ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (186)
  • 2000-2004  (142)
  • 1940-1944  (13)
Collection
Years
Year
  • 1
    Publication Date: 2001-02-13
    Description: The Indian Ocean Experiment (INDOEX) was an international, multiplatform field campaign to measure long-range transport of air pollution from South and Southeast Asia toward the Indian Ocean during the dry monsoon season in January to March 1999. Surprisingly high pollution levels were observed over the entire northern Indian Ocean toward the Intertropical Convergence Zone at about 6 degrees S. We show that agricultural burning and especially biofuel use enhance carbon monoxide concentrations. Fossil fuel combustion and biomass burning cause a high aerosol loading. The growing pollution in this region gives rise to extensive air quality degradation with local, regional, and global implications, including a reduction of the oxidizing power of the atmosphere.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lelieveld, J -- Crutzen, P J -- Ramanathan, V -- Andreae, M O -- Brenninkmeijer, C M -- Campos, T -- Cass, G R -- Dickerson, R R -- Fischer, H -- de Gouw, J A -- Hansel, A -- Jefferson, A -- Kley, D -- de Laat, A T -- Lal, S -- Lawrence, M G -- Lobert, J M -- Mayol-Bracero, O L -- Mitra, A P -- Novakov, T -- Oltmans, S J -- Prather, K A -- Reiner, T -- Rodhe, H -- Scheeren, H A -- Sikka, D -- Williams, J -- New York, N.Y. -- Science. 2001 Feb 9;291(5506):1031-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institute for Chemistry, Post Office Box 3060, D-55020 Mainz, Germany. lelieveld@mpch-mainz.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11161214" target="_blank"〉PubMed〈/a〉
    Keywords: Aerosols ; Agriculture ; *Air Pollution ; Asia ; Asia, Southeastern ; Atmosphere ; Biomass ; Carbon ; Carbon Monoxide ; Coal Ash ; Fossil Fuels ; Industrial Waste ; Nitrogen Oxides ; Oceans and Seas ; Ozone ; Particulate Matter ; Seasons
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-10-26
    Description: The Mediterranean Intensive Oxidant Study, performed in the summer of 2001, uncovered air pollution layers from the surface to an altitude of 15 kilometers. In the boundary layer, air pollution standards are exceeded throughout the region, caused by West and East European pollution from the north. Aerosol particles also reduce solar radiation penetration to the surface, which can suppress precipitation. In the middle troposphere, Asian and to a lesser extent North American pollution is transported from the west. Additional Asian pollution from the east, transported from the monsoon in the upper troposphere, crosses the Mediterranean tropopause, which pollutes the lower stratosphere at middle latitudes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lelieveld, J -- Berresheim, H -- Borrmann, S -- Crutzen, P J -- Dentener, F J -- Fischer, H -- Feichter, J -- Flatau, P J -- Heland, J -- Holzinger, R -- Korrmann, R -- Lawrence, M G -- Levin, Z -- Markowicz, K M -- Mihalopoulos, N -- Minikin, A -- Ramanathan, V -- De Reus, M -- Roelofs, G J -- Scheeren, H A -- Sciare, J -- Schlager, H -- Schultz, M -- Siegmund, P -- Steil, B -- Stephanou, E G -- Stier, P -- Traub, M -- Warneke, C -- Williams, J -- Ziereis, H -- New York, N.Y. -- Science. 2002 Oct 25;298(5594):794-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Chemistry, Post Office Box 3060, 55020 Mainz, Germany. lelieveld@mpch-mainz.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12399583" target="_blank"〉PubMed〈/a〉
    Keywords: Aerosols ; *Air Pollutants ; *Air Pollution ; Asia ; Atmosphere ; *Carbon Monoxide ; Climate ; Europe ; Mediterranean Region ; North America ; Ozone ; Weather
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-05-16
    Description: Changes in past atmospheric carbon dioxide concentrations can be determined by measuring the composition of air trapped in ice cores from Antarctica. So far, the Antarctic Vostok and EPICA Dome C ice cores have provided a composite record of atmospheric carbon dioxide levels over the past 650,000 years. Here we present results of the lowest 200 m of the Dome C ice core, extending the record of atmospheric carbon dioxide concentration by two complete glacial cycles to 800,000 yr before present. From previously published data and the present work, we find that atmospheric carbon dioxide is strongly correlated with Antarctic temperature throughout eight glacial cycles but with significantly lower concentrations between 650,000 and 750,000 yr before present. Carbon dioxide levels are below 180 parts per million by volume (p.p.m.v.) for a period of 3,000 yr during Marine Isotope Stage 16, possibly reflecting more pronounced oceanic carbon storage. We report the lowest carbon dioxide concentration measured in an ice core, which extends the pre-industrial range of carbon dioxide concentrations during the late Quaternary by about 10 p.p.m.v. to 172-300 p.p.m.v.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luthi, Dieter -- Le Floch, Martine -- Bereiter, Bernhard -- Blunier, Thomas -- Barnola, Jean-Marc -- Siegenthaler, Urs -- Raynaud, Dominique -- Jouzel, Jean -- Fischer, Hubertus -- Kawamura, Kenji -- Stocker, Thomas F -- England -- Nature. 2008 May 15;453(7193):379-82. doi: 10.1038/nature06949.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland. luethi@climate.unibe.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18480821" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-04-11
    Description: Terrestrial vegetation, especially tropical rain forest, releases vast quantities of volatile organic compounds (VOCs) to the atmosphere, which are removed by oxidation reactions and deposition of reaction products. The oxidation is mainly initiated by hydroxyl radicals (OH), primarily formed through the photodissociation of ozone. Previously it was thought that, in unpolluted air, biogenic VOCs deplete OH and reduce the atmospheric oxidation capacity. Conversely, in polluted air VOC oxidation leads to noxious oxidant build-up by the catalytic action of nitrogen oxides (NO(x) = NO + NO2). Here we report aircraft measurements of atmospheric trace gases performed over the pristine Amazon forest. Our data reveal unexpectedly high OH concentrations. We propose that natural VOC oxidation, notably of isoprene, recycles OH efficiently in low-NO(x) air through reactions of organic peroxy radicals. Computations with an atmospheric chemistry model and the results of laboratory experiments suggest that an OH recycling efficiency of 40-80 per cent in isoprene oxidation may be able to explain the high OH levels we observed in the field. Although further laboratory studies are necessary to explore the chemical mechanism responsible for OH recycling in more detail, our results demonstrate that the biosphere maintains a remarkable balance with the atmospheric environment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lelieveld, J -- Butler, T M -- Crowley, J N -- Dillon, T J -- Fischer, H -- Ganzeveld, L -- Harder, H -- Lawrence, M G -- Martinez, M -- Taraborrelli, D -- Williams, J -- England -- Nature. 2008 Apr 10;452(7188):737-40. doi: 10.1038/nature06870.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Chemistry, 27 Becherweg, 55128 Mainz, Germany. lelieveld@mpch-mainz.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18401407" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atlantic Ocean ; Atmosphere/*chemistry ; Butadienes/metabolism ; French Guiana ; Guyana ; Hemiterpenes/metabolism ; Hydroxyl Radical/metabolism ; Nitric Oxide/metabolism ; Oxidation-Reduction ; Ozone/analysis ; Pentanes/metabolism ; Suriname ; Trees/*metabolism ; *Tropical Climate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-04-19
    Description: Past atmospheric methane concentrations show strong fluctuations in parallel to rapid glacial climate changes in the Northern Hemisphere superimposed on a glacial-interglacial doubling of methane concentrations. The processes driving the observed fluctuations remain uncertain but can be constrained using methane isotopic information from ice cores. Here we present an ice core record of carbon isotopic ratios in methane over the entire last glacial-interglacial transition. Our data show that the carbon in atmospheric methane was isotopically much heavier in cold climate periods. With the help of a box model constrained by the present data and previously published results, we are able to estimate the magnitude of past individual methane emission sources and the atmospheric lifetime of methane. We find that methane emissions due to biomass burning were about 45 Tg methane per year, and that these remained roughly constant throughout the glacial termination. The atmospheric lifetime of methane is reduced during cold climate periods. We also show that boreal wetlands are an important source of methane during warm events, but their methane emissions are essentially shut down during cold climate conditions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fischer, Hubertus -- Behrens, Melanie -- Bock, Michael -- Richter, Ulrike -- Schmitt, Jochen -- Loulergue, Laetitia -- Chappellaz, Jerome -- Spahni, Renato -- Blunier, Thomas -- Leuenberger, Markus -- Stocker, Thomas F -- England -- Nature. 2008 Apr 17;452(7189):864-7. doi: 10.1038/nature06825.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Alfred Wegener Institute for Polar and Marine Research, Columbusstrasse, 27568 Bremerhaven, Germany. hubertus.fischer@awi.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18421351" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/chemistry ; *Biomass ; Carbon/analysis ; Carbon Isotopes ; Cold Climate ; Fires/*statistics & numerical data ; Greenland ; History, Ancient ; Hydrogen/analysis ; *Ice Cover ; Methane/*analysis/*chemistry/metabolism ; Monte Carlo Method ; *Temperature ; Trees/*metabolism ; Wetlands
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-09-26
    Description: Reconstructions of atmospheric CO(2) concentrations based on Antarctic ice cores reveal significant changes during the Holocene epoch, but the processes responsible for these changes in CO(2) concentrations have not been unambiguously identified. Distinct characteristics in the carbon isotope signatures of the major carbon reservoirs (ocean, biosphere, sediments and atmosphere) constrain variations in the CO(2) fluxes between those reservoirs. Here we present a highly resolved atmospheric delta(13)C record for the past 11,000 years from measurements on atmospheric CO(2) trapped in an Antarctic ice core. From mass-balance inverse model calculations performed with a simplified carbon cycle model, we show that the decrease in atmospheric CO(2) of about 5 parts per million by volume (p.p.m.v.). The increase in delta(13)C of about 0.25 per thousand during the early Holocene is most probably the result of a combination of carbon uptake of about 290 gigatonnes of carbon by the land biosphere and carbon release from the ocean in response to carbonate compensation of the terrestrial uptake during the termination of the last ice age. The 20 p.p.m.v. increase of atmospheric CO(2) and the small decrease in delta(13)C of about 0.05 per thousand during the later Holocene can mostly be explained by contributions from carbonate compensation of earlier land-biosphere uptake and coral reef formation, with only a minor contribution from a small decrease of the land-biosphere carbon inventory.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elsig, Joachim -- Schmitt, Jochen -- Leuenberger, Daiana -- Schneider, Robert -- Eyer, Marc -- Leuenberger, Markus -- Joos, Fortunat -- Fischer, Hubertus -- Stocker, Thomas F -- England -- Nature. 2009 Sep 24;461(7263):507-10. doi: 10.1038/nature08393.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19779448" target="_blank"〉PubMed〈/a〉
    Keywords: Air/analysis ; Animals ; Antarctic Regions ; Anthozoa/growth & development/metabolism ; Atmosphere/chemistry ; Carbon/*analysis/*metabolism ; Carbon Dioxide/analysis/*metabolism ; Carbon Isotopes ; Climate ; Ecosystem ; History, Ancient ; Ice Cover/*chemistry ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-06-23
    Description: In fasted mammals, circulating pancreatic glucagon stimulates hepatic gluconeogenesis in part through the CREB regulated transcription coactivator 2 (CRTC2, also referred to as TORC2). Hepatic glucose production is increased in obesity, reflecting chronic increases in endoplasmic reticulum (ER) stress that promote insulin resistance. Whether ER stress also modulates the gluconeogenic program directly, however, is unclear. Here we show that CRTC2 functions as a dual sensor for ER stress and fasting signals. Acute increases in ER stress triggered the dephosphorylation and nuclear entry of CRTC2, which in turn promoted the expression of ER quality control genes through an association with activating transcription factor 6 alpha (ATF6alpha, also known as ATF6)--an integral branch of the unfolded protein response. In addition to mediating CRTC2 recruitment to ER stress inducible promoters, ATF6alpha also reduced hepatic glucose output by disrupting the CREB-CRTC2 interaction and thereby inhibiting CRTC2 occupancy over gluconeogenic genes. Conversely, hepatic glucose output was upregulated when hepatic ATF6alpha protein amounts were reduced, either by RNA interference (RNAi)-mediated knockdown or as a result of persistent stress in obesity. Because ATF6alpha overexpression in the livers of obese mice reversed CRTC2 effects on the gluconeogenic program and lowered hepatic glucose output, our results demonstrate how cross-talk between ER stress and fasting pathways at the level of a transcriptional coactivator contributes to glucose homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2730924/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2730924/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Yiguo -- Vera, Liliana -- Fischer, Wolfgang H -- Montminy, Marc -- R01 DK064142/DK/NIDDK NIH HHS/ -- R01 DK064142-06/DK/NIDDK NIH HHS/ -- R01 DK083834/DK/NIDDK NIH HHS/ -- R01 DK083834-25/DK/NIDDK NIH HHS/ -- R37 DK083834/DK/NIDDK NIH HHS/ -- England -- Nature. 2009 Jul 23;460(7254):534-7. doi: 10.1038/nature08111. Epub 2009 Jun 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19543265" target="_blank"〉PubMed〈/a〉
    Keywords: Activating Transcription Factor 6 ; Animals ; Cell Nucleus/metabolism ; Cyclic AMP Response Element-Binding Protein/metabolism ; Endoplasmic Reticulum/*metabolism ; Fasting/*physiology ; Gene Expression Regulation ; Gluconeogenesis/*physiology ; Liver/*metabolism ; Male ; Membrane Proteins/metabolism ; Mice ; Obesity/physiopathology ; Protein Transport ; Stress, Physiological/*physiology ; Trans-Activators/*metabolism ; Transcription Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-07-07
    Description: A high-resolution deuterium profile is now available along the entire European Project for Ice Coring in Antarctica Dome C ice core, extending this climate record back to marine isotope stage 20.2, approximately 800,000 years ago. Experiments performed with an atmospheric general circulation model including water isotopes support its temperature interpretation. We assessed the general correspondence between Dansgaard-Oeschger events and their smoothed Antarctic counterparts for this Dome C record, which reveals the presence of such features with similar amplitudes during previous glacial periods. We suggest that the interplay between obliquity and precession accounts for the variable intensity of interglacial periods in ice core records.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jouzel, J -- Masson-Delmotte, V -- Cattani, O -- Dreyfus, G -- Falourd, S -- Hoffmann, G -- Minster, B -- Nouet, J -- Barnola, J M -- Chappellaz, J -- Fischer, H -- Gallet, J C -- Johnsen, S -- Leuenberger, M -- Loulergue, L -- Luethi, D -- Oerter, H -- Parrenin, F -- Raisbeck, G -- Raynaud, D -- Schilt, A -- Schwander, J -- Selmo, E -- Souchez, R -- Spahni, R -- Stauffer, B -- Steffensen, J P -- Stenni, B -- Stocker, T F -- Tison, J L -- Werner, M -- Wolff, E W -- New York, N.Y. -- Science. 2007 Aug 10;317(5839):793-6. Epub 2007 Jul 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire des Sciences du Climat et l'Environnement, Institut Pierre Simon Laplace, CEA-CNRS-Universite de Versailles Saint-Quentin en Yvelines, CE Saclay, Gif-sur-Yvette, France. jean.jouzel@lsce.ipsl.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17615306" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-05-15
    Description: Ship-borne ozone (O3) measurements over the Atlantic Ocean during the period from 1977 to 2002 show that O3 trends in the northern mid-latitudes are small. In contrast, remarkably large O3 trends occur at low latitudes and in the Southern Hemisphere, where near-surface O3 has increased by up to a factor of 2. The likely cause is the substantial increase of anthropogenic emissions of nitrogen oxides (NOx) associated with energy use in Africa, which has added to NOx from biomass burning and natural sources.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lelieveld, J -- van Aardenne, J -- Fischer, H -- de Reus, M -- Williams, J -- Winkler, P -- New York, N.Y. -- Science. 2004 Jun 4;304(5676):1483-7. Epub 2004 May 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, 55218 Mainz, Germany. lelieveld@mpch-mainz.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15143217" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2005-11-29
    Description: A record of atmospheric carbon dioxide (CO2) concentrations measured on the EPICA (European Project for Ice Coring in Antarctica) Dome Concordia ice core extends the Vostok CO2 record back to 650,000 years before the present (yr B.P.). Before 430,000 yr B.P., partial pressure of atmospheric CO2 lies within the range of 260 and 180 parts per million by volume. This range is almost 30% smaller than that of the last four glacial cycles; however, the apparent sensitivity between deuterium and CO2 remains stable throughout the six glacial cycles, suggesting that the relationship between CO2 and Antarctic climate remained rather constant over this interval.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Siegenthaler, Urs -- Stocker, Thomas F -- Monnin, Eric -- Luthi, Dieter -- Schwander, Jakob -- Stauffer, Bernhard -- Raynaud, Dominique -- Barnola, Jean-Marc -- Fischer, Hubertus -- Masson-Delmotte, Valerie -- Jouzel, Jean -- New York, N.Y. -- Science. 2005 Nov 25;310(5752):1313-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16311332" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...