ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Animals  (139)
  • SOLAR PHYSICS
  • 1995-1999  (140)
  • 1980-1984
  • 1996  (140)
  • 1
    Publication Date: 1996-10-25
    Description: The human genome is thought to harbor 50,000 to 100,000 genes, of which about half have been sampled to date in the form of expressed sequence tags. An international consortium was organized to develop and map gene-based sequence tagged site markers on a set of two radiation hybrid panels and a yeast artificial chromosome library. More than 16,000 human genes have been mapped relative to a framework map that contains about 1000 polymorphic genetic markers. The gene map unifies the existing genetic and physical maps with the nucleotide and protein sequence databases in a fashion that should speed the discovery of genes underlying inherited human disease. The integrated resource is available through a site on the World Wide Web at http://www.ncbi.nlm.nih.gov/SCIENCE96/.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schuler, G D -- Boguski, M S -- Stewart, E A -- Stein, L D -- Gyapay, G -- Rice, K -- White, R E -- Rodriguez-Tome, P -- Aggarwal, A -- Bajorek, E -- Bentolila, S -- Birren, B B -- Butler, A -- Castle, A B -- Chiannilkulchai, N -- Chu, A -- Clee, C -- Cowles, S -- Day, P J -- Dibling, T -- Drouot, N -- Dunham, I -- Duprat, S -- East, C -- Edwards, C -- Fan, J B -- Fang, N -- Fizames, C -- Garrett, C -- Green, L -- Hadley, D -- Harris, M -- Harrison, P -- Brady, S -- Hicks, A -- Holloway, E -- Hui, L -- Hussain, S -- Louis-Dit-Sully, C -- Ma, J -- MacGilvery, A -- Mader, C -- Maratukulam, A -- Matise, T C -- McKusick, K B -- Morissette, J -- Mungall, A -- Muselet, D -- Nusbaum, H C -- Page, D C -- Peck, A -- Perkins, S -- Piercy, M -- Qin, F -- Quackenbush, J -- Ranby, S -- Reif, T -- Rozen, S -- Sanders, C -- She, X -- Silva, J -- Slonim, D K -- Soderlund, C -- Sun, W L -- Tabar, P -- Thangarajah, T -- Vega-Czarny, N -- Vollrath, D -- Voyticky, S -- Wilmer, T -- Wu, X -- Adams, M D -- Auffray, C -- Walter, N A -- Brandon, R -- Dehejia, A -- Goodfellow, P N -- Houlgatte, R -- Hudson, J R Jr -- Ide, S E -- Iorio, K R -- Lee, W Y -- Seki, N -- Nagase, T -- Ishikawa, K -- Nomura, N -- Phillips, C -- Polymeropoulos, M H -- Sandusky, M -- Schmitt, K -- Berry, R -- Swanson, K -- Torres, R -- Venter, J C -- Sikela, J M -- Beckmann, J S -- Weissenbach, J -- Myers, R M -- Cox, D R -- James, M R -- Bentley, D -- Deloukas, P -- Lander, E S -- Hudson, T J -- HG00098/HG/NHGRI NIH HHS/ -- HG00206/HG/NHGRI NIH HHS/ -- HG00835/HG/NHGRI NIH HHS/ -- Wellcome Trust/United Kingdom -- etc. -- New York, N.Y. -- Science. 1996 Oct 25;274(5287):540-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8849440" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; *Chromosome Mapping ; Chromosomes, Artificial, Yeast ; Computer Communication Networks ; DNA, Complementary/genetics ; Databases, Factual ; Gene Expression ; Genetic Markers ; *Genome, Human ; *Human Genome Project ; Humans ; Multigene Family ; RNA, Messenger/genetics ; Sequence Homology, Nucleic Acid ; Sequence Tagged Sites
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1996-08-16
    Description: Small synthetic molecules termed growth hormone secretagogues (GHSs) act on the pituitary gland and the hypothalamus to stimulate and amplify pulsatile growth hormone (GH) release. A heterotrimeric GTP-binding protein (G protein)-coupled receptor (GPC-R) of the pituitary and arcuate ventro-medial and infundibular hypothalamus of swine and humans was cloned and was shown to be the target of the GHSs. On the basis of its pharmacological and molecular characterization, this GPC-R defines a neuroendocrine pathway for the control of pulsatile GH release and supports the notion that the GHSs mimic an undiscovered hormone.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Howard, A D -- Feighner, S D -- Cully, D F -- Arena, J P -- Liberator, P A -- Rosenblum, C I -- Hamelin, M -- Hreniuk, D L -- Palyha, O C -- Anderson, J -- Paress, P S -- Diaz, C -- Chou, M -- Liu, K K -- McKee, K K -- Pong, S S -- Chaung, L Y -- Elbrecht, A -- Dashkevicz, M -- Heavens, R -- Rigby, M -- Sirinathsinghji, D J -- Dean, D C -- Melillo, D G -- Patchett, A A -- Nargund, R -- Griffin, P R -- DeMartino, J A -- Gupta, S K -- Schaeffer, J M -- Smith, R G -- Van der Ploeg, L H -- New York, N.Y. -- Science. 1996 Aug 16;273(5277):974-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Merck Research Laboratories, Rahway, NJ 07065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8688086" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Codon ; DNA, Complementary/genetics ; GTP-Binding Proteins/metabolism ; Growth Hormone/*secretion ; Hormones/*metabolism ; Humans ; Hypothalamus, Middle/chemistry ; Indoles/*metabolism/pharmacology ; Macaca mulatta ; Molecular Sequence Data ; Oligopeptides/*metabolism ; Pituitary Gland/chemistry ; RNA, Complementary/genetics ; Rats ; Receptors, Cell Surface/analysis/chemistry/genetics/*metabolism ; *Receptors, G-Protein-Coupled ; Receptors, Ghrelin ; Spiro Compounds/*metabolism/pharmacology ; Swine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1996-07-19
    Description: Vaccination with naked DNA elicits cellular and humoral immune responses that have a T helper cell type 1 bias. However, plasmid vectors expressing large amounts of gene product do not necessarily induce immune responses to the encoded antigens. Instead, the immunogenicity of plasmid DNA (pDNA) requires short immunostimulatory DNA sequences (ISS) that contain a CpG dinucleotide in a particular base context. Human monocytes transfected with pDNA or double-stranded oligonucleotides containing the ISS, but not those transfected with ISS-deficient pDNA or oligonucleotides, transcribed large amounts of interferon-alpha, interferon-beta, and interleukin-12. Although ISS are necessary for gene vaccination, they down-regulate gene expression and thus may interfere with gene replacement therapy by inducing proinflammatory cytokines.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sato, Y -- Roman, M -- Tighe, H -- Lee, D -- Corr, M -- Nguyen, M D -- Silverman, G J -- Lotz, M -- Carson, D A -- Raz, E -- AI36214/AI/NIAID NIH HHS/ -- AI37305/AI/NIAID NIH HHS/ -- AR41897/AR/NIAMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1996 Jul 19;273(5273):352-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine and The Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0663, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662521" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Ampicillin Resistance/*genetics ; Animals ; *Antibody Formation ; Base Sequence ; CpG Islands ; Cytokines/*biosynthesis ; DNA/chemistry/genetics/*immunology ; Female ; Gene Expression Regulation ; Genetic Vectors ; Humans ; Injections, Intradermal ; Interferons/biosynthesis ; Interleukin-12/biosynthesis ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Monocytes/immunology ; Plasmids/genetics/*immunology ; Th1 Cells/immunology ; Transfection ; *Vaccination ; beta-Galactosidase/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1996-05-10
    Description: Transcription factors of the NFAT family are thought to play a major role in regulating the expression of cytokine genes and other inducible genes during the immune response. The role of NFAT1 was investigated by targeted disruption of the NFAT1 gene. Unexpectedly, cells from NFAT1 -/- mice showed increased primary responses to Leishmania major and mounted increased secondary responses to ovalbumin in vitro. In an in vivo model of allergic inflammation, the accumulation of eosinophils and levels of serum immunoglobulin E were increased in NFAT1 -/- mice. These results suggest that NFAT1 exerts a negative regulatory influence on the immune response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xanthoudakis, S -- Viola, J P -- Shaw, K T -- Luo, C -- Wallace, J D -- Bozza, P T -- Luk, D C -- Curran, T -- Rao, A -- CA42471/CA/NCI NIH HHS/ -- GM46227/GM/NIGMS NIH HHS/ -- P30 CA21765/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1996 May 10;272(5263):892-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurogenetics Program, Department of CNS Research, Hoffmann-LaRoche, Nutley, NJ 07110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8629027" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, Protozoan/immunology ; Cell Line ; Cytokines/biosynthesis ; DNA-Binding Proteins/genetics/*physiology ; Eosinophils/immunology ; Gene Targeting ; Hypersensitivity/*immunology ; *Immunity ; Immunoglobulin E/biosynthesis ; Immunologic Memory ; Leishmania major/immunology ; *Lymphocyte Activation ; Mice ; Molecular Sequence Data ; NFATC Transcription Factors ; *Nuclear Proteins ; Ovalbumin/immunology ; T-Lymphocytes/immunology ; Transcription Factors/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1996-03-01
    Description: HLA-DM (DM) facilitates peptide loading of major histocompatibility complex class II molecules in human cell lines. Mice lacking functional H2-M, the mouse equivalent of DM, have normal amounts of class II molecules at the cell surface, but most of these are associated with invariant chain-derived CLIP peptides. These mice contain large numbers of CD4+ T cells, which is indicative of positive selection in the thymus. Their CD4+ cells were unresponsive to self H2-M-deficient antigen-presenting cells (APCs) but were hyperreactive to wild-type APCs. H2-M-deficient APCs failed to elicit proliferative responses from wild-type T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fung-Leung, W P -- Surh, C D -- Liljedahl, M -- Pang, J -- Leturcq, D -- Peterson, P A -- Webb, S R -- Karlsson, L -- New York, N.Y. -- Science. 1996 Mar 1;271(5253):1278-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉R. W. Johnson Pharmaceutical Research Institute, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8638109" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigen Presentation ; Antigen-Presenting Cells/*immunology ; Antigens, Differentiation, B-Lymphocyte/immunology/metabolism ; Base Sequence ; CD4-Positive T-Lymphocytes/*immunology ; Cells, Cultured ; Gene Targeting ; Histocompatibility Antigens Class II/genetics/*immunology/metabolism ; Isoantigens/immunology ; Lymphocyte Activation ; Mice ; Molecular Sequence Data ; Mutation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1996-08-16
    Description: A signaling pathway has been elucidated whereby growth factors activate the transcription factor cyclic adenosine monophosphate response element-binding protein (CREB), a critical regulator of immediate early gene transcription. Growth factor-stimulated CREB phosphorylation at serine-133 is mediated by the RAS-mitogen-activated protein kinase (MAPK) pathway. MAPK activates CREB kinase, which in turn phosphorylates and activates CREB. Purification, sequencing, and biochemical characterization of CREB kinase revealed that it is identical to a member of the pp90(RSK) family, RSK2. RSK2 was shown to mediate growth factor induction of CREB serine-133 phosphorylation both in vitro and in vivo. These findings identify a cellular function for RSK2 and define a mechanism whereby growth factor signals mediated by RAS and MAPK are transmitted to the nucleus to activate gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xing, J -- Ginty, D D -- Greenberg, M E -- CA43855/CA/NCI NIH HHS/ -- NS34814-01/NS/NINDS NIH HHS/ -- P30-HD18655/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1996 Aug 16;273(5277):959-63.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8688081" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Line ; Cell Nucleus/metabolism ; Cyclic AMP Response Element-Binding Protein/*metabolism ; Epidermal Growth Factor/pharmacology ; *Gene Expression Regulation ; Growth Substances/*pharmacology ; Humans ; Molecular Sequence Data ; Nerve Growth Factors/pharmacology ; PC12 Cells ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; Rats ; Ribosomal Protein S6 Kinases ; *Signal Transduction ; Tetradecanoylphorbol Acetate/pharmacology ; Transcriptional Activation ; Transfection ; Tumor Cells, Cultured ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1996-11-22
    Description: The Caenorhabditis elegans dauer larva is specialized for dispersal without growth and is formed under conditions of overcrowding and limited food. The daf-7 gene, required for transducing environmental cues that support continuous development with plentiful food, encodes a transforming growth factor-beta (TGF-beta) superfamily member. A daf-7 reporter construct is expressed in the ASI chemosensory neurons. Dauer-inducing pheromone inhibits daf-7 expression and promotes dauer formation, whereas food reactivates daf-7 expression and promotes recovery from the dauer state. When the food/pheromone ratio is high, the level of daf-7 mRNA peaks during the L1 larval stage, when commitment to non-dauer development is made.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ren, P -- Lim, C S -- Johnsen, R -- Albert, P S -- Pilgrim, D -- Riddle, D L -- HD11239/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1996 Nov 22;274(5291):1389-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Program and Division of Biological Sciences, 311 Tucker Hall, University of Missouri, Columbia, MO 65211, USA. riddle@biosci.mbp.missouri.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8910282" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Caenorhabditis elegans/genetics/*growth & development/metabolism ; *Caenorhabditis elegans Proteins ; Genes, Helminth ; Genes, Reporter ; Green Fluorescent Proteins ; Helminth Proteins/chemistry/genetics/*physiology ; Humans ; Larva/growth & development/metabolism ; Ligands ; Luminescent Proteins/genetics ; Molecular Sequence Data ; Mutation ; Neurons, Afferent/*metabolism ; Phenotype ; Pheromones/pharmacology ; Temperature ; Transforming Growth Factor beta/chemistry/genetics/*physiology ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1996-02-02
    Description: The chromatic dimensions of human color vision have a neural basis in the retina. Ganglion cells, the output neurons of the retina, exhibit spectral opponency; they are excited by some wavelengths and inhibited by others. The hypothesis that the opponent circuitry emerges from selective connections between horizontal cell interneurons and cone photoreceptors sensitive to long, middle, and short wavelengths (L-, M-, and S-cones) was tested by physiologically and anatomically characterizing cone connections of horizontal cell mosaics in macaque monkeys. H1 horizontal cells received input only from L- and M-cones, whereas H2 horizontal cells received a strong input from S-cones and a weaker input from L- and M-cones. All cone inputs were the same sign, and both horizontal cell types lacked opponency. Despite cone type selectivity, the horizontal cell cannot be the locus of an opponent transformation in primates, including humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dacey, D M -- Lee, B B -- Stafford, D K -- Pokorny, J -- Smith, V C -- New York, N.Y. -- Science. 1996 Feb 2;271(5249):656-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Structure, University of Washington, Seattle 98195-7420, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8571130" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Color Perception/*physiology ; Dendrites/ultrastructure ; Humans ; Interneurons/cytology/*physiology ; Macaca fascicularis ; Macaca mulatta ; Macaca nemestrina ; Photic Stimulation ; Retinal Cone Photoreceptor Cells/*physiology ; Retinal Ganglion Cells/*physiology ; Signal Transduction ; Visual Pathways
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1996-05-31
    Description: A second gene for autosomal dominant polycystic kidney disease was identified by positional cloning. Nonsense mutations in this gene (PKD2) segregated with the disease in three PKD2 families. The predicted 968-amino acid sequence of the PKD2 gene product has six transmembrane spans with intracellular amino- and carboxyl-termini. The PKD2 protein has amino acid similarity with PKD1, the Caenorhabditis elegans homolog of PKD1, and the family of voltage-activated calcium (and sodium) channels, and it contains a potential calcium-binding domain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mochizuki, T -- Wu, G -- Hayashi, T -- Xenophontos, S L -- Veldhuisen, B -- Saris, J J -- Reynolds, D M -- Cai, Y -- Gabow, P A -- Pierides, A -- Kimberling, W J -- Breuning, M H -- Deltas, C C -- Peters, D J -- Somlo, S -- DK02015/DK/NIDDK NIH HHS/ -- DK48383/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1996 May 31;272(5266):1339-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Renal Division, Department of Medicine and Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8650545" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Caenorhabditis elegans/chemistry/genetics ; Calcium Channels/chemistry/genetics ; Chromosome Mapping ; Chromosomes, Human, Pair 4 ; Cloning, Molecular ; Consensus Sequence ; Crystallography, X-Ray ; Female ; Glycosylation ; Humans ; Male ; Membrane Proteins/chemistry/*genetics/physiology ; Molecular Sequence Data ; Mutation ; Pedigree ; Phenotype ; Polycystic Kidney, Autosomal Dominant/*genetics ; Polymorphism, Single-Stranded Conformational ; Proteins/chemistry/genetics ; Sodium Channels/chemistry/genetics ; TRPP Cation Channels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-01-12
    Description: The digestive vacuole of Plasmodium falciparum is the site of hemoglobin degradation, heme polymerization into crystalline hemozoin, and antimalarial drug accumulation. Antibodies identified histidine-rich protein II (HRP II) in purified digestive vacuoles. Recombinant or native HRP II promoted the formation of hemozoin, and chloroquine inhibited the reaction. The related HRP III also polymerized heme, and an additional HRP was identified in vacuoles. It is proposed that after secretion by the parasite into the host erythrocyte cytosol, HRPs are brought into the acidic digestive vacuole along with hemoglobin. After hemoglobin proteolysis, HRPs bind the liberated heme and mediate hemozoin formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sullivan, D J Jr -- Gluzman, I Y -- Goldberg, D E -- AI-31615/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1996 Jan 12;271(5246):219-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8539625" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Fluorescent Antibody Technique, Indirect ; Heme/metabolism ; Hemeproteins/*biosynthesis ; Hemoglobins/metabolism ; Immunoblotting ; Molecular Sequence Data ; Plasmodium falciparum/*metabolism ; Proteins/chemistry/*metabolism ; Protozoan Proteins/chemistry/*metabolism ; Recombinant Proteins/metabolism ; Vacuoles/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...