pathologies and conditions, including rheumatoid arthritis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3104397/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3104397/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tang, Wei -- Lu, Yi -- Tian, Qing-Yun -- Zhang, Yan -- Guo, Feng-Jin -- Liu, Guang-Yi -- Syed, Nabeel Muzaffar -- Lai, Yongjie -- Lin, Edward Alan -- Kong, Li -- Su, Jeffrey -- Yin, Fangfang -- Ding, Ai-Hao -- Zanin-Zhorov, Alexandra -- Dustin, Michael L -- Tao, Jian -- Craft, Joseph -- Yin, Zhinan -- Feng, Jian Q -- Abramson, Steven B -- Yu, Xiu-Ping -- Liu, Chuan-ju -- AI43542/AI/NIAID NIH HHS/ -- AR040072/AR/NIAMS NIH HHS/ -- AR050620/AR/NIAMS NIH HHS/ -- AR053210/AR/NIAMS NIH HHS/ -- GM061710/GM/NIGMS NIH HHS/ -- R01 AI030165/AI/NIAID NIH HHS/ -- R01 AI030165-20/AI/NIAID NIH HHS/ -- R01 GM061710/GM/NIGMS NIH HHS/ -- R01 GM061710-08/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):478-84. doi: 10.1126/science.1199214. Epub 2011 Mar 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Orthopaedic Surgery, New York University School of Medicine and NYU Hospital for Joint Diseases, New York, NY 10003, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21393509" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Aged ; Animals ; Anti-Inflammatory Agents, Non-Steroidal/metabolism/pharmacology/therapeutic use ; Arthritis, Experimental/*drug therapy/*immunology/pathology/physiopathology ; Cartilage, Articular/metabolism/pathology ; Female ; Humans ; Intercellular Signaling Peptides and ; Proteins/chemistry/genetics/*metabolism/therapeutic use ; Ligands ; Male ; Mice ; Mice, Inbred Strains ; Mice, Knockout ; Mice, Transgenic ; Middle Aged ; Protein Interaction Domains and Motifs ; Receptors, Tumor Necrosis Factor, Type I/genetics/*metabolism ; Receptors, Tumor Necrosis Factor, Type II/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism/pharmacology/therapeutic use ; Recombinant Proteins/therapeutic use ; Signal Transduction ; T-Lymphocytes, Regulatory/immunology/physiology ; Tumor Necrosis Factor-alpha/*metabolism ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-14
    Description: We report a draft sequence for the genome of the domesticated silkworm (Bombyx mori), covering 90.9% of all known silkworm genes. Our estimated gene count is 18,510, which exceeds the 13,379 genes reported for Drosophila melanogaster. Comparative analyses to fruitfly, mosquito, spider, and butterfly reveal both similarities and differences in gene content.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xia, Qingyou -- Zhou, Zeyang -- Lu, Cheng -- Cheng, Daojun -- Dai, Fangyin -- Li, Bin -- Zhao, Ping -- Zha, Xingfu -- Cheng, Tingcai -- Chai, Chunli -- Pan, Guoqing -- Xu, Jinshan -- Liu, Chun -- Lin, Ying -- Qian, Jifeng -- Hou, Yong -- Wu, Zhengli -- Li, Guanrong -- Pan, Minhui -- Li, Chunfeng -- Shen, Yihong -- Lan, Xiqian -- Yuan, Lianwei -- Li, Tian -- Xu, Hanfu -- Yang, Guangwei -- Wan, Yongji -- Zhu, Yong -- Yu, Maode -- Shen, Weide -- Wu, Dayang -- Xiang, Zhonghuai -- Yu, Jun -- Wang, Jun -- Li, Ruiqiang -- Shi, Jianping -- Li, Heng -- Li, Guangyuan -- Su, Jianning -- Wang, Xiaoling -- Li, Guoqing -- Zhang, Zengjin -- Wu, Qingfa -- Li, Jun -- Zhang, Qingpeng -- Wei, Ning -- Xu, Jianzhe -- Sun, Haibo -- Dong, Le -- Liu, Dongyuan -- Zhao, Shengli -- Zhao, Xiaolan -- Meng, Qingshun -- Lan, Fengdi -- Huang, Xiangang -- Li, Yuanzhe -- Fang, Lin -- Li, Changfeng -- Li, Dawei -- Sun, Yongqiao -- Zhang, Zhenpeng -- Yang, Zheng -- Huang, Yanqing -- Xi, Yan -- Qi, Qiuhui -- He, Dandan -- Huang, Haiyan -- Zhang, Xiaowei -- Wang, Zhiqiang -- Li, Wenjie -- Cao, Yuzhu -- Yu, Yingpu -- Yu, Hong -- Li, Jinhong -- Ye, Jiehua -- Chen, Huan -- Zhou, Yan -- Liu, Bin -- Wang, Jing -- Ye, Jia -- Ji, Hai -- Li, Shengting -- Ni, Peixiang -- Zhang, Jianguo -- Zhang, Yong -- Zheng, Hongkun -- Mao, Bingyu -- Wang, Wen -- Ye, Chen -- Li, Songgang -- Wang, Jian -- Wong, Gane Ka-Shu -- Yang, Huanming -- Biology Analysis Group -- 1 P50 HG02351/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2004 Dec 10;306(5703):1937-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Southwest Agricultural University, Chongqing Beibei, 400716, China. xiaqy@swau.cq.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15591204" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Anopheles/genetics ; Body Patterning/genetics ; Bombyx/*genetics/growth & development/metabolism ; Butterflies/genetics ; Computational Biology ; DNA Transposable Elements ; Drosophila melanogaster/genetics ; Exocrine Glands/metabolism ; Expressed Sequence Tags ; Female ; Genes, Homeobox ; *Genes, Insect ; *Genome ; Immunity, Innate/genetics ; Insect Hormones/genetics ; Insect Proteins/genetics ; Male ; Molecular Sequence Data ; *Sequence Analysis, DNA ; Sequence Homology, Nucleic Acid ; Sex Determination Processes ; Spiders/genetics ; Wings, Animal/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-07-23
    Description: Atmospheric methane is the second most important greenhouse gas after carbon dioxide, and is responsible for about 20% of the global warming effect since pre-industrial times. Rice paddies are the largest anthropogenic methane source and produce 7-17% of atmospheric methane. Warm waterlogged soil and exuded nutrients from rice roots provide ideal conditions for methanogenesis in paddies with annual methane emissions of 25-100-million tonnes. This scenario will be exacerbated by an expansion in rice cultivation needed to meet the escalating demand for food in the coming decades. There is an urgent need to establish sustainable technologies for increasing rice production while reducing methane fluxes from rice paddies. However, ongoing efforts for methane mitigation in rice paddies are mainly based on farming practices and measures that are difficult to implement. Despite proposed strategies to increase rice productivity and reduce methane emissions, no high-starch low-methane-emission rice has been developed. Here we show that the addition of a single transcription factor gene, barley SUSIBA2 (refs 7, 8), conferred a shift of carbon flux to SUSIBA2 rice, favouring the allocation of photosynthates to aboveground biomass over allocation to roots. The altered allocation resulted in an increased biomass and starch content in the seeds and stems, and suppressed methanogenesis, possibly through a reduction in root exudates. Three-year field trials in China demonstrated that the cultivation of SUSIBA2 rice was associated with a significant reduction in methane emissions and a decrease in rhizospheric methanogen levels. SUSIBA2 rice offers a sustainable means of providing increased starch content for food production while reducing greenhouse gas emissions from rice cultivation. Approaches to increase rice productivity and reduce methane emissions as seen in SUSIBA2 rice may be particularly beneficial in a future climate with rising temperatures resulting in increased methane emissions from paddies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Su, J -- Hu, C -- Yan, X -- Jin, Y -- Chen, Z -- Guan, Q -- Wang, Y -- Zhong, D -- Jansson, C -- Wang, F -- Schnurer, A -- Sun, C -- England -- Nature. 2015 Jul 30;523(7562):602-6. doi: 10.1038/nature14673. Epub 2015 Jul 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China [2] Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7080, SE-75007 Uppsala, Sweden. ; Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7080, SE-75007 Uppsala, Sweden. ; 1] Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7080, SE-75007 Uppsala, Sweden [2] Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China. ; Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China. ; The Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, PO Box 999, K8-93 Richland, Washington 99352, USA. ; Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26200336" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/methods/trends ; Atmosphere/chemistry ; Biomass ; Carbon Cycle ; China ; Conservation of Natural Resources/methods ; Food Supply/methods ; Genotype ; Global Warming/prevention & control ; Greenhouse Effect/*prevention & control ; Hordeum/*genetics ; Methane/biosynthesis/*metabolism ; Molecular Sequence Data ; Oryza/genetics/growth & development/*metabolism ; Phenotype ; Photosynthesis ; Plant Components, Aerial/metabolism ; Plant Proteins/genetics/*metabolism ; Plant Roots/metabolism ; Plants, Genetically Modified ; Rhizosphere ; Seeds/metabolism ; Starch/biosynthesis/*metabolism ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...