ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-12-19
    Description: The 'snowball Earth' hypothesis interprets geological evidence as indicating multi-million-year episodes of global glaciation near the beginning and end of the Proterozoic eon. On the basis of a coupled carbon cycle-climate model, Peltier et al. propose that temperature-dependent remineralization of organic carbon in a Neoproterozoic ocean with 100-1,000x more dissolved organic carbon than today could create a negative climate feedback, thereby preventing a snowball Earth. Their results are sensitive to initial conditions and model parameters; moreover, important geological observations and components of the carbon cycle are not considered-notably the absence of sources or sinks of carbon. Their model results fall short of explaining the geological evidence in the absence of global glaciation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoffman, Paul F -- Crowley, John W -- Johnston, David T -- Jones, David S -- Schrag, Daniel P -- England -- Nature. 2008 Dec 18;456(7224):E7; author reply E9-10. doi: 10.1038/nature07655.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19092866" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-04-18
    Description: An active microbial assemblage cycles sulfur in a sulfate-rich, ancient marine brine beneath Taylor Glacier, an outlet glacier of the East Antarctic Ice Sheet, with Fe(III) serving as the terminal electron acceptor. Isotopic measurements of sulfate, water, carbonate, and ferrous iron and functional gene analyses of adenosine 5'-phosphosulfate reductase imply that a microbial consortium facilitates a catalytic sulfur cycle. These metabolic pathways result from a limited organic carbon supply because of the absence of contemporary photosynthesis, yielding a subglacial ferrous brine that is anoxic but not sulfidic. Coupled biogeochemical processes below the glacier enable subglacial microbes to grow in extended isolation, demonstrating how analogous organic-starved systems, such as Neoproterozoic oceans, accumulated Fe(II) despite the presence of an active sulfur cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mikucki, Jill A -- Pearson, Ann -- Johnston, David T -- Turchyn, Alexandra V -- Farquhar, James -- Schrag, Daniel P -- Anbar, Ariel D -- Priscu, John C -- Lee, Peter A -- New York, N.Y. -- Science. 2009 Apr 17;324(5925):397-400. doi: 10.1126/science.1167350.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138 USA. jill.a.mikucki@dartmouth.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19372431" target="_blank"〉PubMed〈/a〉
    Keywords: Anaerobiosis ; Antarctic Regions ; Autotrophic Processes ; Bacteria/growth & development/*metabolism ; *Ecosystem ; Ferric Compounds/*metabolism ; Ferrous Compounds/*metabolism ; Heterotrophic Processes ; *Ice Cover ; Metabolic Networks and Pathways ; Molecular Sequence Data ; Oxidation-Reduction ; Oxidoreductases Acting on Sulfur Group Donors/genetics/metabolism ; Oxygen/metabolism ; Oxygen Isotopes/analysis ; Phylogeny ; Seawater/chemistry/*microbiology ; Sulfates/metabolism ; Sulfites/metabolism ; Sulfur/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-03-06
    Description: The Neoproterozoic was an era of great environmental and biological change, but a paucity of direct and precise age constraints on strata from this time has prevented the complete integration of these records. We present four high-precision U-Pb ages for Neoproterozoic rocks in northwestern Canada that constrain large perturbations in the carbon cycle, a major diversification and depletion in the microfossil record, and the onset of the Sturtian glaciation. A volcanic tuff interbedded with Sturtian glacial deposits, dated at 716.5 million years ago, is synchronous with the age of the Franklin large igneous province and paleomagnetic poles that pin Laurentia to an equatorial position. Ice was therefore grounded below sea level at very low paleolatitudes, which implies that the Sturtian glaciation was global in extent.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Macdonald, Francis A -- Schmitz, Mark D -- Crowley, James L -- Roots, Charles F -- Jones, David S -- Maloof, Adam C -- Strauss, Justin V -- Cohen, Phoebe A -- Johnston, David T -- Schrag, Daniel P -- New York, N.Y. -- Science. 2010 Mar 5;327(5970):1241-3. doi: 10.1126/science.1183325.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA. fmacdon@fas.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20203045" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-05-29
    Description: Sulfur isotopes in ancient sediments provide a record of past environmental conditions. The long-time-scale variability and apparent asymmetry in the magnitude of minor sulfur isotope fractionation in Archean sediments remain unexplained. Using an integrated biogeochemical model of the Archean sulfur cycle, we find that the preservation of mass-independent sulfur is influenced by a variety of extra-atmospheric mechanisms, including biological activity and continental crust formation. Preservation of atmospherically produced mass-independent sulfur implies limited metabolic sulfur cycling before approximately 2500 million years ago; the asymmetry in the record indicates that bacterial sulfate reduction was geochemically unimportant at this time. Our results suggest that the large-scale structure of the record reflects variability in the oxidation state of volcanic sulfur volatiles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Halevy, Itay -- Johnston, David T -- Schrag, Daniel P -- New York, N.Y. -- Science. 2010 Jul 9;329(5988):204-7. doi: 10.1126/science.1190298. Epub 2010 May 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA. itay.halevy@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20508089" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Bacteria/*metabolism ; Evolution, Planetary ; Geologic Sediments/*chemistry ; Iron/chemistry ; Models, Theoretical ; Oceans and Seas ; Oxidation-Reduction ; Photolysis ; Seawater/chemistry ; Sulfates/metabolism ; Sulfides/chemistry ; *Sulfur/chemistry/metabolism ; Sulfur Dioxide/chemistry ; Sulfur Isotopes/*analysis ; Time ; Volcanic Eruptions
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-12-03
    Description: The environmental expression of sulfur compound disproportionation has been placed between 640 and 1050 million years ago (Ma) and linked to increases in atmospheric oxygen. These arguments have their basis in temporal changes in the magnitude of 34S/32S fractionations between sulfate and sulfide. Here, we present a Proterozoic seawater sulfate isotope record that includes the less abundant sulfur isotope 33S. These measurements imply that sulfur compound disproportionation was an active part of the sulfur cycle by 1300 Ma and that progressive Earth surface oxygenation may have characterized the Mesoproterozoic.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnston, David T -- Wing, Boswell A -- Farquhar, James -- Kaufman, Alan J -- Strauss, Harald -- Lyons, Timothy W -- Kah, Linda C -- Canfield, Donald E -- New York, N.Y. -- Science. 2005 Dec 2;310(5753):1477-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, USA. dtj@geol.umd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16322453" target="_blank"〉PubMed〈/a〉
    Keywords: *Environment ; Eukaryotic Cells/metabolism ; Evolution, Planetary ; Geologic Sediments ; Oxidation-Reduction ; Oxygen ; *Prokaryotic Cells/metabolism ; Seawater ; *Sulfur/metabolism ; Sulfur Isotopes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-07-24
    Description: Sedimentary rocks deposited across the Proterozoic-Phanerozoic transition record extreme climate fluctuations, a potential rise in atmospheric oxygen or re-organization of the seafloor redox landscape, and the initial diversification of animals. It is widely assumed that the inferred redox change facilitated the observed trends in biodiversity. Establishing this palaeoenvironmental context, however, requires that changes in marine redox structure be tracked by means of geochemical proxies and translated into estimates of atmospheric oxygen. Iron-based proxies are among the most effective tools for tracking the redox chemistry of ancient oceans. These proxies are inherently local, but have global implications when analysed collectively and statistically. Here we analyse about 4,700 iron-speciation measurements from shales 2,300 to 360 million years old. Our statistical analyses suggest that subsurface water masses in mid-Proterozoic oceans were predominantly anoxic and ferruginous (depleted in dissolved oxygen and iron-bearing), but with a tendency towards euxinia (sulfide-bearing) that is not observed in the Neoproterozoic era. Analyses further indicate that early animals did not experience appreciable benthic sulfide stress. Finally, unlike proxies based on redox-sensitive trace-metal abundances, iron geochemical data do not show a statistically significant change in oxygen content through the Ediacaran and Cambrian periods, sharply constraining the magnitude of the end-Proterozoic oxygen increase. Indeed, this re-analysis of trace-metal data is consistent with oxygenation continuing well into the Palaeozoic era. Therefore, if changing redox conditions facilitated animal diversification, it did so through a limited rise in oxygen past critical functional and ecological thresholds, as is seen in modern oxygen minimum zone benthic animal communities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sperling, Erik A -- Wolock, Charles J -- Morgan, Alex S -- Gill, Benjamin C -- Kunzmann, Marcus -- Halverson, Galen P -- Macdonald, Francis A -- Knoll, Andrew H -- Johnston, David T -- England -- Nature. 2015 Jul 23;523(7561):451-4. doi: 10.1038/nature14589.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA [2] Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, California 90089, USA. ; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA. ; Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA. ; Department of Earth and Planetary Sciences/GEOTOP, McGill University, Montreal, Quebec, H3A 0E8, Canada. ; 1] Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA [2] Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26201598" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atmosphere/chemistry ; Biodiversity ; Geologic Sediments/chemistry ; History, Ancient ; Iron/*analysis/*chemistry ; Oceans and Seas ; Oxidation-Reduction ; Oxygen/*analysis/*chemistry/metabolism ; Seawater/chemistry ; Sulfides/metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-03-06
    Description: Interpretations of major climatic and biological events in Earth history are, in large part, derived from the stable carbon isotope records of carbonate rocks and sedimentary organic matter. Neoproterozoic carbonate records contain unusual and large negative isotopic anomalies within long periods (10-100 million years) characterized by delta(13)C in carbonate (delta(13)C(carb)) enriched to more than +5 per mil. Classically, delta(13)C(carb) is interpreted as a metric of the relative fraction of carbon buried as organic matter in marine sediments, which can be linked to oxygen accumulation through the stoichiometry of primary production. If a change in the isotopic composition of marine dissolved inorganic carbon is responsible for these excursions, it is expected that records of delta(13)C(carb) and delta(13)C in organic carbon (delta(13)C(org)) will covary, offset by the fractionation imparted by primary production. The documentation of several Neoproterozoic delta(13)C(carb) excursions that are decoupled from delta(13)C(org), however, indicates that other mechanisms may account for these excursions. Here we present delta(13)C data from Mongolia, northwest Canada and Namibia that capture multiple large-amplitude (over 10 per mil) negative carbon isotope anomalies, and use these data in a new quantitative mixing model to examine the behaviour of the Neoproterozoic carbon cycle. We find that carbonate and organic carbon isotope data from Mongolia and Canada are tightly coupled through multiple delta(13)C(carb) excursions, quantitatively ruling out previously suggested alternative explanations, such as diagenesis or the presence and terminal oxidation of a large marine dissolved organic carbon reservoir. Our data from Namibia, which do not record isotopic covariance, can be explained by simple mixing with a detrital flux of organic matter. We thus interpret delta(13)C(carb) anomalies as recording a primary perturbation to the surface carbon cycle. This interpretation requires the revisiting of models linking drastic isotope excursions to deep ocean oxygenation and the opening of environments capable of supporting animals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnston, D T -- Macdonald, F A -- Gill, B C -- Hoffman, P F -- Schrag, D P -- England -- Nature. 2012 Feb 29;483(7389):320-3. doi: 10.1038/nature10854.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138, USA. johnston@eps.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22388817" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Canada ; Carbon Cycle/*physiology ; Carbon Isotopes/analysis ; Geologic Sediments/chemistry ; History, Ancient ; Mongolia ; Namibia ; Oceans and Seas ; Seawater/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-09-12
    Description: A quantitative understanding of sources and sinks of fixed nitrogen in low-oxygen waters is required to explain the role of oxygen-minimum zones (OMZs) in controlling the fixed nitrogen inventory of the global ocean. Apparent imbalances in geochemical nitrogen budgets have spurred numerous studies to measure the contributions of heterotrophic and autotrophic N2-producing metabolisms (denitrification and anaerobic ammonia oxidation, respectively). Recently, 'cryptic' sulphur cycling was proposed as a partial solution to the fundamental biogeochemical problem of closing marine fixed-nitrogen budgets in intensely oxygen-deficient regions. The degree to which the cryptic sulphur cycle can fuel a loss of fixed nitrogen in the modern ocean requires the quantification of sulphur recycling in OMZ settings. Here we provide a new constraint for OMZ sulphate reduction based on isotopic profiles of oxygen ((18)O/(16)O) and sulphur ((33)S/(32)S, (34)S/(32)S) in seawater sulphate through oxygenated open-ocean and OMZ-bearing water columns. When coupled with observations and models of sulphate isotope dynamics and data-constrained model estimates of OMZ water-mass residence time, we find that previous estimates for sulphur-driven remineralization and loss of fixed nitrogen from the oceans are near the upper limit for what is possible given in situ sulphate isotope data.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnston, D T -- Gill, B C -- Masterson, A -- Beirne, E -- Casciotti, K L -- Knapp, A N -- Berelson, W -- England -- Nature. 2014 Sep 25;513(7519):530-3. doi: 10.1038/nature13698. Epub 2014 Sep 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA. ; Department of Geosciences, Virginia Tech University, Blacksburg, Virginia 24061, USA. ; Department of Environmental Earth System Science, Stanford University, Stanford, California 94305, USA. ; Department of Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee, Florida 32306, USA. ; Department of Earth Sciences, University of Southern California, Los Angeles, California 90089, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25209667" target="_blank"〉PubMed〈/a〉
    Keywords: Ammonia/metabolism ; Anaerobiosis ; Aquatic Organisms/metabolism ; Nitrogen/metabolism ; Nitrogen Fixation ; Oxidation-Reduction ; Oxygen/analysis/metabolism ; Oxygen Isotopes ; Seawater/*chemistry ; Sulfur/*analysis/chemistry/metabolism ; Sulfur Isotopes
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-09-29
    Description: High-resolution geochemical analyses of organic-rich shale and carbonate through the 2500 million-year-old Mount McRae Shale in the Hamersley Basin of northwestern Australia record changes in both the oxidation state of the surface ocean and the atmospheric composition. The Mount McRae record of sulfur isotopes captures the widespread and possibly permanent activation of the oxidative sulfur cycle for perhaps the first time in Earth's history. The correlation of the time-series sulfur isotope signals in northwestern Australia with equivalent strata from South Africa suggests that changes in the exogenic sulfur cycle recorded in marine sediments were global in scope and were linked to atmospheric evolution. The data suggest that oxygenation of the surface ocean preceded pervasive and persistent atmospheric oxygenation by 50 million years or more.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaufman, Alan J -- Johnston, David T -- Farquhar, James -- Masterson, Andrew L -- Lyons, Timothy W -- Bates, Steve -- Anbar, Ariel D -- Arnold, Gail L -- Garvin, Jessica -- Buick, Roger -- New York, N.Y. -- Science. 2007 Sep 28;317(5846):1900-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742-4211, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17901329" target="_blank"〉PubMed〈/a〉
    Keywords: *Atmosphere ; Australia ; Bacteria/metabolism ; Geologic Sediments/*chemistry/microbiology ; Oxidation-Reduction ; *Oxygen ; Seawater ; South Africa ; Sulfates/chemistry/metabolism ; *Sulfur/chemistry/metabolism ; Sulfur Isotopes/analysis ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-02-02
    Description: We present a framework for interpreting the carbon isotopic composition of sedimentary rocks, which in turn requires a fundamental reinterpretation of the carbon cycle and redox budgets over Earth's history. We propose that authigenic carbonate, produced in sediment pore fluids during early diagenesis, has played a major role in the carbon cycle in the past. This sink constitutes a minor component of the carbon isotope mass balance under the modern, high levels of atmospheric oxygen but was much larger in times of low atmospheric O(2) or widespread marine anoxia. Waxing and waning of a global authigenic carbonate sink helps to explain extreme carbon isotope variations in the Proterozoic, Paleozoic, and Triassic.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schrag, Daniel P -- Higgins, John A -- Macdonald, Francis A -- Johnston, David T -- New York, N.Y. -- Science. 2013 Feb 1;339(6119):540-3. doi: 10.1126/science.1229578.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA. daniel_schrag@harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23372007" target="_blank"〉PubMed〈/a〉
    Keywords: Anaerobiosis ; Atmosphere/chemistry ; *Carbon Cycle ; Carbon Isotopes/*analysis ; Carbonates/*chemistry ; Geologic Sediments/*chemistry ; Methane/chemistry ; Oxidation-Reduction ; Oxygen/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...