ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-05-01
    Description: Agricultural biotechnology is limited by the inefficiencies of conventional random mutagenesis and transgenesis. Because targeted genome modification in plants has been intractable, plant trait engineering remains a laborious, time-consuming and unpredictable undertaking. Here we report a broadly applicable, versatile solution to this problem: the use of designed zinc-finger nucleases (ZFNs) that induce a double-stranded break at their target locus. We describe the use of ZFNs to modify endogenous loci in plants of the crop species Zea mays. We show that simultaneous expression of ZFNs and delivery of a simple heterologous donor molecule leads to precise targeted addition of an herbicide-tolerance gene at the intended locus in a significant number of isolated events. ZFN-modified maize plants faithfully transmit these genetic changes to the next generation. Insertional disruption of one target locus, IPK1, results in both herbicide tolerance and the expected alteration of the inositol phosphate profile in developing seeds. ZFNs can be used in any plant species amenable to DNA delivery; our results therefore establish a new strategy for plant genetic manipulation in basic science and agricultural applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shukla, Vipula K -- Doyon, Yannick -- Miller, Jeffrey C -- DeKelver, Russell C -- Moehle, Erica A -- Worden, Sarah E -- Mitchell, Jon C -- Arnold, Nicole L -- Gopalan, Sunita -- Meng, Xiangdong -- Choi, Vivian M -- Rock, Jeremy M -- Wu, Ying-Ying -- Katibah, George E -- Zhifang, Gao -- McCaskill, David -- Simpson, Matthew A -- Blakeslee, Beth -- Greenwalt, Scott A -- Butler, Holly J -- Hinkley, Sarah J -- Zhang, Lei -- Rebar, Edward J -- Gregory, Philip D -- Urnov, Fyodor D -- England -- Nature. 2009 May 21;459(7245):437-41. doi: 10.1038/nature07992. Epub 2009 Apr 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dow AgroSciences, 9330 Zionsville Road, Indianapolis, Indiana 46268, USA. vkshukla@dow.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19404259" target="_blank"〉PubMed〈/a〉
    Keywords: Biotechnology/*methods ; Deoxyribonucleases/*chemistry/genetics/*metabolism ; Food, Genetically Modified ; Gene Targeting/*methods ; Genes, Plant/genetics ; Genome, Plant/*genetics ; Herbicide Resistance/genetics ; Herbicides/pharmacology ; Heredity ; Inositol Phosphates/metabolism ; Mutagenesis, Site-Directed/methods ; Plants, Genetically Modified ; Recombination, Genetic/genetics ; Reproducibility of Results ; Zea mays/*genetics ; *Zinc Fingers
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-06-28
    Description: Evolutionary studies necessary to dissect diverse biological processes have been limited by the lack of reverse genetic approaches in most organisms with sequenced genomes. We established a broadly applicable strategy using zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) for targeted disruption of endogenous genes and cis-acting regulatory elements in diverged nematode species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3489282/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3489282/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wood, Andrew J -- Lo, Te-Wen -- Zeitler, Bryan -- Pickle, Catherine S -- Ralston, Edward J -- Lee, Andrew H -- Amora, Rainier -- Miller, Jeffrey C -- Leung, Elo -- Meng, Xiangdong -- Zhang, Lei -- Rebar, Edward J -- Gregory, Philip D -- Urnov, Fyodor D -- Meyer, Barbara J -- GM30702/GM/NIGMS NIH HHS/ -- R01 GM030702/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jul 15;333(6040):307. doi: 10.1126/science.1207773. Epub 2011 Jun 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute (HHMI), Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21700836" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis/*genetics ; Caenorhabditis elegans/*genetics ; Deoxyribonucleases, Type II Site-Specific/genetics/*metabolism ; Gene Targeting ; Genes, Helminth ; *Genetic Techniques ; *Genome, Helminth ; INDEL Mutation ; Mutagenesis ; Regulatory Elements, Transcriptional/*genetics ; Transcription Factors/chemistry ; Transgenes ; *Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...