ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • *Water  (7)
  • American Association for the Advancement of Science (AAAS)  (7)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (7)
  • 1
    Publication Date: 2008-05-24
    Description: Mineral deposits on the martian surface can elucidate ancient environmental conditions on the planet. Opaline silica deposits (as much as 91 weight percent SiO2) have been found in association with volcanic materials by the Mars rover Spirit. The deposits are present both as light-toned soils and as bedrock. We interpret these materials to have formed under hydrothermal conditions and therefore to be strong indicators of a former aqueous environment. This discovery is important for understanding the past habitability of Mars because hydrothermal environments on Earth support thriving microbial ecosystems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Squyres, S W -- Arvidson, R E -- Ruff, S -- Gellert, R -- Morris, R V -- Ming, D W -- Crumpler, L -- Farmer, J D -- Marais, D J Des -- Yen, A -- McLennan, S M -- Calvin, W -- Bell, J F 3rd -- Clark, B C -- Wang, A -- McCoy, T J -- Schmidt, M E -- de Souza, P A Jr -- New York, N.Y. -- Science. 2008 May 23;320(5879):1063-7. doi: 10.1126/science.1155429.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Astronomy, Space Sciences Building, Cornell University, Ithaca, NY 14853, USA. squyres@astro.cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18497295" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; Hot Temperature ; Hydrogen-Ion Concentration ; *Mars ; *Silicon Dioxide ; Spacecraft ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-12-11
    Description: The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grotzinger, J P -- Sumner, D Y -- Kah, L C -- Stack, K -- Gupta, S -- Edgar, L -- Rubin, D -- Lewis, K -- Schieber, J -- Mangold, N -- Milliken, R -- Conrad, P G -- DesMarais, D -- Farmer, J -- Siebach, K -- Calef, F 3rd -- Hurowitz, J -- McLennan, S M -- Ming, D -- Vaniman, D -- Crisp, J -- Vasavada, A -- Edgett, K S -- Malin, M -- Blake, D -- Gellert, R -- Mahaffy, P -- Wiens, R C -- Maurice, S -- Grant, J A -- Wilson, S -- Anderson, R C -- Beegle, L -- Arvidson, R -- Hallet, B -- Sletten, R S -- Rice, M -- Bell, J 3rd -- Griffes, J -- Ehlmann, B -- Anderson, R B -- Bristow, T F -- Dietrich, W E -- Dromart, G -- Eigenbrode, J -- Fraeman, A -- Hardgrove, C -- Herkenhoff, K -- Jandura, L -- Kocurek, G -- Lee, S -- Leshin, L A -- Leveille, R -- Limonadi, D -- Maki, J -- McCloskey, S -- Meyer, M -- Minitti, M -- Newsom, H -- Oehler, D -- Okon, A -- Palucis, M -- Parker, T -- Rowland, S -- Schmidt, M -- Squyres, S -- Steele, A -- Stolper, E -- Summons, R -- Treiman, A -- Williams, R -- Yingst, A -- MSL Science Team -- New York, N.Y. -- Science. 2014 Jan 24;343(6169):1242777. doi: 10.1126/science.1242777. Epub 2013 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Geologic and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24324272" target="_blank"〉PubMed〈/a〉
    Keywords: Bays ; Carbon/analysis ; *Exobiology ; *Extraterrestrial Environment ; Geologic Sediments/analysis/classification ; Hydrogen/analysis ; Hydrogen-Ion Concentration ; Iron/analysis/chemistry ; *Mars ; Nitrogen/analysis ; Oxidation-Reduction ; Oxygen/analysis ; Phosphorus/analysis ; Salinity ; Sulfur/analysis/chemistry ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1997
    Description: Images of the martian surface returned by the Imager for Mars Pathfinder (IMP) show a complex surface of ridges and troughs covered by rocks that have been transported and modified by fluvial, aeolian, and impact processes. Analysis of the spectral signatures in the scene (at 440- to 1000-nanometer wavelength) reveal three types of rock and four classes of soil. Upward-looking IMP images of the predawn sky show thin, bluish clouds that probably represent water ice forming on local atmospheric haze (opacity approximately 0.5). Haze particles are about 1 micrometer in radius and the water vapor column abundance is about 10 precipitable micrometers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, P H -- Bell, J F 3rd -- Bridges, N T -- Britt, D T -- Gaddis, L -- Greeley, R -- Keller, H U -- Herkenhoff, K E -- Jaumann, R -- Johnson, J R -- Kirk, R L -- Lemmon, M -- Maki, J N -- Malin, M C -- Murchie, S L -- Oberst, J -- Parker, T J -- Reid, R J -- Sablotny, R -- Soderblom, L A -- Stoker, C -- Sullivan, R -- Thomas, N -- Tomasko, M G -- Wegryn, E -- New York, N.Y. -- Science. 1997 Dec 5;278(5344):1758-65.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA. psmith@lpl.arizona.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9388170" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; *Extraterrestrial Environment ; Ice ; *Mars ; Minerals ; *Water ; Wind
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-04
    Description: Sedimentary rocks at Eagle crater in Meridiani Planum are composed of fine-grained siliciclastic materials derived from weathering of basaltic rocks, sulfate minerals (including magnesium sulfate and jarosite) that constitute several tens of percent of the rock by weight, and hematite. Cross-stratification observed in rock outcrops indicates eolian and aqueous transport. Diagenetic features include hematite-rich concretions and crystal-mold vugs. We interpret the rocks to be a mixture of chemical and siliciclastic sediments with a complex diagenetic history. The environmental conditions that they record include episodic inundation by shallow surface water, evaporation, and desiccation. The geologic record at Meridiani Planum suggests that conditions were suitable for biological activity for a period of time in martian history.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Squyres, S W -- Grotzinger, J P -- Arvidson, R E -- Bell, J F 3rd -- Calvin, W -- Christensen, P R -- Clark, B C -- Crisp, J A -- Farrand, W H -- Herkenhoff, K E -- Johnson, J R -- Klingelhofer, G -- Knoll, A H -- McLennan, S M -- McSween, H Y Jr -- Morris, R V -- Rice, J W Jr -- Rieder, R -- Soderblom, L A -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1709-14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Astronomy, Cornell University, Ithaca, NY 14853, USA. squyres@astrosun.tn.cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576604" target="_blank"〉PubMed〈/a〉
    Keywords: Exobiology ; Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; Life ; *Mars ; Minerals ; Silicates ; Spacecraft ; Spectrum Analysis ; Sulfates ; Sulfur ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-04
    Description: The Microscopic Imager on the Opportunity rover analyzed textures of soils and rocks at Meridiani Planum at a scale of 31 micrometers per pixel. The uppermost millimeter of some soils is weakly cemented, whereas other soils show little evidence of cohesion. Rock outcrops are laminated on a millimeter scale; image mosaics of cross-stratification suggest that some sediments were deposited by flowing water. Vugs in some outcrop faces are probably molds formed by dissolution of relatively soluble minerals during diagenesis. Microscopic images support the hypothesis that hematite-rich spherules observed in outcrops and soils also formed diagenetically as concretions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herkenhoff, K E -- Squyres, S W -- Arvidson, R -- Bass, D S -- Bell, J F 3rd -- Bertelsen, P -- Ehlmann, B L -- Farrand, W -- Gaddis, L -- Greeley, R -- Grotzinger, J -- Hayes, A G -- Hviid, S F -- Johnson, J R -- Jolliff, B -- Kinch, K M -- Knoll, A H -- Madsen, M B -- Maki, J N -- McLennan, S M -- McSween, H Y -- Ming, D W -- Rice, J W Jr -- Richter, L -- Sims, M -- Smith, P H -- Soderblom, L A -- Spanovich, N -- Sullivan, R -- Thompson, S -- Wdowiak, T -- Weitz, C -- Whelley, P -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1727-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Geological Survey Astrogeology Team, Flagstaff, AZ 86001, USA. kherkenhoff@usgs.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576607" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; *Mars ; Minerals ; Silicates ; Spacecraft ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-05-05
    Description: The rover Opportunity has investigated the rim of Endeavour Crater, a large ancient impact crater on Mars. Basaltic breccias produced by the impact form the rim deposits, with stratigraphy similar to that observed at similar-sized craters on Earth. Highly localized zinc enrichments in some breccia materials suggest hydrothermal alteration of rim deposits. Gypsum-rich veins cut sedimentary rocks adjacent to the crater rim. The gypsum was precipitated from low-temperature aqueous fluids flowing upward from the ancient materials of the rim, leading temporarily to potentially habitable conditions and providing some of the waters involved in formation of the ubiquitous sulfate-rich sandstones of the Meridiani region.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Squyres, S W -- Arvidson, R E -- Bell, J F 3rd -- Calef, F 3rd -- Clark, B C -- Cohen, B A -- Crumpler, L A -- de Souza, P A Jr -- Farrand, W H -- Gellert, R -- Grant, J -- Herkenhoff, K E -- Hurowitz, J A -- Johnson, J R -- Jolliff, B L -- Knoll, A H -- Li, R -- McLennan, S M -- Ming, D W -- Mittlefehldt, D W -- Parker, T J -- Paulsen, G -- Rice, M S -- Ruff, S W -- Schroder, C -- Yen, A S -- Zacny, K -- New York, N.Y. -- Science. 2012 May 4;336(6081):570-6. doi: 10.1126/science.1220476.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Astronomy, Cornell University, Ithaca, NY 14853, USA. squyres@astro.cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22556248" target="_blank"〉PubMed〈/a〉
    Keywords: Calcium Sulfate ; Extraterrestrial Environment ; Geological Phenomena ; *Mars ; Meteoroids ; Silicates ; Spacecraft ; *Water ; Zinc
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-01-25
    Description: Opportunity has investigated in detail rocks on the rim of the Noachian age Endeavour crater, where orbital spectral reflectance signatures indicate the presence of Fe(+3)-rich smectites. The signatures are associated with fine-grained, layered rocks containing spherules of diagenetic or impact origin. The layered rocks are overlain by breccias, and both units are cut by calcium sulfate veins precipitated from fluids that circulated after the Endeavour impact. Compositional data for fractures in the layered rocks suggest formation of Al-rich smectites by aqueous leaching. Evidence is thus preserved for water-rock interactions before and after the impact, with aqueous environments of slightly acidic to circum-neutral pH that would have been more favorable for prebiotic chemistry and microorganisms than those recorded by younger sulfate-rich rocks at Meridiani Planum.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arvidson, R E -- Squyres, S W -- Bell, J F 3rd -- Catalano, J G -- Clark, B C -- Crumpler, L S -- de Souza, P A Jr -- Fairen, A G -- Farrand, W H -- Fox, V K -- Gellert, R -- Ghosh, A -- Golombek, M P -- Grotzinger, J P -- Guinness, E A -- Herkenhoff, K E -- Jolliff, B L -- Knoll, A H -- Li, R -- McLennan, S M -- Ming, D W -- Mittlefehldt, D W -- Moore, J M -- Morris, R V -- Murchie, S L -- Parker, T J -- Paulsen, G -- Rice, J W -- Ruff, S W -- Smith, M D -- Wolff, M J -- New York, N.Y. -- Science. 2014 Jan 24;343(6169):1248097. doi: 10.1126/science.1248097.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Planetary Sciences, Washington University in Saint Louis, St. Louis, MO 63130, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24458648" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria ; *Exobiology ; Extraterrestrial Environment/*chemistry ; Geologic Sediments ; Hydrogen-Ion Concentration ; *Mars ; Silicates/analysis/chemistry ; Spacecraft ; Sulfates/chemistry ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...