ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2003-07-19
    Description: We collected and completely sequenced 28,469 full-length complementary DNA clones from Oryza sativa L. ssp. japonica cv. Nipponbare. Through homology searches of publicly available sequence data, we assigned tentative protein functions to 21,596 clones (75.86%). Mapping of the cDNA clones to genomic DNA revealed that there are 19,000 to 20,500 transcription units in the rice genome. Protein informatics analysis against the InterPro database revealed the existence of proteins presented in rice but not in Arabidopsis. Sixty-four percent of our cDNAs are homologous to Arabidopsis proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rice Full-Length cDNA Consortium -- National Institute of Agrobiological Sciences Rice Full-Length cDNA Project Team -- Kikuchi, Shoshi -- Satoh, Kouji -- Nagata, Toshifumi -- Kawagashira, Nobuyuki -- Doi, Koji -- Kishimoto, Naoki -- Yazaki, Junshi -- Ishikawa, Masahiro -- Yamada, Hitomi -- Ooka, Hisako -- Hotta, Isamu -- Kojima, Keiichi -- Namiki, Takahiro -- Ohneda, Eisuke -- Yahagi, Wataru -- Suzuki, Kohji -- Li, Chao Jie -- Ohtsuki, Kenji -- Shishiki, Toru -- Foundation of Advancement of International Science Genome Sequencing & Analysis Group -- Otomo, Yasuhiro -- Murakami, Kazuo -- Iida, Yoshiharu -- Sugano, Sumio -- Fujimura, Tatsuto -- Suzuki, Yutaka -- Tsunoda, Yuki -- Kurosaki, Takashi -- Kodama, Takeko -- Masuda, Hiromi -- Kobayashi, Michie -- Xie, Quihong -- Lu, Min -- Narikawa, Ryuya -- Sugiyama, Akio -- Mizuno, Kouichi -- Yokomizo, Satoko -- Niikura, Junko -- Ikeda, Rieko -- Ishibiki, Junya -- Kawamata, Midori -- Yoshimura, Akemi -- Miura, Junichirou -- Kusumegi, Takahiro -- Oka, Mitsuru -- Ryu, Risa -- Ueda, Mariko -- Matsubara, Kenichi -- RIKEN -- Kawai, Jun -- Carninci, Piero -- Adachi, Jun -- Aizawa, Katsunori -- Arakawa, Takahiro -- Fukuda, Shiro -- Hara, Ayako -- Hashizume, Wataru -- Hayatsu, Norihito -- Imotani, Koichi -- Ishii, Yoshiyuki -- Itoh, Masayoshi -- Kagawa, Ikuko -- Kondo, Shinji -- Konno, Hideaki -- Miyazaki, Ai -- Osato, Naoki -- Ota, Yoshimi -- Saito, Rintaro -- Sasaki, Daisuke -- Sato, Kenjiro -- Shibata, Kazuhiro -- Shinagawa, Akira -- Shiraki, Toshiyuki -- Yoshino, Masayasu -- Hayashizaki, Yoshihide -- Yasunishi, Ayako -- New York, N.Y. -- Science. 2003 Jul 18;301(5631):376-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, National Institute of Agrobiological Sciences, 2-1-2 Kannon-dai, Tsukuba, Ibaraki 305-8602, Japan. skikuchi@nias.affrc.go.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12869764" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Amino Acid Sequence ; Cloning, Molecular ; Computational Biology ; DNA, Complementary ; Databases, Nucleic Acid ; Databases, Protein ; Genes, Plant ; *Genome, Plant ; Molecular Sequence Data ; Open Reading Frames ; Oryza/*genetics ; Plant Proteins/chemistry/genetics/physiology ; Protein Structure, Tertiary ; RNA, Antisense/genetics ; *Sequence Analysis, DNA ; Sequence Homology, Amino Acid ; Sequence Homology, Nucleic Acid ; Transcription Factors/chemistry/genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-01-15
    Description: Abscisic acid (ABA) stimulates stomatal closure and thus supports water conservation by plants during drought. Mass spectrometry-generated peptide sequence information was used to clone a Vicia faba complementary DNA, AAPK, encoding a guard cell-specific ABA-activated serine-threonine protein kinase (AAPK). Expression in transformed guard cells of AAPK altered by one amino acid (lysine 43 to alanine 43) renders stomata insensitive to ABA-induced closure by eliminating ABA activation of plasma membrane anion channels. This information should allow cell-specific, targeted biotechnological manipulation of crop water status.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, J -- Wang, X Q -- Watson, M B -- Assmann, S M -- New York, N.Y. -- Science. 2000 Jan 14;287(5451):300-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10634783" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/*pharmacology ; Amino Acid Sequence ; Anions/*metabolism ; Biolistics ; Cloning, Molecular ; DNA, Complementary ; Enzyme Activation ; Fabaceae/cytology/enzymology/genetics/*physiology ; Genes, Plant ; Ion Channels/*metabolism ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Patch-Clamp Techniques ; Plant Leaves/cytology/enzymology/*physiology ; *Plant Proteins ; *Plants, Medicinal ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Protoplasts/enzymology/metabolism ; Recombinant Fusion Proteins/metabolism ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-06-01
    Description: The high degree of similarity between the mouse and human genomes is demonstrated through analysis of the sequence of mouse chromosome 16 (Mmu 16), which was obtained as part of a whole-genome shotgun assembly of the mouse genome. The mouse genome is about 10% smaller than the human genome, owing to a lower repetitive DNA content. Comparison of the structure and protein-coding potential of Mmu 16 with that of the homologous segments of the human genome identifies regions of conserved synteny with human chromosomes (Hsa) 3, 8, 12, 16, 21, and 22. Gene content and order are highly conserved between Mmu 16 and the syntenic blocks of the human genome. Of the 731 predicted genes on Mmu 16, 509 align with orthologs on the corresponding portions of the human genome, 44 are likely paralogous to these genes, and 164 genes have homologs elsewhere in the human genome; there are 14 genes for which we could find no human counterpart.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mural, Richard J -- Adams, Mark D -- Myers, Eugene W -- Smith, Hamilton O -- Miklos, George L Gabor -- Wides, Ron -- Halpern, Aaron -- Li, Peter W -- Sutton, Granger G -- Nadeau, Joe -- Salzberg, Steven L -- Holt, Robert A -- Kodira, Chinnappa D -- Lu, Fu -- Chen, Lin -- Deng, Zuoming -- Evangelista, Carlos C -- Gan, Weiniu -- Heiman, Thomas J -- Li, Jiayin -- Li, Zhenya -- Merkulov, Gennady V -- Milshina, Natalia V -- Naik, Ashwinikumar K -- Qi, Rong -- Shue, Bixiong Chris -- Wang, Aihui -- Wang, Jian -- Wang, Xin -- Yan, Xianghe -- Ye, Jane -- Yooseph, Shibu -- Zhao, Qi -- Zheng, Liansheng -- Zhu, Shiaoping C -- Biddick, Kendra -- Bolanos, Randall -- Delcher, Arthur L -- Dew, Ian M -- Fasulo, Daniel -- Flanigan, Michael J -- Huson, Daniel H -- Kravitz, Saul A -- Miller, Jason R -- Mobarry, Clark M -- Reinert, Knut -- Remington, Karin A -- Zhang, Qing -- Zheng, Xiangqun H -- Nusskern, Deborah R -- Lai, Zhongwu -- Lei, Yiding -- Zhong, Wenyan -- Yao, Alison -- Guan, Ping -- Ji, Rui-Ru -- Gu, Zhiping -- Wang, Zhen-Yuan -- Zhong, Fei -- Xiao, Chunlin -- Chiang, Chia-Chien -- Yandell, Mark -- Wortman, Jennifer R -- Amanatides, Peter G -- Hladun, Suzanne L -- Pratts, Eric C -- Johnson, Jeffery E -- Dodson, Kristina L -- Woodford, Kerry J -- Evans, Cheryl A -- Gropman, Barry -- Rusch, Douglas B -- Venter, Eli -- Wang, Mei -- Smith, Thomas J -- Houck, Jarrett T -- Tompkins, Donald E -- Haynes, Charles -- Jacob, Debbie -- Chin, Soo H -- Allen, David R -- Dahlke, Carl E -- Sanders, Robert -- Li, Kelvin -- Liu, Xiangjun -- Levitsky, Alexander A -- Majoros, William H -- Chen, Quan -- Xia, Ashley C -- Lopez, John R -- Donnelly, Michael T -- Newman, Matthew H -- Glodek, Anna -- Kraft, Cheryl L -- Nodell, Marc -- Ali, Feroze -- An, Hui-Jin -- Baldwin-Pitts, Danita -- Beeson, Karen Y -- Cai, Shuang -- Carnes, Mark -- Carver, Amy -- Caulk, Parris M -- Center, Angela -- Chen, Yen-Hui -- Cheng, Ming-Lai -- Coyne, My D -- Crowder, Michelle -- Danaher, Steven -- Davenport, Lionel B -- Desilets, Raymond -- Dietz, Susanne M -- Doup, Lisa -- Dullaghan, Patrick -- Ferriera, Steven -- Fosler, Carl R -- Gire, Harold C -- Gluecksmann, Andres -- Gocayne, Jeannine D -- Gray, Jonathan -- Hart, Brit -- Haynes, Jason -- Hoover, Jeffery -- Howland, Tim -- Ibegwam, Chinyere -- Jalali, Mena -- Johns, David -- Kline, Leslie -- Ma, Daniel S -- MacCawley, Steven -- Magoon, Anand -- Mann, Felecia -- May, David -- McIntosh, Tina C -- Mehta, Somil -- Moy, Linda -- Moy, Mee C -- Murphy, Brian J -- Murphy, Sean D -- Nelson, Keith A -- Nuri, Zubeda -- Parker, Kimberly A -- Prudhomme, Alexandre C -- Puri, Vinita N -- Qureshi, Hina -- Raley, John C -- Reardon, Matthew S -- Regier, Megan A -- Rogers, Yu-Hui C -- Romblad, Deanna L -- Schutz, Jakob -- Scott, John L -- Scott, Richard -- Sitter, Cynthia D -- Smallwood, Michella -- Sprague, Arlan C -- Stewart, Erin -- Strong, Renee V -- Suh, Ellen -- Sylvester, Karena -- Thomas, Reginald -- Tint, Ni Ni -- Tsonis, Christopher -- Wang, Gary -- Wang, George -- Williams, Monica S -- Williams, Sherita M -- Windsor, Sandra M -- Wolfe, Keriellen -- Wu, Mitchell M -- Zaveri, Jayshree -- Chaturvedi, Kabir -- Gabrielian, Andrei E -- Ke, Zhaoxi -- Sun, Jingtao -- Subramanian, Gangadharan -- Venter, J Craig -- Pfannkoch, Cynthia M -- Barnstead, Mary -- Stephenson, Lisa D -- New York, N.Y. -- Science. 2002 May 31;296(5573):1661-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA. richard.mural@celera.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12040188" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Composition ; Chromosomes/*genetics ; Chromosomes, Human/genetics ; Computational Biology ; Conserved Sequence ; Databases, Nucleic Acid ; Evolution, Molecular ; Genes ; Genetic Markers ; *Genome ; *Genome, Human ; Genomics ; Humans ; Mice ; Mice, Inbred A/genetics ; Mice, Inbred DBA/genetics ; Mice, Inbred Strains/*genetics ; Molecular Sequence Data ; Physical Chromosome Mapping ; Proteins/chemistry/genetics ; Sequence Alignment ; *Sequence Analysis, DNA ; Species Specificity ; *Synteny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-02-16
    Description: GSK3/SHAGGY is a highly conserved serine/threonine kinase implicated in many signaling pathways in eukaryotes. Although many GSK3/SHAGGY-like kinases have been identified in plants, little is known about their functions in plant growth and development. Here we show that the Arabidopsis BRASSINOSTEROID-INSENSITIVE 2 (BIN2) gene encodes a GSK3/SHAGGY-like kinase. Gain-of-function mutations within its coding sequence or its overexpression inhibit brassinosteroid (BR) signaling, resulting in plants that resemble BR-deficient and BR-response mutants. In contrast, reduced BIN2 expression via cosuppression partially rescues a weak BR-signaling mutation. Thus, BIN2 acts as a negative regulator to control steroid signaling in plants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Jianming -- Nam, Kyoung Hee -- GM60519/GM/NIGMS NIH HHS/ -- R01 GM060519/GM/NIGMS NIH HHS/ -- R01 GM060519-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Feb 15;295(5558):1299-301.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11847343" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/*enzymology/genetics/growth & development/metabolism ; Arabidopsis Proteins/chemistry/*genetics/*metabolism ; Calcium-Calmodulin-Dependent Protein Kinases/chemistry ; Cloning, Molecular ; *Drosophila Proteins ; Genes, Plant ; Glycogen Synthase Kinase 3 ; Humans ; Molecular Sequence Data ; Mutation ; Phenotype ; Phosphorylation ; Plant Growth Regulators/*metabolism ; Plants, Genetically Modified ; Protein Kinases/chemistry/*genetics/*metabolism ; Protein-Serine-Threonine Kinases/chemistry ; Recombinant Fusion Proteins/metabolism ; Sequence Homology, Amino Acid ; *Signal Transduction ; Steroids/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2001-12-18
    Description: The 5.67-megabase genome of the plant pathogen Agrobacterium tumefaciens C58 consists of a circular chromosome, a linear chromosome, and two plasmids. Extensive orthology and nucleotide colinearity between the genomes of A. tumefaciens and the plant symbiont Sinorhizobium meliloti suggest a recent evolutionary divergence. Their similarities include metabolic, transport, and regulatory systems that promote survival in the highly competitive rhizosphere; differences are apparent in their genome structure and virulence gene complement. Availability of the A. tumefaciens sequence will facilitate investigations into the molecular basis of pathogenesis and the evolutionary divergence of pathogenic and symbiotic lifestyles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wood, D W -- Setubal, J C -- Kaul, R -- Monks, D E -- Kitajima, J P -- Okura, V K -- Zhou, Y -- Chen, L -- Wood, G E -- Almeida, N F Jr -- Woo, L -- Chen, Y -- Paulsen, I T -- Eisen, J A -- Karp, P D -- Bovee, D Sr -- Chapman, P -- Clendenning, J -- Deatherage, G -- Gillet, W -- Grant, C -- Kutyavin, T -- Levy, R -- Li, M J -- McClelland, E -- Palmieri, A -- Raymond, C -- Rouse, G -- Saenphimmachak, C -- Wu, Z -- Romero, P -- Gordon, D -- Zhang, S -- Yoo, H -- Tao, Y -- Biddle, P -- Jung, M -- Krespan, W -- Perry, M -- Gordon-Kamm, B -- Liao, L -- Kim, S -- Hendrick, C -- Zhao, Z Y -- Dolan, M -- Chumley, F -- Tingey, S V -- Tomb, J F -- Gordon, M P -- Olson, M V -- Nester, E W -- GM19642/GM/NIGMS NIH HHS/ -- GM32618/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Dec 14;294(5550):2317-23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Washington, 1959 NE Pacific Street, Box 357242, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11743193" target="_blank"〉PubMed〈/a〉
    Keywords: Agrobacterium tumefaciens/classification/*genetics/pathogenicity/physiology ; Bacterial Adhesion/genetics ; Bacterial Proteins/genetics/metabolism ; Carrier Proteins/genetics/metabolism ; Chromosomes, Bacterial/genetics ; Conjugation, Genetic ; DNA Replication ; Genes, Bacterial ; Genes, Regulator ; *Genome, Bacterial ; Membrane Proteins/genetics/metabolism ; Molecular Sequence Data ; Phylogeny ; Plants/microbiology ; Plasmids ; Replicon ; Rhizobiaceae/genetics/physiology ; *Sequence Analysis, DNA ; Sinorhizobium meliloti/genetics/physiology ; Symbiosis ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2001-02-22
    Description: A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Venter, J C -- Adams, M D -- Myers, E W -- Li, P W -- Mural, R J -- Sutton, G G -- Smith, H O -- Yandell, M -- Evans, C A -- Holt, R A -- Gocayne, J D -- Amanatides, P -- Ballew, R M -- Huson, D H -- Wortman, J R -- Zhang, Q -- Kodira, C D -- Zheng, X H -- Chen, L -- Skupski, M -- Subramanian, G -- Thomas, P D -- Zhang, J -- Gabor Miklos, G L -- Nelson, C -- Broder, S -- Clark, A G -- Nadeau, J -- McKusick, V A -- Zinder, N -- Levine, A J -- Roberts, R J -- Simon, M -- Slayman, C -- Hunkapiller, M -- Bolanos, R -- Delcher, A -- Dew, I -- Fasulo, D -- Flanigan, M -- Florea, L -- Halpern, A -- Hannenhalli, S -- Kravitz, S -- Levy, S -- Mobarry, C -- Reinert, K -- Remington, K -- Abu-Threideh, J -- Beasley, E -- Biddick, K -- Bonazzi, V -- Brandon, R -- Cargill, M -- Chandramouliswaran, I -- Charlab, R -- Chaturvedi, K -- Deng, Z -- Di Francesco, V -- Dunn, P -- Eilbeck, K -- Evangelista, C -- Gabrielian, A E -- Gan, W -- Ge, W -- Gong, F -- Gu, Z -- Guan, P -- Heiman, T J -- Higgins, M E -- Ji, R R -- Ke, Z -- Ketchum, K A -- Lai, Z -- Lei, Y -- Li, Z -- Li, J -- Liang, Y -- Lin, X -- Lu, F -- Merkulov, G V -- Milshina, N -- Moore, H M -- Naik, A K -- Narayan, V A -- Neelam, B -- Nusskern, D -- Rusch, D B -- Salzberg, S -- Shao, W -- Shue, B -- Sun, J -- Wang, Z -- Wang, A -- Wang, X -- Wang, J -- Wei, M -- Wides, R -- Xiao, C -- Yan, C -- Yao, A -- Ye, J -- Zhan, M -- Zhang, W -- Zhang, H -- Zhao, Q -- Zheng, L -- Zhong, F -- Zhong, W -- Zhu, S -- Zhao, S -- Gilbert, D -- Baumhueter, S -- Spier, G -- Carter, C -- Cravchik, A -- Woodage, T -- Ali, F -- An, H -- Awe, A -- Baldwin, D -- Baden, H -- Barnstead, M -- Barrow, I -- Beeson, K -- Busam, D -- Carver, A -- Center, A -- Cheng, M L -- Curry, L -- Danaher, S -- Davenport, L -- Desilets, R -- Dietz, S -- Dodson, K -- Doup, L -- Ferriera, S -- Garg, N -- Gluecksmann, A -- Hart, B -- Haynes, J -- Haynes, C -- Heiner, C -- Hladun, S -- Hostin, D -- Houck, J -- Howland, T -- Ibegwam, C -- Johnson, J -- Kalush, F -- Kline, L -- Koduru, S -- Love, A -- Mann, F -- May, D -- McCawley, S -- McIntosh, T -- McMullen, I -- Moy, M -- Moy, L -- Murphy, B -- Nelson, K -- Pfannkoch, C -- Pratts, E -- Puri, V -- Qureshi, H -- Reardon, M -- Rodriguez, R -- Rogers, Y H -- Romblad, D -- Ruhfel, B -- Scott, R -- Sitter, C -- Smallwood, M -- Stewart, E -- Strong, R -- Suh, E -- Thomas, R -- Tint, N N -- Tse, S -- Vech, C -- Wang, G -- Wetter, J -- Williams, S -- Williams, M -- Windsor, S -- Winn-Deen, E -- Wolfe, K -- Zaveri, J -- Zaveri, K -- Abril, J F -- Guigo, R -- Campbell, M J -- Sjolander, K V -- Karlak, B -- Kejariwal, A -- Mi, H -- Lazareva, B -- Hatton, T -- Narechania, A -- Diemer, K -- Muruganujan, A -- Guo, N -- Sato, S -- Bafna, V -- Istrail, S -- Lippert, R -- Schwartz, R -- Walenz, B -- Yooseph, S -- Allen, D -- Basu, A -- Baxendale, J -- Blick, L -- Caminha, M -- Carnes-Stine, J -- Caulk, P -- Chiang, Y H -- Coyne, M -- Dahlke, C -- Mays, A -- Dombroski, M -- Donnelly, M -- Ely, D -- Esparham, S -- Fosler, C -- Gire, H -- Glanowski, S -- Glasser, K -- Glodek, A -- Gorokhov, M -- Graham, K -- Gropman, B -- Harris, M -- Heil, J -- Henderson, S -- Hoover, J -- Jennings, D -- Jordan, C -- Jordan, J -- Kasha, J -- Kagan, L -- Kraft, C -- Levitsky, A -- Lewis, M -- Liu, X -- Lopez, J -- Ma, D -- Majoros, W -- McDaniel, J -- Murphy, S -- Newman, M -- Nguyen, T -- Nguyen, N -- Nodell, M -- Pan, S -- Peck, J -- Peterson, M -- Rowe, W -- Sanders, R -- Scott, J -- Simpson, M -- Smith, T -- Sprague, A -- Stockwell, T -- Turner, R -- Venter, E -- Wang, M -- Wen, M -- Wu, D -- Wu, M -- Xia, A -- Zandieh, A -- Zhu, X -- New York, N.Y. -- Science. 2001 Feb 16;291(5507):1304-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA. humangenome@celera.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11181995" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Chromosome Banding ; Chromosome Mapping ; Chromosomes, Artificial, Bacterial ; Computational Biology ; Consensus Sequence ; CpG Islands ; DNA, Intergenic ; Databases, Factual ; Evolution, Molecular ; Exons ; Female ; Gene Duplication ; Genes ; Genetic Variation ; *Genome, Human ; *Human Genome Project ; Humans ; Introns ; Male ; Phenotype ; Physical Chromosome Mapping ; Polymorphism, Single Nucleotide ; Proteins/genetics/physiology ; Pseudogenes ; Repetitive Sequences, Nucleic Acid ; Retroelements ; *Sequence Analysis, DNA/methods ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2002-04-06
    Description: We have produced a draft sequence of the rice genome for the most widely cultivated subspecies in China, Oryza sativa L. ssp. indica, by whole-genome shotgun sequencing. The genome was 466 megabases in size, with an estimated 46,022 to 55,615 genes. Functional coverage in the assembled sequences was 92.0%. About 42.2% of the genome was in exact 20-nucleotide oligomer repeats, and most of the transposons were in the intergenic regions between genes. Although 80.6% of predicted Arabidopsis thaliana genes had a homolog in rice, only 49.4% of predicted rice genes had a homolog in A. thaliana. The large proportion of rice genes with no recognizable homologs is due to a gradient in the GC content of rice coding sequences.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Jun -- Hu, Songnian -- Wang, Jun -- Wong, Gane Ka-Shu -- Li, Songgang -- Liu, Bin -- Deng, Yajun -- Dai, Li -- Zhou, Yan -- Zhang, Xiuqing -- Cao, Mengliang -- Liu, Jing -- Sun, Jiandong -- Tang, Jiabin -- Chen, Yanjiong -- Huang, Xiaobing -- Lin, Wei -- Ye, Chen -- Tong, Wei -- Cong, Lijuan -- Geng, Jianing -- Han, Yujun -- Li, Lin -- Li, Wei -- Hu, Guangqiang -- Huang, Xiangang -- Li, Wenjie -- Li, Jian -- Liu, Zhanwei -- Li, Long -- Liu, Jianping -- Qi, Qiuhui -- Liu, Jinsong -- Li, Li -- Li, Tao -- Wang, Xuegang -- Lu, Hong -- Wu, Tingting -- Zhu, Miao -- Ni, Peixiang -- Han, Hua -- Dong, Wei -- Ren, Xiaoyu -- Feng, Xiaoli -- Cui, Peng -- Li, Xianran -- Wang, Hao -- Xu, Xin -- Zhai, Wenxue -- Xu, Zhao -- Zhang, Jinsong -- He, Sijie -- Zhang, Jianguo -- Xu, Jichen -- Zhang, Kunlin -- Zheng, Xianwu -- Dong, Jianhai -- Zeng, Wanyong -- Tao, Lin -- Ye, Jia -- Tan, Jun -- Ren, Xide -- Chen, Xuewei -- He, Jun -- Liu, Daofeng -- Tian, Wei -- Tian, Chaoguang -- Xia, Hongai -- Bao, Qiyu -- Li, Gang -- Gao, Hui -- Cao, Ting -- Wang, Juan -- Zhao, Wenming -- Li, Ping -- Chen, Wei -- Wang, Xudong -- Zhang, Yong -- Hu, Jianfei -- Wang, Jing -- Liu, Song -- Yang, Jian -- Zhang, Guangyu -- Xiong, Yuqing -- Li, Zhijie -- Mao, Long -- Zhou, Chengshu -- Zhu, Zhen -- Chen, Runsheng -- Hao, Bailin -- Zheng, Weimou -- Chen, Shouyi -- Guo, Wei -- Li, Guojie -- Liu, Siqi -- Tao, Ming -- Wang, Jian -- Zhu, Lihuang -- Yuan, Longping -- Yang, Huanming -- 1 RO1 ES09909/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 2002 Apr 5;296(5565):79-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Beijing Genomics Institute/Center of Genomics and Bioinformatics, Chinese Academy of Sciences, Beijing 101300, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11935017" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics ; Base Composition ; Computational Biology ; Contig Mapping ; DNA Transposable Elements ; DNA, Intergenic ; DNA, Plant/chemistry/genetics ; Databases, Nucleic Acid ; Exons ; Gene Duplication ; Genes, Plant ; *Genome, Plant ; Genomics ; Introns ; Molecular Sequence Data ; Oryza/*genetics ; Plant Proteins/chemistry/genetics ; Polymorphism, Genetic ; Repetitive Sequences, Nucleic Acid ; *Sequence Analysis, DNA ; Sequence Homology, Nucleic Acid ; Software ; Species Specificity ; Synteny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-12-17
    Description: Using next-generation sequencing technology alone, we have successfully generated and assembled a draft sequence of the giant panda genome. The assembled contigs (2.25 gigabases (Gb)) cover approximately 94% of the whole genome, and the remaining gaps (0.05 Gb) seem to contain carnivore-specific repeats and tandem repeats. Comparisons with the dog and human showed that the panda genome has a lower divergence rate. The assessment of panda genes potentially underlying some of its unique traits indicated that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition. We also identified more than 2.7 million heterozygous single nucleotide polymorphisms in the diploid genome. Our data and analyses provide a foundation for promoting mammalian genetic research, and demonstrate the feasibility for using next-generation sequencing technologies for accurate, cost-effective and rapid de novo assembly of large eukaryotic genomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951497/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951497/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Ruiqiang -- Fan, Wei -- Tian, Geng -- Zhu, Hongmei -- He, Lin -- Cai, Jing -- Huang, Quanfei -- Cai, Qingle -- Li, Bo -- Bai, Yinqi -- Zhang, Zhihe -- Zhang, Yaping -- Wang, Wen -- Li, Jun -- Wei, Fuwen -- Li, Heng -- Jian, Min -- Li, Jianwen -- Zhang, Zhaolei -- Nielsen, Rasmus -- Li, Dawei -- Gu, Wanjun -- Yang, Zhentao -- Xuan, Zhaoling -- Ryder, Oliver A -- Leung, Frederick Chi-Ching -- Zhou, Yan -- Cao, Jianjun -- Sun, Xiao -- Fu, Yonggui -- Fang, Xiaodong -- Guo, Xiaosen -- Wang, Bo -- Hou, Rong -- Shen, Fujun -- Mu, Bo -- Ni, Peixiang -- Lin, Runmao -- Qian, Wubin -- Wang, Guodong -- Yu, Chang -- Nie, Wenhui -- Wang, Jinhuan -- Wu, Zhigang -- Liang, Huiqing -- Min, Jiumeng -- Wu, Qi -- Cheng, Shifeng -- Ruan, Jue -- Wang, Mingwei -- Shi, Zhongbin -- Wen, Ming -- Liu, Binghang -- Ren, Xiaoli -- Zheng, Huisong -- Dong, Dong -- Cook, Kathleen -- Shan, Gao -- Zhang, Hao -- Kosiol, Carolin -- Xie, Xueying -- Lu, Zuhong -- Zheng, Hancheng -- Li, Yingrui -- Steiner, Cynthia C -- Lam, Tommy Tsan-Yuk -- Lin, Siyuan -- Zhang, Qinghui -- Li, Guoqing -- Tian, Jing -- Gong, Timing -- Liu, Hongde -- Zhang, Dejin -- Fang, Lin -- Ye, Chen -- Zhang, Juanbin -- Hu, Wenbo -- Xu, Anlong -- Ren, Yuanyuan -- Zhang, Guojie -- Bruford, Michael W -- Li, Qibin -- Ma, Lijia -- Guo, Yiran -- An, Na -- Hu, Yujie -- Zheng, Yang -- Shi, Yongyong -- Li, Zhiqiang -- Liu, Qing -- Chen, Yanling -- Zhao, Jing -- Qu, Ning -- Zhao, Shancen -- Tian, Feng -- Wang, Xiaoling -- Wang, Haiyin -- Xu, Lizhi -- Liu, Xiao -- Vinar, Tomas -- Wang, Yajun -- Lam, Tak-Wah -- Yiu, Siu-Ming -- Liu, Shiping -- Zhang, Hemin -- Li, Desheng -- Huang, Yan -- Wang, Xia -- Yang, Guohua -- Jiang, Zhi -- Wang, Junyi -- Qin, Nan -- Li, Li -- Li, Jingxiang -- Bolund, Lars -- Kristiansen, Karsten -- Wong, Gane Ka-Shu -- Olson, Maynard -- Zhang, Xiuqing -- Li, Songgang -- Yang, Huanming -- Wang, Jian -- Wang, Jun -- R01 HG003229/HG/NHGRI NIH HHS/ -- R01 HG003229-05/HG/NHGRI NIH HHS/ -- England -- Nature. 2010 Jan 21;463(7279):311-7. doi: 10.1038/nature08696. Epub 2009 Dec 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉BGI-Shenzhen, Shenzhen 518083, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20010809" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; China ; Conserved Sequence/genetics ; Contig Mapping ; Diet/veterinary ; Dogs ; Evolution, Molecular ; Female ; Fertility/genetics/physiology ; Genome/*genetics ; *Genomics ; Heterozygote ; Humans ; Multigene Family/genetics ; Polymorphism, Single Nucleotide/genetics ; Receptors, G-Protein-Coupled/genetics ; Sequence Alignment ; Sequence Analysis, DNA ; Synteny/genetics ; Ursidae/classification/*genetics/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-05-20
    Description: Non-human primates are valuable for modelling human disorders and for developing therapeutic strategies; however, little work has been reported in establishing transgenic non-human primate models of human diseases. Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor impairment, cognitive deterioration and psychiatric disturbances followed by death within 10-15 years of the onset of the symptoms. HD is caused by the expansion of cytosine-adenine-guanine (CAG, translated into glutamine) trinucleotide repeats in the first exon of the human huntingtin (HTT) gene. Mutant HTT with expanded polyglutamine (polyQ) is widely expressed in the brain and peripheral tissues, but causes selective neurodegeneration that is most prominent in the striatum and cortex of the brain. Although rodent models of HD have been developed, these models do not satisfactorily parallel the brain changes and behavioural features observed in HD patients. Because of the close physiological, neurological and genetic similarities between humans and higher primates, monkeys can serve as very useful models for understanding human physiology and diseases. Here we report our progress in developing a transgenic model of HD in a rhesus macaque that expresses polyglutamine-expanded HTT. Hallmark features of HD, including nuclear inclusions and neuropil aggregates, were observed in the brains of the HD transgenic monkeys. Additionally, the transgenic monkeys showed important clinical features of HD, including dystonia and chorea. A transgenic HD monkey model may open the way to understanding the underlying biology of HD better, and to the development of potential therapies. Moreover, our data suggest that it will be feasible to generate valuable non-human primate models of HD and possibly other human genetic diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652570/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652570/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Shang-Hsun -- Cheng, Pei-Hsun -- Banta, Heather -- Piotrowska-Nitsche, Karolina -- Yang, Jin-Jing -- Cheng, Eric C H -- Snyder, Brooke -- Larkin, Katherine -- Liu, Jun -- Orkin, Jack -- Fang, Zhi-Hui -- Smith, Yoland -- Bachevalier, Jocelyne -- Zola, Stuart M -- Li, Shi-Hua -- Li, Xiao-Jiang -- Chan, Anthony W S -- R01 AG019206/AG/NIA NIH HHS/ -- R01 AG019206-07/AG/NIA NIH HHS/ -- R01 NS036232/NS/NINDS NIH HHS/ -- R01 NS036232-09/NS/NINDS NIH HHS/ -- R01 NS041669/NS/NINDS NIH HHS/ -- R01 NS041669-07/NS/NINDS NIH HHS/ -- England -- Nature. 2008 Jun 12;453(7197):921-4. doi: 10.1038/nature06975. Epub 2008 May 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18488016" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Animals, Newborn ; Brain/metabolism/pathology ; Chorea/genetics/physiopathology ; *Disease Models, Animal ; Dystonia/genetics/physiopathology ; Exons/genetics ; Female ; Humans ; Huntington Disease/*genetics/metabolism/pathology/*physiopathology ; Macaca mulatta/*genetics ; Male ; Nerve Tissue Proteins/*genetics/metabolism ; Nuclear Proteins/*genetics/metabolism ; Peptides/genetics/metabolism ; Pregnancy ; Survival Analysis ; Trinucleotide Repeat Expansion/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-04-07
    Description: Targeting of proteins to appropriate subcellular compartments is a crucial process in all living cells. Secretory and membrane proteins usually contain an amino-terminal signal peptide, which is recognized by the signal recognition particle (SRP) when nascent polypeptide chains emerge from the ribosome. The SRP-ribosome nascent chain complex is then targeted through its GTP-dependent interaction with SRP receptor to the protein-conducting channel on endoplasmic reticulum membrane in eukaryotes or plasma membrane in bacteria. A universally conserved component of SRP (refs 1, 2), SRP54 or its bacterial homologue, fifty-four homologue (Ffh), binds the signal peptides, which have a highly divergent sequence divisible into a positively charged n-region, an h-region commonly containing 8-20 hydrophobic residues and a polar c-region. No structure has been reported that exemplifies SRP54 binding of any signal sequence. Here we have produced a fusion protein between Sulfolobus solfataricus SRP54 (Ffh) and a signal peptide connected via a flexible linker. This fusion protein oligomerizes in solution through interaction between the SRP54 and signal peptide moieties belonging to different chains, and it is functional, as demonstrated by its ability to bind SRP RNA and SRP receptor FtsY. We present the crystal structure at 3.5 A resolution of an SRP54-signal peptide complex in the dimer, which reveals how a signal sequence is recognized by SRP54.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897128/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897128/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janda, Claudia Y -- Li, Jade -- Oubridge, Chris -- Hernandez, Helena -- Robinson, Carol V -- Nagai, Kiyoshi -- MC_U105184330/Medical Research Council/United Kingdom -- U.1051.04.016(78933)/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2010 May 27;465(7297):507-10. doi: 10.1038/nature08870. Epub 2010 Apr 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20364120" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/metabolism ; Crystallography, X-Ray ; Mass Spectrometry ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Multimerization ; Protein Sorting Signals/*physiology ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Receptors, Cytoplasmic and Nuclear/metabolism ; Receptors, Virus/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Signal Recognition Particle/*chemistry/*metabolism ; Structure-Activity Relationship ; Sulfolobus solfataricus/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...