ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-04-16
    Description: CRISPR/Cas (clustered regularly interspaced palindromic repeats/CRISPR-associated) systems are a bacterial defence against invading foreign nucleic acids derived from bacteriophages or exogenous plasmids. These systems use an array of small CRISPR RNAs (crRNAs) consisting of repetitive sequences flanking unique spacers to recognize their targets, and conserved Cas proteins to mediate target degradation. Recent studies have suggested that these systems may have broader functions in bacterial physiology, and it is unknown if they regulate expression of endogenous genes. Here we demonstrate that the Cas protein Cas9 of Francisella novicida uses a unique, small, CRISPR/Cas-associated RNA (scaRNA) to repress an endogenous transcript encoding a bacterial lipoprotein. As bacterial lipoproteins trigger a proinflammatory innate immune response aimed at combating pathogens, CRISPR/Cas-mediated repression of bacterial lipoprotein expression is critical for F. novicida to dampen this host response and promote virulence. Because Cas9 proteins are highly enriched in pathogenic and commensal bacteria, our work indicates that CRISPR/Cas-mediated gene regulation may broadly contribute to the regulation of endogenous bacterial genes, particularly during the interaction of such bacteria with eukaryotic hosts.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651764/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651764/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sampson, Timothy R -- Saroj, Sunil D -- Llewellyn, Anna C -- Tzeng, Yih-Ling -- Weiss, David S -- R56 AI061031/AI/NIAID NIH HHS/ -- R56 AI087673/AI/NIAID NIH HHS/ -- R56-AI061031/AI/NIAID NIH HHS/ -- R56-AI87673/AI/NIAID NIH HHS/ -- U54 AI057157/AI/NIAID NIH HHS/ -- U54-AI057157/AI/NIAID NIH HHS/ -- England -- Nature. 2013 May 9;497(7448):254-7. doi: 10.1038/nature12048. Epub 2013 Apr 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Microbiology and Molecular Genetics Program, Department of Microbiology and Immunology, Emory University, Atlanta, Georgia 30329, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23584588" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Gammaproteobacteria/genetics/*immunology/metabolism/*pathogenicity ; Genes, Bacterial/genetics ; Host-Pathogen Interactions/immunology ; *Immune Evasion ; Immunity, Innate/*immunology ; Mice ; Mice, Inbred C57BL ; Phylogeny ; RNA, Bacterial/genetics/metabolism ; Time Factors ; Toll-Like Receptor 2/immunology/metabolism ; Virulence/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-12-07
    Description: The yellow fever vaccine YF-17D is one of the most successful vaccines ever developed in humans. Despite its efficacy and widespread use in more than 600 million people, the mechanisms by which it stimulates protective immunity remain poorly understood. Recent studies using systems biology approaches in humans have revealed that YF-17D-induced early expression of general control nonderepressible 2 kinase (GCN2) in the blood strongly correlates with the magnitude of the later CD8(+) T cell response. We demonstrate a key role for virus-induced GCN2 activation in programming dendritic cells to initiate autophagy and enhanced antigen presentation to both CD4(+) and CD8(+) T cells. These results reveal an unappreciated link between virus-induced integrated stress response in dendritic cells and the adaptive immune response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048998/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048998/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ravindran, Rajesh -- Khan, Nooruddin -- Nakaya, Helder I -- Li, Shuzhao -- Loebbermann, Jens -- Maddur, Mohan S -- Park, Youngja -- Jones, Dean P -- Chappert, Pascal -- Davoust, Jean -- Weiss, David S -- Virgin, Herbert W -- Ron, David -- Pulendran, Bali -- 084812/Wellcome Trust/United Kingdom -- 084812/Z/08/Z/Wellcome Trust/United Kingdom -- N01 AI50019/AI/NIAID NIH HHS/ -- N01 AI50025/AI/NIAID NIH HHS/ -- P51 OD011132/OD/NIH HHS/ -- R37 AI048638/AI/NIAID NIH HHS/ -- R37 DK057665/DK/NIDDK NIH HHS/ -- R56 AI048638/AI/NIAID NIH HHS/ -- U19 AI057266/AI/NIAID NIH HHS/ -- U19 AI090023/AI/NIAID NIH HHS/ -- U54 AI057157/AI/NIAID NIH HHS/ -- U54 AI057160/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Jan 17;343(6168):313-7. doi: 10.1126/science.1246829. Epub 2013 Dec 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24310610" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigen Presentation ; CD4-Positive T-Lymphocytes/immunology ; CD8-Positive T-Lymphocytes/immunology ; Cell Line ; Cricetinae ; Dendritic Cells/enzymology/*immunology ; Enzyme Activation ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Microtubule-Associated Proteins/genetics ; Protein-Serine-Threonine Kinases/*biosynthesis/genetics ; Yellow Fever Vaccine/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...