ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-03-02
    Description: The gastrointestinal tract is lined by a layer of mucus comprised of highly glycosylated proteins called mucins. To evaluate the importance of mucin in intestinal carcinogenesis, we constructed mice genetically deficient in Muc2, the most abundant secreted gastrointestinal mucin. Muc2-/- mice displayed aberrant intestinal crypt morphology and altered cell maturation and migration. Most notably, the mice frequently developed adenomas in the small intestine that progressed to invasive adenocarcinoma, as well as rectal tumors. Thus, Muc2 is involved in the suppression of colorectal cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Velcich, Anna -- Yang, WanCai -- Heyer, Joerg -- Fragale, Alessandra -- Nicholas, Courtney -- Viani, Stephanie -- Kucherlapati, Raju -- Lipkin, Martin -- Yang, Kan -- Augenlicht, Leonard -- CA 72835/CA/NCI NIH HHS/ -- CA 90808/CA/NCI NIH HHS/ -- P0 CA 13330/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 Mar 1;295(5560):1726-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Oncology, Albert Einstein Cancer Center/Montefiore Medical Center, 111 East 210 Street, Bronx, NY 10467, USA. velcich@aecom.yu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11872843" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/chemistry/pathology ; Adenoma/chemistry/pathology ; Animals ; Apoptosis ; Cell Differentiation ; Cell Division ; Cell Lineage ; Cell Movement ; Colon/chemistry/cytology/pathology ; Colorectal Neoplasms/*etiology/metabolism/pathology ; Cytoskeletal Proteins/analysis ; Disease Progression ; Duodenal Neoplasms/chemistry/pathology ; Duodenum/chemistry/cytology/pathology ; Epithelial Cells/chemistry/physiology ; Female ; Gene Targeting ; Goblet Cells/cytology ; Intestinal Mucosa/chemistry/cytology/pathology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Mucin-2 ; Mucins/analysis/*genetics/*physiology ; Proto-Oncogene Proteins c-myc/analysis ; *Trans-Activators ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-02-09
    Description: Ca(2+) channels and calmodulin (CaM) are two prominent signalling hubs that synergistically affect functions as diverse as cardiac excitability, synaptic plasticity and gene transcription. It is therefore fitting that these hubs are in some sense coordinated, as the opening of Ca(V)1-2 Ca(2+) channels are regulated by a single CaM constitutively complexed with channels. The Ca(2+)-free form of CaM (apoCaM) is already pre-associated with the isoleucine-glutamine (IQ) domain on the channel carboxy terminus, and subsequent Ca(2+) binding to this 'resident' CaM drives conformational changes that then trigger regulation of channel opening. Another potential avenue for channel-CaM coordination could arise from the absence of Ca(2+) regulation in channels lacking a pre-associated CaM. Natural fluctuations in CaM concentrations might then influence the fraction of regulable channels and, thereby, the overall strength of Ca(2+) feedback. However, the prevailing view has been that the ultrastrong affinity of channels for apoCaM ensures their saturation with CaM, yielding a significant form of concentration independence between Ca(2+) channels and CaM. Here we show that significant exceptions to this autonomy exist, by combining electrophysiology (to characterize channel regulation) with optical fluorescence resonance energy transfer (FRET) sensor determination of free-apoCaM concentration in live cells. This approach translates quantitative CaM biochemistry from the traditional test-tube context into the realm of functioning holochannels within intact cells. From this perspective, we find that long splice forms of Ca(V)1.3 and Ca(V)1.4 channels include a distal carboxy tail that resembles an enzyme competitive inhibitor that retunes channel affinity for apoCaM such that natural CaM variations affect the strength of Ca(2+) feedback modulation. Given the ubiquity of these channels, the connection between ambient CaM levels and Ca(2+) entry through channels is broadly significant for Ca(2+) homeostasis. Strategies such as ours promise key advances for the in situ analysis of signalling molecules resistant to in vitro reconstitution, such as Ca(2+) channels.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553577/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553577/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Xiaodong -- Yang, Philemon S -- Yang, Wanjun -- Yue, David T -- P30 DC005211/DC/NIDCD NIH HHS/ -- R01 DC000276/DC/NIDCD NIH HHS/ -- England -- Nature. 2010 Feb 18;463(7283):968-72. doi: 10.1038/nature08766. Epub 2010 Feb 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Calcium Signals Laboratory, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, Maryland 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20139964" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Animals ; Apoproteins/analysis/metabolism ; Binding, Competitive/drug effects ; Calcium/analysis/metabolism/pharmacology ; Calcium Channel Blockers/*chemistry/*metabolism ; Calcium Channels/*chemistry/genetics/*metabolism ; Calmodulin/analysis/*metabolism ; Cell Line ; Cell Survival ; Electrophysiology ; *Feedback, Physiological ; Fluorescence Resonance Energy Transfer ; Humans ; Protein Structure, Tertiary ; Rats ; Recombinant Fusion Proteins/chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-02-01
    Description: Ca2+/calmodulin-dependent regulation of voltage-gated CaV1-2 Ca2+ channels shows extraordinary modes of spatial Ca2+ decoding and channel modulation, vital for many biological functions. A single calmodulin (CaM) molecule associates constitutively with the channel's carboxy-terminal tail, and Ca2+ binding to the C-terminal and N-terminal lobes of CaM can each induce distinct channel regulations. As expected from close channel proximity, the C-lobe responds to the roughly 100-microM Ca2+ pulses driven by the associated channel, a behaviour defined as 'local Ca2+ selectivity'. Conversely, all previous observations have indicated that the N-lobe somehow senses the far weaker signals from distant Ca2+ sources. This 'global Ca2+ selectivity' satisfies a general signalling requirement, enabling a resident molecule to remotely sense cellular Ca2+ activity, which would otherwise be overshadowed by Ca2+ entry through the host channel. Here we show that the spatial Ca2+ selectivity of N-lobe CaM regulation is not invariably global but can be switched by a novel Ca2+/CaM-binding site within the amino terminus of channels (NSCaTE, for N-terminal spatial Ca2+ transforming element). Native CaV2.2 channels lack this element and show N-lobe regulation with a global selectivity. On the introduction of NSCaTE into these channels, spatial Ca2+ selectivity transforms from a global to local profile. Given this effect, we examined CaV1.2/CaV1.3 channels, which naturally contain NSCaTE, and found that their N-lobe selectivity is indeed local. Disruption of this element produces a global selectivity, confirming the native function of NSCaTE. Thus, differences in spatial selectivity between advanced CaV1 and CaV2 channel isoforms are explained by the presence or absence of NSCaTE. Beyond functional effects, the position of NSCaTE on the channel's amino terminus indicates that CaM can bridge the amino terminus and carboxy terminus of channels. Finally, the modularity of NSCaTE offers practical means for understanding the basis of global Ca2+ selectivity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4262256/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4262256/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dick, Ivy E -- Tadross, Michael R -- Liang, Haoya -- Tay, Lai Hock -- Yang, Wanjun -- Yue, David T -- P30 DC005211/DC/NIDCD NIH HHS/ -- R01 MH065531/MH/NIMH NIH HHS/ -- R37 HL076795/HL/NHLBI NIH HHS/ -- T32 DC000023/DC/NIDCD NIH HHS/ -- England -- Nature. 2008 Feb 14;451(7180):830-4. doi: 10.1038/nature06529. Epub 2008 Jan 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, Maryland 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18235447" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcium/*metabolism ; Calcium Channels/chemistry/genetics/*metabolism ; *Calcium Signaling ; Calmodulin/*metabolism ; Cell Line ; Evolution, Molecular ; Humans ; Molecular Sequence Data ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-08-23
    Description: Brown fat can increase energy expenditure and protect against obesity through a specialized program of uncoupled respiration. Here we show by in vivo fate mapping that brown, but not white, fat cells arise from precursors that express Myf5, a gene previously thought to be expressed only in the myogenic lineage. We also demonstrate that the transcriptional regulator PRDM16 (PRD1-BF1-RIZ1 homologous domain containing 16) controls a bidirectional cell fate switch between skeletal myoblasts and brown fat cells. Loss of PRDM16 from brown fat precursors causes a loss of brown fat characteristics and promotes muscle differentiation. Conversely, ectopic expression of PRDM16 in myoblasts induces their differentiation into brown fat cells. PRDM16 stimulates brown adipogenesis by binding to PPAR-gamma (peroxisome-proliferator-activated receptor-gamma) and activating its transcriptional function. Finally, Prdm16-deficient brown fat displays an abnormal morphology, reduced thermogenic gene expression and elevated expression of muscle-specific genes. Taken together, these data indicate that PRDM16 specifies the brown fat lineage from a progenitor that expresses myoblast markers and is not involved in white adipogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583329/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583329/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seale, Patrick -- Bjork, Bryan -- Yang, Wenli -- Kajimura, Shingo -- Chin, Sherry -- Kuang, Shihuan -- Scime, Anthony -- Devarakonda, Srikripa -- Conroe, Heather M -- Erdjument-Bromage, Hediye -- Tempst, Paul -- Rudnicki, Michael A -- Beier, David R -- Spiegelman, Bruce M -- R01 AR044031/AR/NIAMS NIH HHS/ -- R01 AR044031-11/AR/NIAMS NIH HHS/ -- R37 DK031405/DK/NIDDK NIH HHS/ -- R37 DK031405-27/DK/NIDDK NIH HHS/ -- England -- Nature. 2008 Aug 21;454(7207):961-7. doi: 10.1038/nature07182.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, 1 Jimmy Fund Way, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18719582" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes, Brown/cytology/*metabolism ; Adipocytes, White/metabolism ; Adipose Tissue, Brown/cytology ; Animals ; COS Cells ; *Cell Differentiation/genetics ; Cell Line ; Cercopithecus aethiops ; DNA-Binding Proteins/genetics/*metabolism ; *Gene Expression Regulation, Developmental ; Male ; Mice ; Muscle Development/genetics ; Muscle, Skeletal/cytology/growth & development/*metabolism ; Myogenic Regulatory Factor 5/genetics ; PPAR gamma/genetics ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-02-25
    Description: V(D)J recombination in the vertebrate immune system generates a highly diverse population of immunoglobulins and T-cell receptors by combinatorial joining of segments of coding DNA. The RAG1-RAG2 protein complex initiates this site-specific recombination by cutting DNA at specific sites flanking the coding segments. Here we report the crystal structure of the mouse RAG1-RAG2 complex at 3.2 A resolution. The 230-kilodalton RAG1-RAG2 heterotetramer is 'Y-shaped', with the amino-terminal domains of the two RAG1 chains forming an intertwined stalk. Each RAG1-RAG2 heterodimer composes one arm of the 'Y', with the active site in the middle and RAG2 at its tip. The RAG1-RAG2 structure rationalizes more than 60 mutations identified in immunodeficient patients, as well as a large body of genetic and biochemical data. The architectural similarity between RAG1 and the hairpin-forming transposases Hermes and Tn5 suggests the evolutionary conservation of these DNA rearrangements.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342785/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342785/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Min-Sung -- Lapkouski, Mikalai -- Yang, Wei -- Gellert, Martin -- Z01 DK036147-01/Intramural NIH HHS/ -- Z01 DK036147-02/Intramural NIH HHS/ -- Z01 DK036167-01/Intramural NIH HHS/ -- Z01 DK036167-02/Intramural NIH HHS/ -- ZIA DK036147-03/Intramural NIH HHS/ -- ZIA DK036147-04/Intramural NIH HHS/ -- ZIA DK036147-05/Intramural NIH HHS/ -- ZIA DK036147-06/Intramural NIH HHS/ -- ZIA DK036147-07/Intramural NIH HHS/ -- ZIA DK036147-08/Intramural NIH HHS/ -- ZIA DK036167-03/Intramural NIH HHS/ -- ZIA DK036167-04/Intramural NIH HHS/ -- ZIA DK036167-05/Intramural NIH HHS/ -- ZIA DK036167-06/Intramural NIH HHS/ -- ZIA DK036167-07/Intramural NIH HHS/ -- England -- Nature. 2015 Feb 26;518(7540):507-11. doi: 10.1038/nature14174. Epub 2015 Feb 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25707801" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA-Binding Proteins/*chemistry/genetics/metabolism ; Homeodomain Proteins/*chemistry/genetics/metabolism ; Humans ; Mice ; Models, Molecular ; Mutation/genetics ; Protein Multimerization ; Protein Structure, Quaternary ; Severe Combined Immunodeficiency/genetics ; Transposases/chemistry ; VDJ Recombinases/*chemistry/metabolism ; X-Linked Combined Immunodeficiency Diseases/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-08-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Jianguo -- Yang, Wu -- New York, N.Y. -- Science. 2012 Aug 10;337(6095):649-50. doi: 10.1126/science.1219471.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Systems Integration and Sustainability, Michigan State University, East Lansing, MI 48824, USA. liuji@msu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22879488" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Animals ; China ; *Conservation of Natural Resources ; Ecosystem ; Environmental Monitoring ; Humans ; International Cooperation ; Population Growth ; *Public Policy ; *Water ; Water Pollution ; Water Quality ; *Water Supply
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-12-17
    Description: Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390078/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390078/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Guojie -- Li, Cai -- Li, Qiye -- Li, Bo -- Larkin, Denis M -- Lee, Chul -- Storz, Jay F -- Antunes, Agostinho -- Greenwold, Matthew J -- Meredith, Robert W -- Odeen, Anders -- Cui, Jie -- Zhou, Qi -- Xu, Luohao -- Pan, Hailin -- Wang, Zongji -- Jin, Lijun -- Zhang, Pei -- Hu, Haofu -- Yang, Wei -- Hu, Jiang -- Xiao, Jin -- Yang, Zhikai -- Liu, Yang -- Xie, Qiaolin -- Yu, Hao -- Lian, Jinmin -- Wen, Ping -- Zhang, Fang -- Li, Hui -- Zeng, Yongli -- Xiong, Zijun -- Liu, Shiping -- Zhou, Long -- Huang, Zhiyong -- An, Na -- Wang, Jie -- Zheng, Qiumei -- Xiong, Yingqi -- Wang, Guangbiao -- Wang, Bo -- Wang, Jingjing -- Fan, Yu -- da Fonseca, Rute R -- Alfaro-Nunez, Alonzo -- Schubert, Mikkel -- Orlando, Ludovic -- Mourier, Tobias -- Howard, Jason T -- Ganapathy, Ganeshkumar -- Pfenning, Andreas -- Whitney, Osceola -- Rivas, Miriam V -- Hara, Erina -- Smith, Julia -- Farre, Marta -- Narayan, Jitendra -- Slavov, Gancho -- Romanov, Michael N -- Borges, Rui -- Machado, Joao Paulo -- Khan, Imran -- Springer, Mark S -- Gatesy, John -- Hoffmann, Federico G -- Opazo, Juan C -- Hastad, Olle -- Sawyer, Roger H -- Kim, Heebal -- Kim, Kyu-Won -- Kim, Hyeon Jeong -- Cho, Seoae -- Li, Ning -- Huang, Yinhua -- Bruford, Michael W -- Zhan, Xiangjiang -- Dixon, Andrew -- Bertelsen, Mads F -- Derryberry, Elizabeth -- Warren, Wesley -- Wilson, Richard K -- Li, Shengbin -- Ray, David A -- Green, Richard E -- O'Brien, Stephen J -- Griffin, Darren -- Johnson, Warren E -- Haussler, David -- Ryder, Oliver A -- Willerslev, Eske -- Graves, Gary R -- Alstrom, Per -- Fjeldsa, Jon -- Mindell, David P -- Edwards, Scott V -- Braun, Edward L -- Rahbek, Carsten -- Burt, David W -- Houde, Peter -- Zhang, Yong -- Yang, Huanming -- Wang, Jian -- Avian Genome Consortium -- Jarvis, Erich D -- Gilbert, M Thomas P -- Wang, Jun -- DP1 OD000448/OD/NIH HHS/ -- DP1OD000448/OD/NIH HHS/ -- R01 HL087216/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1311-20. doi: 10.1126/science.1251385. Epub 2014 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark. zhanggj@genomics.cn jarvis@neuro.duke.edu mtpgilbert@gmail.com wangj@genomics.cn. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. ; Royal Veterinary College, University of London, London, UK. ; Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Republic of Korea. Cho and Kim Genomics, Seoul National University Research Park, Seoul 151-919, Republic of Korea. ; School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA. ; Centro de Investigacion en Ciencias del Mar y Limnologia (CIMAR)/Centro Interdisciplinar de Investigacao Marinha e Ambiental (CIIMAR), Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal. Departamento de Biologia, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal. ; Department of Biological Sciences, University of South Carolina, Columbia, SC, USA. ; Department of Biology and Molecular Biology, Montclair State University, Montclair, NJ 07043, USA. ; Department of Animal Ecology, Uppsala University, Norbyvagen 18D, S-752 36 Uppsala, Sweden. ; Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia. Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore. ; Department of Integrative Biology University of California, Berkeley, CA 94720, USA. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. College of Life Sciences, Wuhan University, Wuhan 430072, China. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. BGI Education Center,University of Chinese Academy of Sciences,Shenzhen, 518083, China. ; Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. ; Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA. ; Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK. ; School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK. ; Centro de Investigacion en Ciencias del Mar y Limnologia (CIMAR)/Centro Interdisciplinar de Investigacao Marinha e Ambiental (CIIMAR), Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal. Instituto de Ciencias Biomedicas Abel Salazar (ICBAS), Universidade do Porto, Portugal. ; Department of Biology, University of California Riverside, Riverside, CA 92521, USA. ; Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. ; Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile. ; Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Post Office Box 7011, S-750 07, Uppsala, Sweden. ; Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Republic of Korea. Cho and Kim Genomics, Seoul National University Research Park, Seoul 151-919, Republic of Korea. Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea. ; Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Republic of Korea. ; Cho and Kim Genomics, Seoul National University Research Park, Seoul 151-919, Republic of Korea. ; State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, China. ; State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, China. College of Animal Science and Technology, China Agricultural University, Beijing 100094, China. ; Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK. ; Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK. Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 China. ; International Wildlife Consultants, Carmarthen SA33 5YL, Wales, UK. ; Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Roskildevej 38, DK-2000 Frederiksberg, Denmark. ; Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA. Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA. ; The Genome Institute at Washington University, St. Louis, MO 63108, USA. ; College of Medicine and Forensics, Xi'an Jiaotong University, Xi'an, 710061, China. ; Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. ; Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. ; Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia. Nova Southeastern University Oceanographic Center 8000 N Ocean Drive, Dania, FL 33004, USA. ; Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA 22630, USA. ; Genetics Division, San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92027, USA. ; Department of Vertebrate Zoology, MRC-116, National Museum of Natural History, Smithsonian Institution, Post Office Box 37012, Washington, DC 20013-7012, USA. Center for Macroecology, Evolution and Climate, the Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. ; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China. Swedish Species Information Centre, Swedish University of Agricultural Sciences, Box 7007, SE-750 07 Uppsala, Sweden. ; Center for Macroecology, Evolution and Climate, the Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. ; Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, USA. ; Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA. ; Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA. ; Center for Macroecology, Evolution and Climate, the Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. Imperial College London, Grand Challenges in Ecosystems and the Environment Initiative, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK. ; Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The Roslin Institute Building, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK. ; Department of Biology, New Mexico State University, Box 30001 MSC 3AF, Las Cruces, NM 88003, USA. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China. ; Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA. zhanggj@genomics.cn jarvis@neuro.duke.edu mtpgilbert@gmail.com wangj@genomics.cn. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia, 6102, Australia. zhanggj@genomics.cn jarvis@neuro.duke.edu mtpgilbert@gmail.com wangj@genomics.cn. ; China National GeneBank, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China. Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark. Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia. Department of Medicine, University of Hong Kong, Hong Kong. zhanggj@genomics.cn jarvis@neuro.duke.edu mtpgilbert@gmail.com wangj@genomics.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504712" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animals ; Biodiversity ; *Biological Evolution ; Birds/classification/*genetics/physiology ; Conserved Sequence ; Diet ; *Evolution, Molecular ; Female ; Flight, Animal ; Genes ; Genetic Variation ; *Genome ; Genomics ; Male ; Molecular Sequence Annotation ; Phylogeny ; Reproduction/genetics ; Selection, Genetic ; Sequence Analysis, DNA ; Synteny ; Vision, Ocular/genetics ; Vocalization, Animal
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-11-08
    Description: The embryonic pyruvate kinase M2 (PKM2) isoform is highly expressed in human cancer. In contrast to the established role of PKM2 in aerobic glycolysis or the Warburg effect, its non-metabolic functions remain elusive. Here we demonstrate, in human cancer cells, that epidermal growth factor receptor (EGFR) activation induces translocation of PKM2, but not PKM1, into the nucleus, where K433 of PKM2 binds to c-Src-phosphorylated Y333 of beta-catenin. This interaction is required for both proteins to be recruited to the CCND1 promoter, leading to HDAC3 removal from the promoter, histone H3 acetylation and cyclin D1 expression. PKM2-dependent beta-catenin transactivation is instrumental in EGFR-promoted tumour cell proliferation and brain tumour development. In addition, positive correlations have been identified between c-Src activity, beta-catenin Y333 phosphorylation and PKM2 nuclear accumulation in human glioblastoma specimens. Furthermore, levels of beta-catenin phosphorylation and nuclear PKM2 have been correlated with grades of glioma malignancy and prognosis. These findings reveal that EGF induces beta-catenin transactivation via a mechanism distinct from that induced by Wnt/Wingless and highlight the essential non-metabolic functions of PKM2 in EGFR-promoted beta-catenin transactivation, cell proliferation and tumorigenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3235705/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3235705/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Weiwei -- Xia, Yan -- Ji, Haitao -- Zheng, Yanhua -- Liang, Ji -- Huang, Wenhua -- Gao, Xiang -- Aldape, Kenneth -- Lu, Zhimin -- 5 P50 CA127001-03/CA/NCI NIH HHS/ -- 5R01CA109035/CA/NCI NIH HHS/ -- CA16672/CA/NCI NIH HHS/ -- R01 CA109035/CA/NCI NIH HHS/ -- R01 CA109035-05/CA/NCI NIH HHS/ -- England -- Nature. 2011 Dec 1;480(7375):118-22. doi: 10.1038/nature10598.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22056988" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Tumor ; Cyclin D1/metabolism ; *Gene Expression Regulation, Neoplastic ; HEK293 Cells ; Humans ; Mice ; NIH 3T3 Cells ; Neoplasms/physiopathology ; Nuclear Proteins/*metabolism ; Phosphorylation ; Protein Binding ; Protein Transport ; Protein-Tyrosine Kinases/metabolism ; Pyruvate Kinase/*metabolism ; Receptor, Epidermal Growth Factor/*metabolism ; beta Catenin/*metabolism ; src-Family Kinases
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-07-19
    Description: The tyrosine phosphatase SHP2, encoded by PTPN11, is required for the survival, proliferation and differentiation of various cell types. Germline activating mutations in PTPN11 cause Noonan syndrome, whereas somatic PTPN11 mutations cause childhood myeloproliferative disease and contribute to some solid tumours. Recently, heterozygous inactivating mutations in PTPN11 were found in metachondromatosis, a rare inherited disorder featuring multiple exostoses, enchondromas, joint destruction and bony deformities. The detailed pathogenesis of this disorder has remained unclear. Here we use a conditional knockout (floxed) Ptpn11 allele (Ptpn11(fl)) and Cre recombinase transgenic mice to delete Ptpn11 specifically in monocytes, macrophages and osteoclasts (lysozyme M-Cre; LysMCre) or in cathepsin K (Ctsk)-expressing cells, previously thought to be osteoclasts. LysMCre;Ptpn11(fl/fl) mice had mild osteopetrosis. Notably, however, CtskCre;Ptpn11(fl/fl) mice developed features very similar to metachondromatosis. Lineage tracing revealed a novel population of CtskCre-expressing cells in the perichondrial groove of Ranvier that display markers and functional properties consistent with mesenchymal progenitors. Chondroid neoplasms arise from these cells and show decreased extracellular signal-regulated kinase (ERK) pathway activation, increased Indian hedgehog (Ihh) and parathyroid hormone-related protein (Pthrp, also known as Pthlh) expression and excessive proliferation. Shp2-deficient chondroprogenitors had decreased fibroblast growth factor-evoked ERK activation and enhanced Ihh and Pthrp expression, whereas fibroblast growth factor receptor (FGFR) or mitogen-activated protein kinase kinase (MEK) inhibitor treatment of chondroid cells increased Ihh and Pthrp expression. Importantly, smoothened inhibitor treatment ameliorated metachondromatosis features in CtskCre;Ptpn11(fl/fl) mice. Thus, in contrast to its pro-oncogenic role in haematopoietic and epithelial cells, Ptpn11 is a tumour suppressor in cartilage, acting through a FGFR/MEK/ERK-dependent pathway in a novel progenitor cell population to prevent excessive Ihh production.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148013/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148013/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Wentian -- Wang, Jianguo -- Moore, Douglas C -- Liang, Haipei -- Dooner, Mark -- Wu, Qian -- Terek, Richard -- Chen, Qian -- Ehrlich, Michael G -- Quesenberry, Peter J -- Neel, Benjamin G -- 8P20GM103468/GM/NIGMS NIH HHS/ -- NIH R21AR57156/AR/NIAMS NIH HHS/ -- P20 RR025179/RR/NCRR NIH HHS/ -- R21 AR057156/AR/NIAMS NIH HHS/ -- R37CA49152/CA/NCI NIH HHS/ -- England -- Nature. 2013 Jul 25;499(7459):491-5. doi: 10.1038/nature12396. Epub 2013 Jul 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Orthopaedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, Rhode Island 02903, USA. wyang@lifespan.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23863940" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Neoplasms/drug therapy/genetics/*metabolism/*pathology ; Cartilage/metabolism/pathology ; Cathepsin K/deficiency/genetics/metabolism ; Cell Division ; Cell Lineage ; Chondromatosis/drug therapy/genetics/*metabolism/*pathology ; Exostoses, Multiple Hereditary/drug therapy/genetics/*metabolism/*pathology ; Fibroblast Growth Factors/metabolism ; Gene Deletion ; Gene Expression Regulation/drug effects ; Genes, Tumor Suppressor/physiology ; Hedgehog Proteins/antagonists & inhibitors/*metabolism ; MAP Kinase Signaling System ; Macrophages/metabolism ; Mesenchymal Stromal Cells/cytology/*metabolism ; Mice ; Mice, Knockout ; Mice, Transgenic ; Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors/metabolism ; Monocytes/metabolism ; Osteoclasts/metabolism ; Osteopetrosis/genetics/metabolism/pathology ; Parathyroid Hormone-Related Protein/metabolism ; Protein Tyrosine Phosphatase, Non-Receptor Type ; 11/*deficiency/genetics/metabolism ; *Signal Transduction/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-12-04
    Description: Ionic protein-lipid interactions are critical for the structure and function of membrane receptors, ion channels, integrins and many other proteins. However, the regulatory mechanism of these interactions is largely unknown. Here we show that Ca(2+) can bind directly to anionic phospholipids and thus modulate membrane protein function. The activation of T-cell antigen receptor-CD3 complex (TCR), a key membrane receptor for adaptive immunity, is regulated by ionic interactions between positively charged CD3epsilon/zeta cytoplasmic domains (CD3(CD)) and negatively charged phospholipids in the plasma membrane. Crucial tyrosines are buried in the membrane and are largely protected from phosphorylation in resting T cells. It is not clear how CD3(CD) dissociates from the membrane in antigen-stimulated T cells. The antigen engagement of even a single TCR triggers a Ca(2+) influx and TCR-proximal Ca(2+) concentration is higher than the average cytosolic Ca(2+) concentration. Our biochemical, live-cell fluorescence resonance energy transfer and NMR experiments showed that an increase in Ca(2+) concentration induced the dissociation of CD3(CD) from the membrane and the solvent exposure of tyrosine residues. As a consequence, CD3 tyrosine phosphorylation was significantly enhanced by Ca(2+) influx. Moreover, when compared with wild-type cells, Ca(2+) channel-deficient T cells had substantially lower levels of CD3 phosphorylation after stimulation. The effect of Ca(2+) on facilitating CD3 phosphorylation is primarily due to the charge of this ion, as demonstrated by the fact that replacing Ca(2+) with the non-physiological ion Sr(2+) resulted in the same feedback effect. Finally, (31)P NMR spectroscopy showed that Ca(2+) bound to the phosphate group in anionic phospholipids at physiological concentrations, thus neutralizing the negative charge of phospholipids. Rather than initiating CD3 phosphorylation, this regulatory pathway of Ca(2+) has a positive feedback effect on amplifying and sustaining CD3 phosphorylation and should enhance T-cell sensitivity to foreign antigens. Our study thus provides a new regulatory mechanism of Ca(2+) to T-cell activation involving direct lipid manipulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, Xiaoshan -- Bi, Yunchen -- Yang, Wei -- Guo, Xingdong -- Jiang, Yan -- Wan, Chanjuan -- Li, Lunyi -- Bai, Yibing -- Guo, Jun -- Wang, Yujuan -- Chen, Xiangjun -- Wu, Bo -- Sun, Hongbin -- Liu, Wanli -- Wang, Junfeng -- Xu, Chenqi -- England -- Nature. 2013 Jan 3;493(7430):111-5. doi: 10.1038/nature11699. Epub 2012 Dec 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23201688" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism/pharmacology ; Cell Membrane/metabolism ; Cytoplasm/metabolism ; Feedback, Physiological/drug effects ; Humans ; Jurkat Cells ; Lipid Bilayers/chemistry/metabolism ; *Lymphocyte Activation/drug effects ; Mice ; Phospholipids/*chemistry/*metabolism ; Phosphorylation/drug effects ; Receptor-CD3 Complex, Antigen, T-Cell/drug effects/immunology/*metabolism ; *Signal Transduction/drug effects ; Solvents/chemistry/metabolism ; Static Electricity ; T-Lymphocytes/drug effects/immunology/*metabolism ; Tyrosine/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...