ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-08-01
    Description: The North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) explored the impact of diabatic processes on disturbances of the jet stream and their influence on downstream high-impact weather through the deployment of four research aircraft, each with a sophisticated set of remote sensing and in situ instruments, and coordinated with a suite of ground-based measurements. A total of 49 research flights were performed, including, for the first time, coordinated flights of the four aircraft: the German High Altitude and Long Range Research Aircraft (HALO), the Deutsches Zentrum für Luft- und Raumfahrt (DLR) Dassault Falcon 20, the French Service des Avions Français Instrumentés pour la Recherche en Environnement (SAFIRE) Falcon 20, and the British Facility for Airborne Atmospheric Measurements (FAAM) BAe 146. The observation period from 17 September to 22 October 2016 with frequently occurring extratropical and tropical cyclones was ideal for investigating midlatitude weather over the North Atlantic. NAWDEX featured three sequences of upstream triggers of waveguide disturbances, as well as their dynamic interaction with the jet stream, subsequent development, and eventual downstream weather impact on Europe. Examples are presented to highlight the wealth of phenomena that were sampled, the comprehensive coverage, and the multifaceted nature of the measurements. This unique dataset forms the basis for future case studies and detailed evaluations of weather and climate predictions to improve our understanding of diabatic influences on Rossby waves and the downstream impacts of weather systems affecting Europe.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-01
    Description: The Thames basin experienced 12 major Atlantic depressions in winter 2013/14, leading to extensive and prolonged fluvial and groundwater flooding. This exceptional weather coincided with highly anomalous meteorological conditions across the globe. Atmospheric relaxation experiments, whereby conditions within specified regions are relaxed toward a reanalysis, have been used to investigate teleconnection patterns. However, no studies have examined whether improvements to seasonal meteorological forecasts translate into more skillful seasonal hydrological forecasts. This study applied relaxation experiments to reforecast the 2013/14 floods for three Thames basin catchments with different hydrogeological characteristics. The tropics played an important role in the development of extreme conditions over the Thames basin. The greatest hydrological forecasting skill was associated with the tropical Atlantic and less with the tropical Pacific, although both captured seasonal meteorological flow anomalies. Relaxation applied over the northeastern Atlantic produced confident ensemble forecasts, but hydrological extremes were underpredicted; this was unexpected with relaxation applied so close to the United Kingdom. Streamflow was most skillfully forecast for the catchment representing a large drainage area with high peak flow. Permeable lithology and antecedent conditions were important for skillfully forecasting groundwater levels. Atmospheric relaxation experiments can improve our understanding of extratropical anomalies and the potential predictability of extreme events such as the Thames 2013/14 floods. Seasonal hydrological forecasts differed from what was expected from the meteorology alone, and thus knowledge is gained by considering both components. In the densely populated Thames basin, considering the local hydrogeological context can provide an effective early alert of potential high-impact events, allowing for better preparedness.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-12
    Description: Medium-range forecasts for Cyclone Joachim, an extratropical cyclone that impacted western Europe on 16 December 2011, consistently predicted a high-impact intense cyclone; however, these forecasts failed to verify. The potential source and propagation of forecast errors for this case are diagnosed from the 51-member European Centre for Medium-Range Forecasts Ensemble Prediction System initialized 5 days prior to the cyclone’s landfall. Ensemble members are subdivided into two groups: one that contained the eight members that had the most accurate forecast of Joachim and, the other, the eight members that predicted the most intense cyclone. Composite differences between these two subgroups indicate that the difference between these forecasts originate in tropopause-based subsynoptic waves along a deep trough in the eastern Pacific. These errors move eastward over a northern stream ridge centered on the west coast of North America and modulate the evolution of a trough that dives equatorward out of Canada and is associated with the development of Joachim. Forecast error calculations and relaxation experiments indicate that reducing forecast errors associated with these subsynoptic features leads to more accurate forecasts. These results present further evidence that subsynoptic errors, especially those originating in the warm sector of a cyclone, can be a significant source of downstream forecast errors.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-09-01
    Description: Accurate estimation of the position of the departure points (d.p.) is crucial for the accuracy of a semi-Lagrangian NWP model. This calculation is often performed applying an implicit discretization to a kinematic equation solved by a fixed-point iteration scheme. A small number of iterations is typically used, assuming that this is sufficient for convergence. This assumption, derived from a past theoretical analysis, is revisited here. Analyzing the convergence of a generic d.p. iteration scheme and testing the ECMWF Integrated Forecast System (IFS) model, it is demonstrated that 2–3 iterations may not be sufficient for convergence to satisfactory accuracy in a modern high-resolution global model. Large forecast improvements can be seen by increasing the number of iterations. The extratropical geopotential error decreases and the simulated vertical structure of tropical cyclones improves. These findings prompted the implementation of an algorithm in which stopping criteria based on estimated convergence rates are used to “dynamically” stop d.p. iterations when an error tolerance criterion is satisfied. This is applied consistently to the nonlinear forecast, tangent linear, and adjoint models used by the ECMWF data assimilation system (4DVAR). Although the additional benefit of dynamic iteration is small, its testing reinforces the conclusion that a larger number of iterations is needed in regions of strong winds and shear. Furthermore, experiments suggest that dynamic iteration may prevent occasional 4DVAR failures in cases of strong stratospheric cross-polar flow in which the tangent linear model becomes unstable.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-04-01
    Description: Understanding the predictability limit of day-to-day weather phenomena such as midlatitude winter storms and summer monsoonal rainstorms is crucial to numerical weather prediction (NWP). This predictability limit is studied using unprecedented high-resolution global models with ensemble experiments of the European Centre for Medium-Range Weather Forecasts (ECMWF; 9-km operational model) and identical-twin experiments of the U.S. Next-Generation Global Prediction System (NGGPS; 3 km). Results suggest that the predictability limit for midlatitude weather may indeed exist and is intrinsic to the underlying dynamical system and instabilities even if the forecast model and the initial conditions are nearly perfect. Currently, a skillful forecast lead time of midlatitude instantaneous weather is around 10 days, which serves as the practical predictability limit. Reducing the current-day initial-condition uncertainty by an order of magnitude extends the deterministic forecast lead times of day-to-day weather by up to 5 days, with much less scope for improving prediction of small-scale phenomena like thunderstorms. Achieving this additional predictability limit can have enormous socioeconomic benefits but requires coordinated efforts by the entire community to design better numerical weather models, to improve observations, and to make better use of observations with advanced data assimilation and computing techniques.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-02-01
    Description: The Indian Ocean stands out as the region where the state-of-the-art decadal climate predictions of sea surface temperature (SST) perform the best worldwide for forecast times ranging from the second to the ninth year, according to correlation and root-mean-square error (RMSE) scores. This paper investigates the reasons for this high skill by assessing the contributions from the initial conditions, greenhouse gases, solar activity, and volcanic aerosols. The comparison between the SST correlation skill in uninitialized historical simulations and hindcasts initialized from estimates of the observed climate state shows that the high Indian Ocean skill is largely explained by the varying radiative forcings, the latter finding being supported by a set of additional sensitivity experiments. The long-term warming trend is the primary contributor to the high skill, though not the only one. Volcanic aerosols bring additional skill in this region as shown by the comparison between initialized hindcasts taking into account or not the effect of volcanic stratospheric aerosols and by the drop in skill when filtering out their effect in hindcasts that take them into account. Indeed, the Indian Ocean is shown to be the region where the ratio of the internally generated over the externally forced variability is the lowest, where the amplitude of the internal variability has been estimated by removing the effect of long-term warming trend and volcanic aerosols by a multiple least squares linear regression on observed SSTs.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-11-01
    Description: In this paper a study aimed at comparing the perturbation methodologies based on the singular vector ensemble prediction system (SV-EPS) and the breeding vector ensemble prediction system (BV-EPS) in the same model environment is presented. A simple breeding system (simple BV-EPS) as well as one with regional rescaling dependent on an estimate of the analysis error variance (masked BV-EPS) were used. The ECMWF Integrated Forecast System has been used and the three experiments are compared for 46 forecast cases between 1 December 2005 and 15 January 2006. By studying the distribution of the perturbation energy it was possible to see large differences between the experiments initially, but after 48 h the distributions have converged. Using probabilistic scores, these results show that SV-EPS has a somewhat better performance for the Northern Hemisphere compared to BV-EPS. For the Southern Hemisphere masked BV-EPS and SV-EPS yield almost equal results. For the tropics the masked breeding ensemble shows the best performance during the first 6 days. One reason for this is the current setup of the singular vector ensemble at ECMWF yielding in general very low initial perturbation amplitudes in the tropics.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-11-25
    Description: Operational global medium-range ensemble forecasts of tropical cyclone (TC) activity (genesis plus the subsequent track) are systematically evaluated to understand the skill of the state-of-the-art ensembles in forecasting TC activity as well as the relative benefits of a multicenter grand ensemble with respect to a single-model ensemble. The global ECMWF, JMA, NCEP, and UKMO ensembles are evaluated from 2010 to 2013 in seven TC basins around the world. The verification metric is the Brier skill score (BSS), which is calculated within a 3-day time window over a forecast length of 2 weeks to examine the skill from short- to medium-range time scales (0–14 days). These operational global medium-range ensembles are capable of providing guidance on TC activity forecasts that extends into week 2. Multicenter grand ensembles (MCGEs) tend to have better forecast skill (larger BSSs) than does the best single-model ensemble, which is the ECMWF ensemble in most verification time windows and most TC basins. The relative benefit of the MCGEs is relatively large in the north Indian Ocean and TC basins in the Southern Hemisphere where the BSS of the single-model ensemble is relatively small. The BSS metric and the reliability are found to be sensitive to the choice of threshold wind values that are used to define the model TCs.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-04-30
    Description: On 30 October 2012 Hurricane Sandy made landfall on the U.S. East Coast with a devastating impact. Here the performance of the ECMWF forecasts (both high resolution and ensemble) are evaluated together with ensemble forecasts from other numerical weather prediction centers, available from The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) archive. The sensitivity to sea surface temperature (SST) and model resolution for the ECMWF forecasts are explored. The results show that the ECMWF forecasts provided a clear indication of the landfall from 7 days in advance. Comparing ensemble forecasts from different centers, the authors find the ensemble forecasts from ECMWF to be the most consistent in the forecast of the landfall of Sandy on the New Jersey coastline. The impact of the warm SST anomaly off the U.S. East Coast is investigated by running sensitivity experiments with climatological SST instead of persisting the SST anomaly from the analysis. The results show that the SST anomaly had a small effect on Sandy’s track in the forecast, but the forecasts initialized with the warm SST anomaly feature a more intense system in terms of the depth of the cyclone, wind speeds, and precipitation. Furthermore, the role of spatial resolution is investigated by comparing four global simulations, spanning from TL159 (150 km) to TL3999 (5 km) horizontal resolution. Forecasts from 3 and 5 days before the landfall are evaluated. While all resolutions predict Sandy’s landfall, at very high resolution the tropical cyclone intensity and the oceanic wave forecasts are greatly improved.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-11-01
    Description: One desirable property within an ensemble forecast system is to have a one-to-one ratio between the root-mean-square error (rmse) of the ensemble mean and the standard deviation of the ensemble (spread). The ensemble spread and forecast error within the ECMWF ensemble prediction system has been extrapolated beyond 10 forecast days using a simple model for error growth. The behavior of the ensemble spread and the rmse at the time of the deterministic predictability are compared with derived relations of rmse at the infinite forecast length and the characteristic variability of the atmosphere in the limit of deterministic predictability. Utilizing this methodology suggests that the forecast model and the atmosphere do not have the same variability, which raises the question of how to obtain a perfect ensemble.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...