ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1996-02-02
    Description: Tumor necrosis factor-alpha (TNF-alpha) is an important mediator of insulin resistance in obesity and diabetes through its ability to decrease the tyrosine kinase activity of the insulin receptor (IR). Treatment of cultured murine adipocytes with TNF-alpha was shown to induce serine phosphorylation of insulin receptor substrate 1 (IRS-1) and convert IRS-1 into an inhibitor of the IR tyrosine kinase activity in vitro. Myeloid 32D cells, which lack endogenous IRS-1, were resistant to TNF-alpha-mediated inhibition of IR signaling, whereas transfected 32D cells that express IRS-1 were very sensitive to this effect of TNF-alpha. An inhibitory form of IRS-1 was observed in muscle and fat tissues from obese rats. These results indicate that TNF-alpha induces insulin resistance through an unexpected action of IRS-1 to attenuate insulin receptor signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hotamisligil, G S -- Peraldi, P -- Budavari, A -- Ellis, R -- White, M F -- Spiegelman, B M -- DK 42539/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1996 Feb 2;271(5249):665-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Biology, Dana-Farber Cancer Institute, Boston, MA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8571133" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/*metabolism ; Adipose Tissue/metabolism ; Animals ; Cells, Cultured ; Insulin/pharmacology ; Insulin Receptor Substrate Proteins ; Insulin Resistance/*physiology ; Male ; Mice ; Muscle, Skeletal/metabolism ; Obesity/*metabolism ; Phosphoproteins/metabolism/*physiology ; Phosphorylation ; Rats ; Rats, Zucker ; Receptor, Insulin/*antagonists & inhibitors/metabolism ; Serine/metabolism ; Signal Transduction ; Tumor Necrosis Factor-alpha/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-07-31
    Description: Brown adipose cells are specialized to dissipate chemical energy in the form of heat, as a physiological defence against cold and obesity. PRDM16 (PR domain containing 16) is a 140 kDa zinc finger protein that robustly induces brown fat determination and differentiation. Recent data suggests that brown fat cells arise in vivo from a Myf5-positive, myoblastic lineage by the action of PRDM16 (ref. 3); however, the molecular mechanisms responsible for this developmental switch is unclear. Here we show that PRDM16 forms a transcriptional complex with the active form of C/EBP-beta (also known as LAP), acting as a critical molecular unit that controls the cell fate switch from myoblastic precursors to brown fat cells. Forced expression of PRDM16 and C/EBP-beta is sufficient to induce a fully functional brown fat program in naive fibroblastic cells, including skin fibroblasts from mouse and man. Transplantation of fibroblasts expressing these two factors into mice gives rise to an ectopic fat pad with the morphological and biochemical characteristics of brown fat. Like endogenous brown fat, this synthetic brown fat tissue acts as a sink for glucose uptake, as determined by positron emission tomography with fluorodeoxyglucose. These data indicate that the PRDM16-C/EBP-beta complex initiates brown fat formation from myoblastic precursors, and may provide opportunities for the development of new therapeutics for obesity and type-2 diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754867/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754867/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kajimura, Shingo -- Seale, Patrick -- Kubota, Kazuishi -- Lunsford, Elaine -- Frangioni, John V -- Gygi, Steven P -- Spiegelman, Bruce M -- DK081605/DK/NIDDK NIH HHS/ -- DK31405/DK/NIDDK NIH HHS/ -- GM67945/GM/NIGMS NIH HHS/ -- HG3456/HG/NHGRI NIH HHS/ -- K99 DK087853/DK/NIDDK NIH HHS/ -- R37 DK031405/DK/NIDDK NIH HHS/ -- R37 DK031405-28/DK/NIDDK NIH HHS/ -- S10-RR-023010/RR/NCRR NIH HHS/ -- England -- Nature. 2009 Aug 27;460(7259):1154-8. doi: 10.1038/nature08262. Epub 2009 Jul 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19641492" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue, Brown/*cytology/*metabolism ; Animals ; CCAAT-Enhancer-Binding Protein-beta/genetics/*metabolism ; Cell Differentiation ; Cell Line ; Cells, Cultured ; Choristoma/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Fibroblasts/cytology/metabolism ; Glucose/metabolism ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Multiprotein Complexes ; Myoblasts/*cytology/*metabolism ; Skin/cytology ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-08-16
    Description: Mesenchymal stem cells (MSCs) are a pluripotent cell type that can differentiate into several distinct lineages. Two key transcription factors, Runx2 and peroxisome proliferator-activated receptor gamma (PPARgamma), drive MSCs to differentiate into either osteoblasts or adipocytes, respectively. How these two transcription factors are regulated in order to specify these alternate cell fates remains a pivotal question. Here we report that a 14-3-3-binding protein, TAZ (transcriptional coactivator with PDZ-binding motif), coactivates Runx2-dependent gene transcription while repressing PPARgamma-dependent gene transcription. By modulating TAZ expression in model cell lines, mouse embryonic fibroblasts, and primary MSCs in culture and in zebrafish in vivo, we observed alterations in osteogenic versus adipogenic potential. These results indicate that TAZ functions as a molecular rheostat that modulates MSC differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hong, Jeong-Ho -- Hwang, Eun Sook -- McManus, Michael T -- Amsterdam, Adam -- Tian, Yu -- Kalmukova, Ralitsa -- Mueller, Elisabetta -- Benjamin, Thomas -- Spiegelman, Bruce M -- Sharp, Phillip A -- Hopkins, Nancy -- Yaffe, Michael B -- CA042063/CA/NCI NIH HHS/ -- GM60594/GM/NIGMS NIH HHS/ -- GM68762/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Aug 12;309(5737):1074-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E18-580, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16099986" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/*cytology ; Animals ; Bone Morphogenetic Protein 2 ; Bone Morphogenetic Proteins/pharmacology ; Cell Differentiation ; Cell Line ; Core Binding Factor Alpha 1 Subunit ; Gene Expression Regulation, Developmental ; Humans ; Mesenchymal Stromal Cells/*cytology/physiology ; Mice ; Neoplasm Proteins/metabolism ; Oligonucleotides, Antisense ; Osteoblasts/*cytology ; Osteocalcin/genetics ; Osteogenesis ; PPAR gamma/metabolism ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Proteins/chemistry/genetics/*physiology ; RNA, Small Interfering ; Transcription Factors/chemistry/genetics/metabolism/*physiology ; Transcriptional Activation ; Transfection ; Transforming Growth Factor beta/pharmacology ; Zebrafish ; Zebrafish Proteins/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1996-12-20
    Description: Adipocyte differentiation is an important component of obesity and other metabolic diseases. This process is strongly inhibited by many mitogens and oncogenes. Several growth factors that inhibit fat cell differentiation caused mitogen-activated protein (MAP) kinase-mediated phosphorylation of the dominant adipogenic transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) and reduction of its transcriptional activity. Expression of PPARgamma with a nonphosphorylatable mutation at this site (serine-112) yielded cells with increased sensitivity to ligand-induced adipogenesis and resistance to inhibition of differentiation by mitogens. These results indicate that covalent modification of PPARgamma by serum and growth factors is a major regulator of the balance between cell growth and differentiation in the adipose cell lineage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, E -- Kim, J B -- Sarraf, P -- Spiegelman, B M -- R37DK31405/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1996 Dec 20;274(5295):2100-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8953045" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Adipocytes/*cytology/metabolism ; Animals ; Blood ; Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors/*metabolism ; Cell Differentiation ; Cell Line ; Enzyme Inhibitors/pharmacology ; Epidermal Growth Factor/pharmacology ; Flavonoids/pharmacology ; Insulin/pharmacology ; Ligands ; Mice ; Mitogens/pharmacology ; Mutation ; Phosphorylation ; Rats ; Receptors, Cytoplasmic and Nuclear/chemistry/genetics/*metabolism ; Tetradecanoylphorbol Acetate/pharmacology ; Transcription Factors/chemistry/genetics/*metabolism ; Transcription, Genetic/drug effects ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1993-01-01
    Description: Tumor necrosis factor-alpha (TNF-alpha) has been shown to have certain catabolic effects on fat cells and whole animals. An induction of TNF-alpha messenger RNA expression was observed in adipose tissue from four different rodent models of obesity and diabetes. TNF-alpha protein was also elevated locally and systemically. Neutralization of TNF-alpha in obese fa/fa rats caused a significant increase in the peripheral uptake of glucose in response to insulin. These results indicate a role for TNF-alpha in obesity and particularly in the insulin resistance and diabetes that often accompany obesity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hotamisligil, G S -- Shargill, N S -- Spiegelman, B M -- DK 42539/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1993 Jan 1;259(5091):87-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7678183" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Adipose Tissue/physiology/*physiopathology ; Animals ; Blood Glucose/metabolism ; Blotting, Northern ; Diabetes Mellitus, Experimental/physiopathology ; Glucose Clamp Technique ; Homeostasis ; Immunoglobulin G/genetics/pharmacology ; Insulin/pharmacology ; Insulin Infusion Systems ; Insulin Resistance/*genetics ; Male ; Mice ; Mice, Obese ; Obesity/chemically induced/*genetics/*physiopathology ; RNA/genetics/isolation & purification ; RNA, Messenger/*biosynthesis/isolation & purification ; Rats ; Rats, Zucker ; Receptors, Cell Surface/genetics/physiology ; Receptors, Tumor Necrosis Factor ; Recombinant Fusion Proteins/pharmacology ; Reference Values ; Sodium Glutamate ; Tumor Necrosis Factor-alpha/biosynthesis/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...