ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2014-07-13
    Description: The Curiosity rover has analyzed abundant light-toned fracture-fill material within the Yellowknife Bay sedimentary deposits. The ChemCam instrument, coupled with Mastcam and ChemCam/Remote Micro Imager images, was able to demonstrate that these fracture fills consist of calcium sulfate veins, many of which appear to be hydrated at a level expected for gypsum and bassanite. Anhydrite is locally present, and is found in a location characterized by a nodular texture. An intricate assemblage of veins crosses the sediments, which were likely formed by precipitation from fluids circulating through fractures. The presence of veins throughout the entire ~5 m thick Yellowknife Bay sediments suggests that this process occurred well after sedimentation and cementation/lithification of those sediments. The sulfur-rich fluids may have originated in previously precipitated sulfate-rich layers, either before the deposition of the Sheepbed mudstones, or from unrelated units such as the sulfates at the base of Mount Sharp. The occurrence of these veins after the episodes of deposition of fluvial sediments at the surface suggests persistent aqueous activity in relatively non-acidic conditions.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-28
    Description: The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MERs) Spirit and Opportunity. The fraction of sand 〈150 micrometers in size contains ~55% crystalline material consistent with a basaltic heritage and ~45% x-ray amorphous material. The amorphous component of Rocknest is iron-rich and silicon-poor and is the host of the volatiles (water, oxygen, sulfur dioxide, carbon dioxide, and chlorine) detected by the Sample Analysis at Mars instrument and of the fine-grained nanophase oxide component first described from basaltic soils analyzed by MERs. The similarity between soils and aeolian materials analyzed at Gusev Crater, Meridiani Planum, and Gale Crater implies locally sourced, globally similar basaltic materials or globally and regionally sourced basaltic components deposited locally at all three locations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blake, D F -- Morris, R V -- Kocurek, G -- Morrison, S M -- Downs, R T -- Bish, D -- Ming, D W -- Edgett, K S -- Rubin, D -- Goetz, W -- Madsen, M B -- Sullivan, R -- Gellert, R -- Campbell, I -- Treiman, A H -- McLennan, S M -- Yen, A S -- Grotzinger, J -- Vaniman, D T -- Chipera, S J -- Achilles, C N -- Rampe, E B -- Sumner, D -- Meslin, P-Y -- Maurice, S -- Forni, O -- Gasnault, O -- Fisk, M -- Schmidt, M -- Mahaffy, P -- Leshin, L A -- Glavin, D -- Steele, A -- Freissinet, C -- Navarro-Gonzalez, R -- Yingst, R A -- Kah, L C -- Bridges, N -- Lewis, K W -- Bristow, T F -- Farmer, J D -- Crisp, J A -- Stolper, E M -- Des Marais, D J -- Sarrazin, P -- MSL Science Team -- New York, N.Y. -- Science. 2013 Sep 27;341(6153):1239505. doi: 10.1126/science.1239505.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Aeronautics and Space Administration Ames Research Center, Moffett Field, CA 94035, USA. david.blake@nasa.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24072928" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-12-11
    Description: The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grotzinger, J P -- Sumner, D Y -- Kah, L C -- Stack, K -- Gupta, S -- Edgar, L -- Rubin, D -- Lewis, K -- Schieber, J -- Mangold, N -- Milliken, R -- Conrad, P G -- DesMarais, D -- Farmer, J -- Siebach, K -- Calef, F 3rd -- Hurowitz, J -- McLennan, S M -- Ming, D -- Vaniman, D -- Crisp, J -- Vasavada, A -- Edgett, K S -- Malin, M -- Blake, D -- Gellert, R -- Mahaffy, P -- Wiens, R C -- Maurice, S -- Grant, J A -- Wilson, S -- Anderson, R C -- Beegle, L -- Arvidson, R -- Hallet, B -- Sletten, R S -- Rice, M -- Bell, J 3rd -- Griffes, J -- Ehlmann, B -- Anderson, R B -- Bristow, T F -- Dietrich, W E -- Dromart, G -- Eigenbrode, J -- Fraeman, A -- Hardgrove, C -- Herkenhoff, K -- Jandura, L -- Kocurek, G -- Lee, S -- Leshin, L A -- Leveille, R -- Limonadi, D -- Maki, J -- McCloskey, S -- Meyer, M -- Minitti, M -- Newsom, H -- Oehler, D -- Okon, A -- Palucis, M -- Parker, T -- Rowland, S -- Schmidt, M -- Squyres, S -- Steele, A -- Stolper, E -- Summons, R -- Treiman, A -- Williams, R -- Yingst, A -- MSL Science Team -- New York, N.Y. -- Science. 2014 Jan 24;343(6169):1242777. doi: 10.1126/science.1242777. Epub 2013 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Geologic and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24324272" target="_blank"〉PubMed〈/a〉
    Keywords: Bays ; Carbon/analysis ; *Exobiology ; *Extraterrestrial Environment ; Geologic Sediments/analysis/classification ; Hydrogen/analysis ; Hydrogen-Ion Concentration ; Iron/analysis/chemistry ; *Mars ; Nitrogen/analysis ; Oxidation-Reduction ; Oxygen/analysis ; Phosphorus/analysis ; Salinity ; Sulfur/analysis/chemistry ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-12-03
    Description: The environmental expression of sulfur compound disproportionation has been placed between 640 and 1050 million years ago (Ma) and linked to increases in atmospheric oxygen. These arguments have their basis in temporal changes in the magnitude of 34S/32S fractionations between sulfate and sulfide. Here, we present a Proterozoic seawater sulfate isotope record that includes the less abundant sulfur isotope 33S. These measurements imply that sulfur compound disproportionation was an active part of the sulfur cycle by 1300 Ma and that progressive Earth surface oxygenation may have characterized the Mesoproterozoic.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnston, David T -- Wing, Boswell A -- Farquhar, James -- Kaufman, Alan J -- Strauss, Harald -- Lyons, Timothy W -- Kah, Linda C -- Canfield, Donald E -- New York, N.Y. -- Science. 2005 Dec 2;310(5753):1477-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, USA. dtj@geol.umd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16322453" target="_blank"〉PubMed〈/a〉
    Keywords: *Environment ; Eukaryotic Cells/metabolism ; Evolution, Planetary ; Geologic Sediments ; Oxidation-Reduction ; Oxygen ; *Prokaryotic Cells/metabolism ; Seawater ; *Sulfur/metabolism ; Sulfur Isotopes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-06-01
    Description: Observations by the Mars Science Laboratory Mast Camera (Mastcam) in Gale crater reveal isolated outcrops of cemented pebbles (2 to 40 millimeters in diameter) and sand grains with textures typical of fluvial sedimentary conglomerates. Rounded pebbles in the conglomerates indicate substantial fluvial abrasion. ChemCam emission spectra at one outcrop show a predominantly feldspathic composition, consistent with minimal aqueous alteration of sediments. Sediment was mobilized in ancient water flows that likely exceeded the threshold conditions (depth 0.03 to 0.9 meter, average velocity 0.20 to 0.75 meter per second) required to transport the pebbles. Climate conditions at the time sediment was transported must have differed substantially from the cold, hyper-arid modern environment to permit aqueous flows across several kilometers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, R M E -- Grotzinger, J P -- Dietrich, W E -- Gupta, S -- Sumner, D Y -- Wiens, R C -- Mangold, N -- Malin, M C -- Edgett, K S -- Maurice, S -- Forni, O -- Gasnault, O -- Ollila, A -- Newsom, H E -- Dromart, G -- Palucis, M C -- Yingst, R A -- Anderson, R B -- Herkenhoff, K E -- Le Mouelic, S -- Goetz, W -- Madsen, M B -- Koefoed, A -- Jensen, J K -- Bridges, J C -- Schwenzer, S P -- Lewis, K W -- Stack, K M -- Rubin, D -- Kah, L C -- Bell, J F 3rd -- Farmer, J D -- Sullivan, R -- Van Beek, T -- Blaney, D L -- Pariser, O -- Deen, R G -- MSL Science Team -- New York, N.Y. -- Science. 2013 May 31;340(6136):1068-72. doi: 10.1126/science.1237317.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Planetary Science Institute, Tucson, AZ 85719, USA. williams@psi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23723230" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-10-10
    Description: The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittently for thousands to millions of years, implying a relatively wet climate that supplied moisture to the crater rim and transported sediment via streams into the lake basin. The deposits in Gale crater were then exhumed, probably by wind-driven erosion, creating Aeolis Mons (Mount Sharp).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grotzinger, J P -- Gupta, S -- Malin, M C -- Rubin, D M -- Schieber, J -- Siebach, K -- Sumner, D Y -- Stack, K M -- Vasavada, A R -- Arvidson, R E -- Calef, F 3rd -- Edgar, L -- Fischer, W F -- Grant, J A -- Griffes, J -- Kah, L C -- Lamb, M P -- Lewis, K W -- Mangold, N -- Minitti, M E -- Palucis, M -- Rice, M -- Williams, R M E -- Yingst, R A -- Blake, D -- Blaney, D -- Conrad, P -- Crisp, J -- Dietrich, W E -- Dromart, G -- Edgett, K S -- Ewing, R C -- Gellert, R -- Hurowitz, J A -- Kocurek, G -- Mahaffy, P -- McBride, M J -- McLennan, S M -- Mischna, M -- Ming, D -- Milliken, R -- Newsom, H -- Oehler, D -- Parker, T J -- Vaniman, D -- Wiens, R C -- Wilson, S A -- New York, N.Y. -- Science. 2015 Oct 9;350(6257):aac7575. doi: 10.1126/science.aac7575.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Geologic and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA. ; Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK. ; Malin Space Science Systems, Post Office Box 910148, San Diego, CA 92121, USA. ; Department of Earth and Planetary Sciences, University of California-Santa Cruz, Santa Cruz, CA 95064, USA. ; Department of Geological Sciences, Indiana University, Bloomington, IN 47405, USA. ; Department of Earth and Planetary Sciences, University of California-Davis, Davis, CA 95616, USA. ; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA. ; Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA. ; Astrogeology Science Center, U.S. Geological Survey, Flagstaff, AZ 86001, USA. ; Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC 20560, USA. ; Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA. ; Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA. ; Laboratoire Planetologie et Geodynamique de Nantes-Le Centre National de la Recherche, Unite Mixte de Recherche 6112 and Universite de Nantes, 44322 Nantes, France. ; Planetary Science Institute, Tucson, AZ 85719, USA. ; Department of Geology, Western Washington University, Bellingham, WA 98225, USA. ; Department of Space Sciences, NASA Ames Research Center, Moffett Field, CA 94035, USA. ; NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA. ; Department of Earth and Planetary Science, University of California-Berkeley, Berkeley, CA 94720, USA. ; Laboratoire de Geologie de Lyon, Universite de Lyon, 69364 Lyon, France. ; Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843, USA. ; Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada. ; Department of Geosciences, Stony Brook University, Stony Brook, NY 11794-2100, USA. ; Department of Geological Sciences, University of Texas at Austin, Austin, TX 78712, USA. ; Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX 77058, USA. ; Department of Geological Sciences, Brown University, Providence, RI 02912, USA. ; Institute of Meteoritics, University of New Mexico, Albuquerque, NM 87131 USA. ; LZ Technology, NASA Johnson Space Center, Houston, TX 77058, USA. ; Space Remote Sensing, Los Alamos National Laboratory, Los Alamos, NM 87544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26450214" target="_blank"〉PubMed〈/a〉
    Keywords: Climate ; Exhumation ; *Lakes ; *Mars ; Paleontology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-10-19
    Description: [1]  We have assessed the characteristics of clasts along Curiosity's traverse to shed light on the processes important in the genesis, modification and transportation of surface materials. Pebble- to cobble-sized clasts at Bradbury Landing, and subsequently along Curiosity's traverse to Yellowknife Bay, reflect a mixing of two endmember transport mechanisms. The general clast population likely represents material deposited via impact processes, including meteorite fragments, ejecta from distant craters, and impactites consisting of shocked and shock melted materials from within Gale Crater, which resulted predominantly in larger, angular clasts. A subset of rounded pebble-sized clasts has likely been modified by intermittent alluvial or fluvial processes. The morphology of this rounded clast population indicates that water was a more important transporting agent here than at other Mars sites that have been studied in situ. Finally, we identified populations of basalt clasts and porphyritic clasts of undetermined composition by their morphologic and textural characteristics; basalts are confirmed by geochemical data provided by ChemCam.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-06-22
    Description: The Sheepbed member of the Yellowknife Bay formation in Gale crater contains mm-scale nodules that represent an array of morphologies unlike those previously observed in sedimentary deposits on Mars. Three types of nodules have been identified in the Sheepbed member in order of decreasing abundance: solid nodules, hollow nodules, and filled nodules, a variant of hollow nodules whose voids have been filled with sulfate minerals. This study uses Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI) images from the Mars Science Laboratory Curiosity rover to determine the size, shape, and spatial distribution of the Sheepbed nodules. The Alpha Particle X-Ray Spectrometer (APXS) and ChemCam instruments provide geochemical data to help interpret nodule origins. Based on their physical characteristics, spatial distribution, and composition, the nodules are interpreted as concretions formed during early diagenesis. Several hypotheses are considered for hollow nodule formation including origins as primary or secondary void space. The occurrence of concretions interpreted in the Sheepbed mudstone and in several other sedimentary sequences on Mars suggests that active groundwater systems play an important role in the diagenesis of Martian sedimentary rocks. When concretions are formed during early diagenetic cementation, as interpreted for the Sheepbed nodules, they have the potential to create a taphonomic window favorable for the preservation of Martian organics.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-06-28
    Description: The Sheepbed mudstone, Yellowknife Bay formation, Gale crater, represents an ancient lakebed now exhumed and exposed on the Martian surface. The mudstone has four diagenetic textures, including a suite of early diagenetic nodules, hollow nodules, and raised ridges, and later diagenetic light-toned veins that cross-cut those features. In this study, we describe the distribution and characteristics of the raised ridges, a network of short spindle-shaped cracks that cross-cut bedding, do not form polygonal networks, and contain two to four layers of isopachous, erosion-resistant cement. The cracks have a clustered distribution within the Sheepbed member and transition laterally into concentrations of nodules and hollow nodules, suggesting that these features formed penecontemporaneously. Because of the erosion-resistant nature of the crack fills, their three-dimensional structure can be observed. Cracks that transition from sub-vertical to sub-horizontal orientations suggest that the cracks formed within the sediment rather than at the surface. This observation and comparison to terrestrial analogs indicate that these are synaeresis cracks - cracks that formed subaqueously. Synaeresis cracks form by salinity changes that cause sediment contraction, mechanical shaking of sediment, or gas production within the sediment. Examination of diagenetic features within the Sheepbed mudstone favors a gas production mechanism, which has been shown to create a variety of diagenetic morphologies comparable to the raised ridges and hollow nodules. The crack morphology and the isopachous, layered cement fill show that the cracks were filled in the phreatic zone and that the Sheepbed mudstone remained fluid-saturated after deposition and through early burial and lithification.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...