ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Animals  (8)
  • Crystallography, X-Ray  (5)
  • Substrate Specificity  (4)
  • Condensed Matter: Electronic Properties, etc.  (3)
  • Signal Transduction  (3)
  • 1
    Publication Date: 2015-08-15
    Description: Author(s): M. Schubert, H. Schaefer, J. Mayer, A. Laptev, M. Hettich, M. Merklein, C. He, C. Rummel, O. Ristow, M. Großmann, Y. Luo, V. Gusev, K. Samwer, M. Fonin, T. Dekorsy, and J. Demsar The origin of the martensitic transition in the magnetic shape memory alloy Ni-Mn-Ga has been widely discussed. While several studies suggest it is electronically driven, the adaptive martensite model reproduced the peculiar nonharmonic lattice modulation. We used femtosecond spectroscopy to probe t… [Phys. Rev. Lett. 115, 076402] Published Thu Aug 13, 2015
    Keywords: Condensed Matter: Electronic Properties, etc.
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-11-08
    Description: Author(s): C. He, A. J. Grutter, M. Gu, N. D. Browning, Y. Takamura, B. J. Kirby, J. A. Borchers, J. W. Kim, M. R. Fitzsimmons, X. Zhai, V. V. Mehta, F. J. Wong, and Y. Suzuki We have found ferromagnetism in epitaxially grown superlattices of CaRuO 3 /CaMnO 3 that arises in one unit cell at the interface. Scanning transmission electron microscopy and electron energy loss spectroscopy indicate that the difference in magnitude of the Mn valence states between the center of the... [Phys. Rev. Lett. 109, 197202] Published Wed Nov 07, 2012
    Keywords: Condensed Matter: Electronic Properties, etc.
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-04-25
    Description: Escherichia coli AlkB and its human homologues ABH2 and ABH3 repair DNA/RNA base lesions by using a direct oxidative dealkylation mechanism. ABH2 has the primary role of guarding mammalian genomes against 1-meA damage by repairing this lesion in double-stranded DNA (dsDNA), whereas AlkB and ABH3 preferentially repair single-stranded DNA (ssDNA) lesions and can repair damaged bases in RNA. Here we show the first crystal structures of AlkB-dsDNA and ABH2-dsDNA complexes, stabilized by a chemical cross-linking strategy. This study reveals that AlkB uses an unprecedented base-flipping mechanism to access the damaged base: it squeezes together the two bases flanking the flipped-out one to maintain the base stack, explaining the preference of AlkB for repairing ssDNA lesions over dsDNA ones. In addition, the first crystal structure of ABH2, presented here, provides a structural basis for designing inhibitors of this human DNA repair protein.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2587245/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2587245/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Cai-Guang -- Yi, Chengqi -- Duguid, Erica M -- Sullivan, Christopher T -- Jian, Xing -- Rice, Phoebe A -- He, Chuan -- GM071440/GM/NIGMS NIH HHS/ -- R01 GM071440/GM/NIGMS NIH HHS/ -- R01 GM071440-03/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Apr 24;452(7190):961-5. doi: 10.1038/nature06889.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18432238" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/analogs & derivatives/metabolism ; Binding Sites ; Cross-Linking Reagents/chemistry ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA Damage ; DNA Repair ; DNA Repair Enzymes/*chemistry/metabolism ; DNA-Binding Proteins/chemistry/metabolism ; Dioxygenases/*chemistry/*metabolism ; Escherichia coli Proteins/*chemistry/*metabolism ; Humans ; Mixed Function Oxygenases/*chemistry/*metabolism ; Models, Molecular ; Protein Binding ; RNA/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-12-05
    Description: Haematopoietic stem cell (HSC) niches, although proposed decades ago, have only recently been identified as separate osteoblastic and vascular microenvironments. Their interrelationships and interactions with HSCs in vivo remain largely unknown. Here we report the use of a newly developed ex vivo real-time imaging technology and immunoassaying to trace the homing of purified green-fluorescent-protein-expressing (GFP(+)) HSCs. We found that transplanted HSCs tended to home to the endosteum (an inner bone surface) in irradiated mice, but were randomly distributed and unstable in non-irradiated mice. Moreover, GFP(+) HSCs were more frequently detected in the trabecular bone area compared with compact bone area, and this was validated by live imaging bioluminescence driven by the stem-cell-leukaemia (Scl) promoter-enhancer. HSCs home to bone marrow through the vascular system. We found that the endosteum is well vascularized and that vasculature is frequently localized near N-cadherin(+) pre-osteoblastic cells, a known niche component. By monitoring individual HSC behaviour using real-time imaging, we found that a portion of the homed HSCs underwent active division in the irradiated mice, coinciding with their expansion as measured by flow assay. Thus, in contrast to central marrow, the endosteum formed a special zone, which normally maintains HSCs but promotes their expansion in response to bone marrow damage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xie, Yucai -- Yin, Tong -- Wiegraebe, Winfried -- He, Xi C -- Miller, Diana -- Stark, Danny -- Perko, Katherine -- Alexander, Richard -- Schwartz, Joel -- Grindley, Justin C -- Park, Jungeun -- Haug, Jeff S -- Wunderlich, Joshua P -- Li, Hua -- Zhang, Simon -- Johnson, Teri -- Feldman, Ricardo A -- Li, Linheng -- England -- Nature. 2009 Jan 1;457(7225):97-101. doi: 10.1038/nature07639. Epub 2008 Dec 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19052548" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD31/analysis ; Blood Vessels/cytology ; Bone Marrow/pathology ; Cadherins/analysis ; Cell Division ; *Cell Movement ; Cell Separation ; Femur/cytology ; Hematopoietic Stem Cells/*cytology ; Immunoassay/*methods ; Immunohistochemistry ; Mice ; Models, Animal ; Osteoblasts/cytology ; Stem Cell Niche/*cytology ; Tibia/cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-11-12
    Description: Mononuclear iron-containing oxygenases conduct a diverse variety of oxidation functions in biology, including the oxidative demethylation of methylated nucleic acids and histones. Escherichia coli AlkB is the first such enzyme that was discovered to repair methylated nucleic acids, which are otherwise cytotoxic and/or mutagenic. AlkB human homologues are known to play pivotal roles in various processes. Here we present structural characterization of oxidation intermediates for these demethylases. Using a chemical cross-linking strategy, complexes of AlkB-double stranded DNA (dsDNA) containing 1,N(6)-etheno adenine (epsilonA), N(3)-methyl thymine (3-meT) and N(3)-methyl cytosine (3-meC) are stabilized and crystallized, respectively. Exposing these crystals, grown under anaerobic conditions containing iron(II) and alpha-ketoglutarate (alphaKG), to dioxygen initiates oxidation in crystallo. Glycol (from epsilonA) and hemiaminal (from 3-meT) intermediates are captured; a zwitterionic intermediate (from 3-meC) is also proposed, based on crystallographic observations and computational analysis. The observation of these unprecedented intermediates provides direct support for the oxidative demethylation mechanism for these demethylases. This study also depicts a general mechanistic view of how a methyl group is oxidatively removed from different biological substrates.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058853/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058853/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yi, Chengqi -- Jia, Guifang -- Hou, Guanhua -- Dai, Qing -- Zhang, Wen -- Zheng, Guanqun -- Jian, Xing -- Yang, Cai-Guang -- Cui, Qiang -- He, Chuan -- GM071440/GM/NIGMS NIH HHS/ -- GM084028/GM/NIGMS NIH HHS/ -- R01 GM071440/GM/NIGMS NIH HHS/ -- R01 GM071440-06/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Nov 11;468(7321):330-3. doi: 10.1038/nature09497.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21068844" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; Cross-Linking Reagents/chemistry ; Crystallization ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; *DNA Repair ; DNA Repair Enzymes/metabolism ; Dioxygenases/chemistry/*metabolism ; Escherichia coli/*enzymology ; Escherichia coli Proteins/chemistry/*metabolism ; Humans ; Iron/*metabolism ; Ketoglutaric Acids/metabolism ; Methylation ; Mixed Function Oxygenases/chemistry/*metabolism ; Models, Molecular ; Oxidation-Reduction ; Static Electricity ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-12-20
    Description: Label-free chemical contrast is highly desirable in biomedical imaging. Spontaneous Raman microscopy provides specific vibrational signatures of chemical bonds, but is often hindered by low sensitivity. Here we report a three-dimensional multiphoton vibrational imaging technique based on stimulated Raman scattering (SRS). The sensitivity of SRS imaging is significantly greater than that of spontaneous Raman microscopy, which is achieved by implementing high-frequency (megahertz) phase-sensitive detection. SRS microscopy has a major advantage over previous coherent Raman techniques in that it offers background-free and readily interpretable chemical contrast. We show a variety of biomedical applications, such as differentiating distributions of omega-3 fatty acids and saturated lipids in living cells, imaging of brain and skin tissues based on intrinsic lipid contrast, and monitoring drug delivery through the epidermis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3576036/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3576036/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Freudiger, Christian W -- Min, Wei -- Saar, Brian G -- Lu, Sijia -- Holtom, Gary R -- He, Chengwei -- Tsai, Jason C -- Kang, Jing X -- Xie, X Sunney -- CA113605/CA/NCI NIH HHS/ -- DP1 OD000277/OD/NIH HHS/ -- DP1 OD000277-05/OD/NIH HHS/ -- R01 CA113605/CA/NCI NIH HHS/ -- R01 CA113605-01A2/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2008 Dec 19;322(5909):1857-61. doi: 10.1126/science.1165758.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19095943" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Tumor ; Corpus Callosum/chemistry/cytology ; Dimethyl Sulfoxide/administration & dosage/pharmacokinetics ; Eicosapentaenoic Acid/metabolism ; Epidermis/chemistry/metabolism/ultrastructure ; Humans ; Imaging, Three-Dimensional/*methods ; Lipids/*analysis ; Mice ; Microscopy/*methods ; Neurons/ultrastructure ; Sensitivity and Specificity ; Skin/chemistry/ultrastructure ; *Spectrum Analysis, Raman ; Tretinoin/administration & dosage/pharmacokinetics ; Vitamin A/analysis/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-07-23
    Description: 5-methylcytosine (5mC) in DNA plays an important role in gene expression, genomic imprinting, and suppression of transposable elements. 5mC can be converted to 5-hydroxymethylcytosine (5hmC) by the Tet (ten eleven translocation) proteins. Here, we show that, in addition to 5hmC, the Tet proteins can generate 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) from 5mC in an enzymatic activity-dependent manner. Furthermore, we reveal the presence of 5fC and 5caC in genomic DNA of mouse embryonic stem cells and mouse organs. The genomic content of 5hmC, 5fC, and 5caC can be increased or reduced through overexpression or depletion of Tet proteins. Thus, we identify two previously unknown cytosine derivatives in genomic DNA as the products of Tet proteins. Our study raises the possibility that DNA demethylation may occur through Tet-catalyzed oxidation followed by decarboxylation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3495246/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3495246/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ito, Shinsuke -- Shen, Li -- Dai, Qing -- Wu, Susan C -- Collins, Leonard B -- Swenberg, James A -- He, Chuan -- Zhang, Yi -- GM071440/GM/NIGMS NIH HHS/ -- GM68804/GM/NIGMS NIH HHS/ -- P30 ES010126/ES/NIEHS NIH HHS/ -- P30 ES010126-11/ES/NIEHS NIH HHS/ -- P30ES10126/ES/NIEHS NIH HHS/ -- P42 ES005948/ES/NIEHS NIH HHS/ -- P42 ES005948-17/ES/NIEHS NIH HHS/ -- P42ES5948/ES/NIEHS NIH HHS/ -- R01 GM068804/GM/NIGMS NIH HHS/ -- U01 DK089565/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 2;333(6047):1300-3. doi: 10.1126/science.1210597. Epub 2011 Jul 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21778364" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/*metabolism ; Animals ; Cell Line ; Cytosine/*analogs & derivatives/metabolism ; DNA/*metabolism ; DNA Methylation ; DNA-Binding Proteins/genetics/*metabolism ; Embryonic Stem Cells/metabolism ; Humans ; Mice ; Oxidation-Reduction ; Proto-Oncogene Proteins/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-07-06
    Description: DNA methylation is implicated in mammalian brain development and plasticity underlying learning and memory. We report the genome-wide composition, patterning, cell specificity, and dynamics of DNA methylation at single-base resolution in human and mouse frontal cortex throughout their lifespan. Widespread methylome reconfiguration occurs during fetal to young adult development, coincident with synaptogenesis. During this period, highly conserved non-CG methylation (mCH) accumulates in neurons, but not glia, to become the dominant form of methylation in the human neuronal genome. Moreover, we found an mCH signature that identifies genes escaping X-chromosome inactivation. Last, whole-genome single-base resolution 5-hydroxymethylcytosine (hmC) maps revealed that hmC marks fetal brain cell genomes at putative regulatory regions that are CG-demethylated and activated in the adult brain and that CG demethylation at these hmC-poised loci depends on Tet2 activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785061/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785061/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lister, Ryan -- Mukamel, Eran A -- Nery, Joseph R -- Urich, Mark -- Puddifoot, Clare A -- Johnson, Nicholas D -- Lucero, Jacinta -- Huang, Yun -- Dwork, Andrew J -- Schultz, Matthew D -- Yu, Miao -- Tonti-Filippini, Julian -- Heyn, Holger -- Hu, Shijun -- Wu, Joseph C -- Rao, Anjana -- Esteller, Manel -- He, Chuan -- Haghighi, Fatemeh G -- Sejnowski, Terrence J -- Behrens, M Margarita -- Ecker, Joseph R -- AI44432/AI/NIAID NIH HHS/ -- CA151535/CA/NCI NIH HHS/ -- HD065812/HD/NICHD NIH HHS/ -- HG006827/HG/NHGRI NIH HHS/ -- K99NS080911/NS/NINDS NIH HHS/ -- MH094670/MH/NIMH NIH HHS/ -- R01 AI044432/AI/NIAID NIH HHS/ -- R01 CA151535/CA/NCI NIH HHS/ -- R01 HD065812/HD/NICHD NIH HHS/ -- R01 HG006827/HG/NHGRI NIH HHS/ -- R01 MH094670/MH/NIMH NIH HHS/ -- R01 MH094774/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Aug 9;341(6146):1237905. doi: 10.1126/science.1237905. Epub 2013 Jul 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA. ryan.lister@uwa.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23828890" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/metabolism ; Adult ; Animals ; Base Sequence ; Conserved Sequence ; Cytosine/*analogs & derivatives/metabolism ; *DNA Methylation ; *Epigenesis, Genetic ; Epigenomics ; Frontal Lobe/*growth & development ; *Gene Expression Regulation, Developmental ; Genome-Wide Association Study ; Humans ; Longevity ; Mice ; Mice, Inbred C57BL ; X Chromosome Inactivation/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1998-09-04
    Description: The adenomatous polyposis coli gene (APC) is a tumor suppressor gene that is inactivated in most colorectal cancers. Mutations of APC cause aberrant accumulation of beta-catenin, which then binds T cell factor-4 (Tcf-4), causing increased transcriptional activation of unknown genes. Here, the c-MYC oncogene is identified as a target gene in this signaling pathway. Expression of c-MYC was shown to be repressed by wild-type APC and activated by beta-catenin, and these effects were mediated through Tcf-4 binding sites in the c-MYC promoter. These results provide a molecular framework for understanding the previously enigmatic overexpression of c-MYC in colorectal cancers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, T C -- Sparks, A B -- Rago, C -- Hermeking, H -- Zawel, L -- da Costa, L T -- Morin, P J -- Vogelstein, B -- Kinzler, K W -- CA57345/CA/NCI NIH HHS/ -- CA62924/CA/NCI NIH HHS/ -- GM07309/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Sep 4;281(5382):1509-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Johns Hopkins Oncology Center, 424 North Bond Street, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9727977" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein ; Binding Sites ; Cell Line ; Colorectal Neoplasms/*genetics ; Cytoskeletal Proteins/genetics/metabolism ; *Gene Expression Regulation, Neoplastic ; *Genes, APC ; Genes, Reporter ; *Genes, myc ; HT29 Cells ; Humans ; Mutation ; Promoter Regions, Genetic ; Proto-Oncogene Proteins c-myc/metabolism ; Signal Transduction ; TCF Transcription Factors ; *Trans-Activators ; Transcription Factor 7-Like 2 Protein ; Transcription Factors/metabolism ; Transcription, Genetic ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-04-17
    Description: Plant innate immunity is activated on the detection of pathogen-associated molecular patterns (PAMPs) at the cell surface, or of pathogen effector proteins inside the plant cell. Together, PAMP-triggered immunity and effector-triggered immunity constitute powerful defences against various phytopathogens. Pathogenic bacteria inject a variety of effector proteins into the host cell to assist infection or propagation. A number of effector proteins have been shown to inhibit plant immunity, but the biochemical basis remains unknown for the vast majority of these effectors. Here we show that the Xanthomonas campestris pathovar campestris type III effector AvrAC enhances virulence and inhibits plant immunity by specifically targeting Arabidopsis BIK1 and RIPK, two receptor-like cytoplasmic kinases known to mediate immune signalling. AvrAC is a uridylyl transferase that adds uridine 5'-monophosphate to and conceals conserved phosphorylation sites in the activation loop of BIK1 and RIPK, reducing their kinase activity and consequently inhibiting downstream signalling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, Feng -- Yang, Fan -- Rong, Wei -- Wu, Xiaogang -- Zhang, Jie -- Chen, She -- He, Chaozu -- Zhou, Jian-Min -- England -- Nature. 2012 Apr 15;485(7396):114-8. doi: 10.1038/nature10962.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22504181" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/*enzymology/*immunology/microbiology ; Arabidopsis Proteins/*antagonists & inhibitors/chemistry/immunology/metabolism ; Bacterial Proteins/*metabolism ; Brassica/immunology/microbiology ; Molecular Sequence Data ; Phosphorylation ; Plant Diseases/immunology/microbiology ; *Plant Immunity/immunology ; Plants, Genetically Modified ; Protein Kinases/chemistry/immunology/metabolism ; Protein-Serine-Threonine Kinases/*antagonists & ; inhibitors/chemistry/immunology/metabolism ; Signal Transduction ; Virulence ; Xanthomonas campestris/*enzymology/immunology/pathogenicity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...