ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-09-01
    Description: We have developed a refined geologic map and stratigraphy for lower Mt. Sharp using coordinated analyses of new spectral, thermophysical, and morphologic orbital data products. The Mt. Sharp group consists of seven relatively planar units delineated by differences in texture, mineralogy, and thermophysical properties. These units are (1-3) three spatially adjacent units in the Murray formation which contain a variety of secondary phases and are distinguishable by thermal inertia and albedo differences, (4) a phyllosilicate-bearing unit, (5) a hematite-capped ridge unit, (6) a unit associated with material having a strongly sloped spectral signature at visible-near infrared wavelengths, and (7) a layered sulfate unit. The Siccar Point group consists of the Stimson formation and two additional units that unconformably overlie the Mt. Sharp group. All Siccar Point group units are distinguished by higher thermal inertia values and record a period of substantial deposition and exhumation that followed the deposition and exhumation of the Mt. Sharp group. Several spatially extensive silica deposits associated with veins and fractures show late stage silica enrichment within lower Mt. Sharp was pervasive. At least two laterally extensive hematitic deposits are present at different stratigraphic intervals, and both are geometrically conformable with lower Mt. Sharp strata. The occurrence of hematite at multiple stratigraphic horizons suggests redox interfaces were widespread in space and/or in time, and future measurements by the Mars Science Laboratory Curiosity rover will provide further insights into the depositional settings of these and other mineral phases.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-02-10
    Description: CRISM hyperspectral (1.0-2.65 µm) along-track oversampled observations (ATOs) covering Victoria, Santa Maria, Endeavour, and Ada craters were processed to 6 m/pixel and used in combination with Opportunity observations to detect and map hydrated Mg and Ca-sulfate minerals in the Burns formation. The strongest spectral absorption features were found to be associated with outcrops that are relatively young and fresh (Ada) or preferentially scoured of dust, soil, and coatings by prevailing winds. At Victoria and Santa Maria the scoured areas are on the southeastern rims and walls, opposite to the sides where wind-blown sands extend out of the craters. At Endeavour the deepest absorptions are in Botany Bay, a subdued and buried rim segment that exhibits high thermal inertias, extensive outcrops, and is interpreted to be a region of enhanced wind scour extending up and out of the crater. Ada, Victoria, and Santa Maria outcrops expose the upper portion of the preserved Burns formation and show spectral evidence for the presence of kieserite. In contrast, gypsum is pervasive spectrally in the Botany Bay exposures. Gypsum, a relatively insoluble evaporative mineral, is interpreted to have formed close to the contact with the Noachian crust as rising ground waters brought brines close to and onto the surface, either as a direct precipitate or during later diagenesis. The presence of kieserite at the top of the section is hypothesized to reflect precipitation from evaporatively concentrated brines or dehydration of polyhydrated sulfates, in both scenarios as the aqueous environment evolved to very arid conditions.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-02-12
    Description: Using the Mars Exploration Rover Opportunity , we have compiled one of the first field geologic maps on Mars while traversing the Noachian terrain along the rim of the 22-km diameter Endeavour crater (Lat -2° 16’ 33”, Long -5° 10’ 51”). In situ mapping of the petrographic, elemental, structural, and stratigraphic characteristics of outcrops and rocks distinguishes four mappable bedrock lithologic units. Three of these rock units pre-date the surrounding Burns formation sulfate-rich sandstones and one, the Matijevic formation, represents conditions on early Mars pre-dating the formation of Endeavour crater. The stratigraphy assembled from these observations includes several geologic unconformities. The differences in lithologic units across these unconformities record changes in the character and intensity of the Martian aqueous environment over geologic time. Water circulated through fractures in the oldest rocks over periods long enough that texturally and elementally significant alteration occurred in fracture walls. These oldest pre-Endeavour rocks and their network of mineralized and altered fractures were preserved by burial beneath impact ejecta and were subsequently exhumed and exposed. The alteration along joints in the oldest rocks, and the mineralized veins and concentrations of trace metals in overlying lithologic units is direct evidence that copious volumes of mineralized and/or hydrothermal fluids circulated through the early Martian crust. The wide range in intensity of structural and chemical modification from outcrop to outcrop along the crater rim shows that the ejecta of large (〉8 km in diameter) impact craters is complex. These results imply that geologic complexity is to be anticipated in other areas of Mars where cratering has been a fundamental process in the local and regional geology and mineralogy.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-02-08
    Description: Opportunity has been traversing the Meridiani plains since 25 January 2004 (sol 1), acquiring numerous observations of the atmosphere, soils, and rocks. This paper provides an overview of key discoveries between sols 511 and 2300, complementing earlier papers covering results from the initial phases of the mission. Key new results include (1) atmospheric argon measurements that demonstrate the importance of atmospheric transport to and from the winter carbon dioxide polar ice caps; (2) observations showing that aeolian ripples covering the plains were generated by easterly winds during an epoch with enhanced Hadley cell circulation; (3) the discovery and characterization of cobbles and boulders that include iron and stony-iron meteorites and Martian impact ejecta; (4) measurements of wall rock strata within Erebus and Victoria craters that provide compelling evidence of formation by aeolian sand deposition, with local reworking within ephemeral lakes; (5) determination that the stratigraphy exposed in the walls of Victoria and Endurance craters show an enrichment of chlorine and depletion of magnesium and sulfur with increasing depth. This result implies that regional-scale aqueous alteration took place before formation of these craters. Most recently, Opportunity has been traversing toward the ancient Endeavour crater. Orbital data show that clay minerals are exposed on its rim. Hydrated sulfate minerals are exposed in plains rocks adjacent to the rim, unlike the surfaces of plains outcrops observed thus far by Opportunity. With continued mechanical health, Opportunity will reach terrains on and around Endeavour's rim that will be markedly different from anything examined to date.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: Abstract Exploration of Endeavour crater's Shoemaker formation rim rocks by the Opportunity rover, combined with extensive observations from the Mars Express and Mars Reconnaissance Orbiters, provides unique and quantitative insights into the processes that have degraded this 22‐km diameter Noachian age impact crater. These insights are informed by comparisons between Endeavour and the relatively young, and morphologically fresh appearing, 19‐km diameter Bopolu crater located 65 km to the southwest. Analyses of rover and orbiter data, combined with landscape evolution modeling using Bopolu topography as a starting point, demonstrate that significant weathering and fluvial degradation of Endeavour occurred during the Noachian Period, with ~0.3 km of vertical rim removal, ~0.9‐km backwasting of the rim, and deposition of ~0.5 km of fluvial‐deltaic‐lacustrine sediments on the crater floor, sourced from rim erosion. Pediments formed on external rim segments, with characteristic thin regolith covers over graded bedrock. Late Noachian to Early Hesperian age Grasberg formation draping sediments, and Burns formation sulfate‐rich sandstones, subsequently embayed all but high standing Shoemaker formation rocks. Burns formation strata accumulated in the crater interior up to a depth of ~0.8 km. Subsequent wind erosion of the interior deposits is indicated by an interior mound and moat, together with yardangs carved into Shoemaker formation rocks, and graded topographic profiles from Grasberg and Burns formation rocks up and through the interior rim Shoemaker formation outcrops. Up to ~0.4 km of Burns formation rocks were exhumed from within the crater by wind erosion to produce the mound and moat.
    Print ISSN: 2169-9097
    Electronic ISSN: 2169-9100
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-07-07
    Description: Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well-preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-10-17
    Description: The Opportunity rover's exploration of the portion of the rim of Endeavour crater known as Cape York included examination of the sulfate-bearing Grasberg formation and the Matijevic Hill region. Multispectral visible and near infrared (VNIR) Pancam observations were used to characterize reflectance properties of rock units. Using spectral endmember detection and classification approaches including a principal components/n-dimensional visualization, automatic sequential maximum angle convex cone method, and classification through hierarchical clustering, six main spectral classes of rock surfaces were identified: light-toned veins, Grasberg fm., the smectite-bearing Matijevic formation, the hematitic “blueberry” spherules, resistant spherules within the Matijevic fm. dubbed “newberries”, and the Shoemaker formation impact breccia. Some of these could be divided into spectral sub-classes. There were three types of veins: veins in the bench unit of Cape York, thinner veins in the Matijevic fm., and boxwork pattern-forming veins. The bench unit veins had higher 535 nm band depths than the other two vein sub-classes and a steeper 934 to 1009 nm slope. The Grasberg fm. has VNIR spectral features that are interpreted to indicate higher fractions of red hematite than in the sulfate-bearing Burns Fm. The Matijevic fm. includes both light-toned, fine-grained matrix and dark-toned veneers. The latter has a weak NIR absorption band centered near 950 nm consistent with nontronite. Observations of Rock Abrasion Tool brushed and ground newberries indicated that cuttings from the RAT grind had a longer wavelength reflectance maximum and deeper 535 nm band depth, consistent with more oxidized materials. Greater oxidation of cementing materials in the newberries is consistent with a diagenetic concretion origin.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-05-23
    Description: Physical properties of terrains encountered by the Curiosity rover during the first 360 sols of operations have been inferred from analysis of the scour zones produced by Sky Crane Landing System engine plumes, wheel touchdown dynamics, pits produced by ChemCam laser shots, rover wheel traverses over rocks, the extent of sinkage into soils, and the magnitude and sign of rover-based slippage during drives. Results have been integrated with morphologic, mineralogic, and thermophysical properties derived from orbital data, and Curiosity-based measurements, to understand the nature and origin of physical properties of traversed terrains. The hummocky plains (HP) landing site and traverse locations consist of moderately to well consolidated bedrock of alluvial origin variably covered by slightly cohesive, hard-packed basaltic sand and dust, with both embedded and surface-strewn rock clasts. Rock clasts have been added through local bedrock weathering and impact ejecta emplacement and form a pavement-like surface in which only small clasts (〈5 to 10 cm wide) have been pressed into the soil during wheel passages. The bedded fractured (BF) unit, site of Curiosity's first drilling activity, exposes several alluvial-lacustrine bedrock units with little to no soil cover and varying degrees of lithification. Small wheel sinkage values (〈1 cm) for both HP and BF surfaces demonstrate that compaction resistance countering driven-wheel thrust has been minimal and that rover slippage while traversing across horizontal surfaces or going uphill, and skid going downhill, have been dominated by terrain tilts and wheel-surface material shear modulus values.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-28
    Description: The Mars Global Surveyor (MGS) spacecraft achieved a 45-hour elliptical orbit at Mars on 11 September 1997 after an 11-month cruise from Earth. The mission is acquiring high-quality global observations of the martian surface and atmosphere and of its magnetic and gravitational fields. These observations will continue for one martian year.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Albee, A L -- Palluconi, F D -- Arvidson, R E -- New York, N.Y. -- Science. 1998 Mar 13;279(5357):1671-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉California Institute of Technology, Pasadena, CA, 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9497277" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Atmospheric Pressure ; *Extraterrestrial Environment ; Gravitation ; Magnetics ; *Mars ; Spacecraft
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-07-18
    Description: Phyllosilicates, a class of hydrous mineral first definitively identified on Mars by the OMEGA (Observatoire pour la Mineralogie, L'Eau, les Glaces et l'Activitie) instrument, preserve a record of the interaction of water with rocks on Mars. Global mapping showed that phyllosilicates are widespread but are apparently restricted to ancient terrains and a relatively narrow range of mineralogy (Fe/Mg and Al smectite clays). This was interpreted to indicate that phyllosilicate formation occurred during the Noachian (the earliest geological era of Mars), and that the conditions necessary for phyllosilicate formation (moderate to high pH and high water activity) were specific to surface environments during the earliest era of Mars's history. Here we report results from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) of phyllosilicate-rich regions. We expand the diversity of phyllosilicate mineralogy with the identification of kaolinite, chlorite and illite or muscovite, and a new class of hydrated silicate (hydrated silica). We observe diverse Fe/Mg-OH phyllosilicates and find that smectites such as nontronite and saponite are the most common, but chlorites are also present in some locations. Stratigraphic relationships in the Nili Fossae region show olivine-rich materials overlying phyllosilicate-bearing units, indicating the cessation of aqueous alteration before emplacement of the olivine-bearing unit. Hundreds of detections of Fe/Mg phyllosilicate in rims, ejecta and central peaks of craters in the southern highland Noachian cratered terrain indicate excavation of altered crust from depth. We also find phyllosilicate in sedimentary deposits clearly laid by water. These results point to a rich diversity of Noachian environments conducive to habitability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mustard, John F -- Murchie, S L -- Pelkey, S M -- Ehlmann, B L -- Milliken, R E -- Grant, J A -- Bibring, J-P -- Poulet, F -- Bishop, J -- Dobrea, E Noe -- Roach, L -- Seelos, F -- Arvidson, R E -- Wiseman, S -- Green, R -- Hash, C -- Humm, D -- Malaret, E -- McGovern, J A -- Seelos, K -- Clancy, T -- Clark, R -- Marais, D D -- Izenberg, N -- Knudson, A -- Langevin, Y -- Martin, T -- McGuire, P -- Morris, R -- Robinson, M -- Roush, T -- Smith, M -- Swayze, G -- Taylor, H -- Titus, T -- Wolff, M -- England -- Nature. 2008 Jul 17;454(7202):305-9. doi: 10.1038/nature07097. Epub 2008 Jul 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geological Sciences, Brown University, Providence, Rhode Island 02912, USA. john_mustard@brown.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18633411" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...