ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-12-17
    Description: Achondrite meteorites have anomalous enrichments in 33S, relative to chondrites, which have been attributed to photochemistry in the solar nebula. However, the putative photochemical reactions remain elusive, and predicted accompanying 33S depletions have not previously been found, which could indicate an erroneous assumption regarding the origins of the 33S anomalies,...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-08-05
    Description: Mass-independent isotopic signatures for delta(33)S, delta(34)S, and delta(36)S from sulfide and sulfate in Precambrian rocks indicate that a change occurred in the sulfur cycle between 2090 and 2450 million years ago (Ma). Before 2450 Ma, the cycle was influenced by gas-phase atmospheric reactions. These atmospheric reactions also played a role in determining the oxidation state of sulfur, implying that atmospheric oxygen partial pressures were low and that the roles of oxidative weathering and of microbial oxidation and reduction of sulfur were minimal. Atmospheric fractionation processes should be considered in the use of sulfur isotopes to study the onset and consequences of microbial fractionation processes in Earth's early history.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farquhar -- Bao -- Thiemens -- New York, N.Y. -- Science. 2000 Aug 4;289(5480):756-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. E-mail: jfarquha@ucsd.edu (J.F. ); hbao@ucsd.edu (H.B.); and MHT@chem.ucsd.edu (M.T.).〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10926533" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1998-06-11
    Description: Oxygen isotope measurements of carbonate from martian meteorite ALH 84001 (delta18O = 18.3 +/- 0.4 per mil, delta17O = 10.3 +/- 0.2 per mil, and Delta17O = 0.8 +/- 0.05 per mil) are fractionated with respect to those of silicate minerals. These measurements support the existence of two oxygen isotope reservoirs (the atmosphere and the silicate planet) on Mars at the time of carbonate growth. The cause of the atmospheric oxygen isotope anomaly may be exchange between CO2 and O(1D) produced by the photodecomposition of ozone. Atmospheric oxygen isotope compositions may be transferred to carbonate minerals by CO2-H2O exchange and mineral growth. A sink of 17O-depleted oxygen, as required by mass balance, may exist in the planetary regolith.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farquhar, J -- Thiemens, M H -- Jackson, T -- New York, N.Y. -- Science. 1998 Jun 5;280(5369):1580-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California San Diego, 92093-0356, USA. jfarquha@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9616116" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Carbon Dioxide/chemistry ; Carbonates/*chemistry ; Deuterium/chemistry ; Extraterrestrial Environment ; Hot Temperature ; Hydrogen/chemistry ; *Mars ; *Meteoroids ; Oxidation-Reduction ; *Oxygen Isotopes ; Ozone/chemistry ; Photolysis ; Water/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-04-18
    Description: An active microbial assemblage cycles sulfur in a sulfate-rich, ancient marine brine beneath Taylor Glacier, an outlet glacier of the East Antarctic Ice Sheet, with Fe(III) serving as the terminal electron acceptor. Isotopic measurements of sulfate, water, carbonate, and ferrous iron and functional gene analyses of adenosine 5'-phosphosulfate reductase imply that a microbial consortium facilitates a catalytic sulfur cycle. These metabolic pathways result from a limited organic carbon supply because of the absence of contemporary photosynthesis, yielding a subglacial ferrous brine that is anoxic but not sulfidic. Coupled biogeochemical processes below the glacier enable subglacial microbes to grow in extended isolation, demonstrating how analogous organic-starved systems, such as Neoproterozoic oceans, accumulated Fe(II) despite the presence of an active sulfur cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mikucki, Jill A -- Pearson, Ann -- Johnston, David T -- Turchyn, Alexandra V -- Farquhar, James -- Schrag, Daniel P -- Anbar, Ariel D -- Priscu, John C -- Lee, Peter A -- New York, N.Y. -- Science. 2009 Apr 17;324(5925):397-400. doi: 10.1126/science.1167350.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138 USA. jill.a.mikucki@dartmouth.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19372431" target="_blank"〉PubMed〈/a〉
    Keywords: Anaerobiosis ; Antarctic Regions ; Autotrophic Processes ; Bacteria/growth & development/*metabolism ; *Ecosystem ; Ferric Compounds/*metabolism ; Ferrous Compounds/*metabolism ; Heterotrophic Processes ; *Ice Cover ; Metabolic Networks and Pathways ; Molecular Sequence Data ; Oxidation-Reduction ; Oxidoreductases Acting on Sulfur Group Donors/genetics/metabolism ; Oxygen/metabolism ; Oxygen Isotopes/analysis ; Phylogeny ; Seawater/chemistry/*microbiology ; Sulfates/metabolism ; Sulfites/metabolism ; Sulfur/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-11-08
    Description: In the low-oxygen Archean world (〉2400 million years ago), seawater sulfate concentrations were much lower than today, yet open questions frustrate the translation of modern measurements of sulfur isotope fractionations into estimates of Archean seawater sulfate concentrations. In the water column of Lake Matano, Indonesia, a low-sulfate analog for the Archean ocean, we find large (〉20 per mil) sulfur isotope fractionations between sulfate and sulfide, but the underlying sediment sulfides preserve a muted range of delta(34)S values. Using models informed by sulfur cycling in Lake Matano, we infer Archean seawater sulfate concentrations of less than 2.5 micromolar. At these low concentrations, marine sulfate residence times were likely 10(3) to 10(4) years, and sulfate scarcity would have shaped early global biogeochemical cycles, possibly restricting biological productivity in Archean oceans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crowe, Sean A -- Paris, Guillaume -- Katsev, Sergei -- Jones, CarriAyne -- Kim, Sang-Tae -- Zerkle, Aubrey L -- Nomosatryo, Sulung -- Fowle, David A -- Adkins, Jess F -- Sessions, Alex L -- Farquhar, James -- Canfield, Donald E -- New York, N.Y. -- Science. 2014 Nov 7;346(6210):735-9. doi: 10.1126/science.1258966.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology and Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada. NordCEE and Department of Biology, University of Southern Denmark, Odense, Denmark. sacrowe1@gmail.com. ; Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA. ; Large Lakes Observatory and Department of Physics, University of Minnesota, Minneapolis, MN 55812, USA. ; Department of Microbiology and Immunology and Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada. NordCEE and Department of Biology, University of Southern Denmark, Odense, Denmark. ; School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario, Canada. ; Department of Earth and Environmental Sciences, University of St. Andrews, St. Andrews, UK. ; Research Center for Limnology, Indonesian Institute of Sciences, Cibinong, West Java, Indonesia. ; Department of Geology, University of Kansas, Lawrence, KS 66045, USA. ; Department of Geology, University of Maryland, College Park, MD 20742, USA. ; NordCEE and Department of Biology, University of Southern Denmark, Odense, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25378621" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Products/chemical synthesis/chemistry/*history ; History, Ancient ; Indonesia ; Seawater/*chemistry ; Sulfates/analysis/*history ; Sulfur Isotopes/analysis/history
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-11-08
    Description: The minor extent of sulfur isotope fractionation preserved in many Neoarchean sedimentary successions suggests that sulfate-reducing microorganisms played an insignificant role in ancient marine environments, despite evidence that these organisms evolved much earlier. We present bulk, microdrilled, and ion probe sulfur isotope data from carbonate-associated pyrite in the ~2.5-billion-year-old Batatal Formation of Brazil, revealing large mass-dependent fractionations (approaching 50 per mil) associated with microbial sulfate reduction, as well as consistently negative Delta(33)S values (~ -2 per mil) indicative of atmospheric photochemical reactions. Persistent (33)S depletion through ~60 meters of shallow marine carbonate implies long-term stability of seawater sulfate abundance and isotope composition. In contrast, a negative Delta(33)S excursion in lower Batatal strata indicates a response time of ~40,000 to 150,000 years, suggesting Neoarchean sulfate concentrations between ~1 and 10 muM.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhelezinskaia, Iadviga -- Kaufman, Alan J -- Farquhar, James -- Cliff, John -- New York, N.Y. -- Science. 2014 Nov 7;346(6210):742-4. doi: 10.1126/science.1256211.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, USA. zhelezka@umd.edu. ; Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, USA. ; Centre for Microscopy Characterization and Analysis, ARC Centre of Excellence for Core to Crust Fluid Systems, University of Western Australia, Crawley, WA 6009, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25378623" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/*metabolism ; Carbonates/chemistry ; Chemical Fractionation ; Iron/chemistry ; Oxidation-Reduction ; Seawater/*chemistry/*microbiology ; Sulfates/chemistry/isolation & purification/*metabolism ; Sulfides/chemistry ; Sulfur Isotopes/chemistry/isolation & purification/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2002-12-21
    Description: Populations of sulfide inclusions in diamonds from the Orapa kimberlite pipe in the Kaapvaal-Zimbabwe craton, Botswana, preserve mass-independent sulfur isotope fractionations. The data indicate that material was transferred from the atmosphere to the mantle in the Archean. The data also imply that sulfur is not well mixed in the diamond source regions, allowing for reconstruction of the Archean sulfur cycle and possibly offering insight into the nature of mantle convection through time.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farquhar, J -- Wing, B A -- McKeegan, K D -- Harris, J W -- Cartigny, P -- Thiemens, M H -- New York, N.Y. -- Science. 2002 Dec 20;298(5602):2369-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Earth System Science Interdisciplinary Center and Department of Geology, University of Maryland, College Park, MD 20742, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12493909" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2005-12-03
    Description: The environmental expression of sulfur compound disproportionation has been placed between 640 and 1050 million years ago (Ma) and linked to increases in atmospheric oxygen. These arguments have their basis in temporal changes in the magnitude of 34S/32S fractionations between sulfate and sulfide. Here, we present a Proterozoic seawater sulfate isotope record that includes the less abundant sulfur isotope 33S. These measurements imply that sulfur compound disproportionation was an active part of the sulfur cycle by 1300 Ma and that progressive Earth surface oxygenation may have characterized the Mesoproterozoic.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnston, David T -- Wing, Boswell A -- Farquhar, James -- Kaufman, Alan J -- Strauss, Harald -- Lyons, Timothy W -- Kah, Linda C -- Canfield, Donald E -- New York, N.Y. -- Science. 2005 Dec 2;310(5753):1477-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, USA. dtj@geol.umd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16322453" target="_blank"〉PubMed〈/a〉
    Keywords: *Environment ; Eukaryotic Cells/metabolism ; Evolution, Planetary ; Geologic Sediments ; Oxidation-Reduction ; Oxygen ; *Prokaryotic Cells/metabolism ; Seawater ; *Sulfur/metabolism ; Sulfur Isotopes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-04-18
    Description: The geochemistry of Martian meteorites provides a wealth of information about the solid planet and the surface and atmospheric processes that occurred on Mars. The degree to which Martian magmas may have assimilated crustal material, thus altering the geochemical signatures acquired from their mantle sources, is unclear. This issue features prominently in efforts to understand whether the source of light rare-earth elements in enriched shergottites lies in crustal material incorporated into melts or in mixing between enriched and depleted mantle reservoirs. Sulphur isotope systematics offer insight into some aspects of crustal assimilation. The presence of igneous sulphides in Martian meteorites with sulphur isotope signatures indicative of mass-independent fractionation suggests the assimilation of sulphur both during passage of magmas through the crust of Mars and at sites of emplacement. Here we report isotopic analyses of 40 Martian meteorites that represent more than half of the distinct known Martian meteorites, including 30 shergottites (28 plus 2 pairs, where pairs are separate fragments of a single meteorite), 8 nakhlites (5 plus 3 pairs), Allan Hills 84001 and Chassigny. Our data provide strong evidence that assimilation of sulphur into Martian magmas was a common occurrence throughout much of the planet's history. The signature of mass-independent fractionation observed also indicates that the atmospheric imprint of photochemical processing preserved in Martian meteoritic sulphide and sulphate is distinct from that observed in terrestrial analogues, suggesting fundamental differences between the dominant sulphur chemistry in the atmosphere of Mars and that in the atmosphere of Earth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Franz, Heather B -- Kim, Sang-Tae -- Farquhar, James -- Day, James M D -- Economos, Rita C -- McKeegan, Kevin D -- Schmitt, Axel K -- Irving, Anthony J -- Hoek, Joost -- Dottin, James 3rd -- England -- Nature. 2014 Apr 17;508(7496):364-8. doi: 10.1038/nature13175.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Research and Exploration in Space Science and Technology, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA [2] Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20742, USA. ; School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada. ; Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20742, USA. ; Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA. ; Department of Earth and Space Sciences, University of California, Los Angeles, California 90095, USA. ; Department of Earth and Space Sciences, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24740066" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...