ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-09-26
    Description: Reconstructions of atmospheric CO(2) concentrations based on Antarctic ice cores reveal significant changes during the Holocene epoch, but the processes responsible for these changes in CO(2) concentrations have not been unambiguously identified. Distinct characteristics in the carbon isotope signatures of the major carbon reservoirs (ocean, biosphere, sediments and atmosphere) constrain variations in the CO(2) fluxes between those reservoirs. Here we present a highly resolved atmospheric delta(13)C record for the past 11,000 years from measurements on atmospheric CO(2) trapped in an Antarctic ice core. From mass-balance inverse model calculations performed with a simplified carbon cycle model, we show that the decrease in atmospheric CO(2) of about 5 parts per million by volume (p.p.m.v.). The increase in delta(13)C of about 0.25 per thousand during the early Holocene is most probably the result of a combination of carbon uptake of about 290 gigatonnes of carbon by the land biosphere and carbon release from the ocean in response to carbonate compensation of the terrestrial uptake during the termination of the last ice age. The 20 p.p.m.v. increase of atmospheric CO(2) and the small decrease in delta(13)C of about 0.05 per thousand during the later Holocene can mostly be explained by contributions from carbonate compensation of earlier land-biosphere uptake and coral reef formation, with only a minor contribution from a small decrease of the land-biosphere carbon inventory.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elsig, Joachim -- Schmitt, Jochen -- Leuenberger, Daiana -- Schneider, Robert -- Eyer, Marc -- Leuenberger, Markus -- Joos, Fortunat -- Fischer, Hubertus -- Stocker, Thomas F -- England -- Nature. 2009 Sep 24;461(7263):507-10. doi: 10.1038/nature08393.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19779448" target="_blank"〉PubMed〈/a〉
    Keywords: Air/analysis ; Animals ; Antarctic Regions ; Anthozoa/growth & development/metabolism ; Atmosphere/chemistry ; Carbon/*analysis/*metabolism ; Carbon Dioxide/analysis/*metabolism ; Carbon Isotopes ; Climate ; Ecosystem ; History, Ancient ; Ice Cover/*chemistry ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-03-31
    Description: The stable carbon isotope ratio of atmospheric CO(2) (delta(13)C(atm)) is a key parameter in deciphering past carbon cycle changes. Here we present delta(13)C(atm) data for the past 24,000 years derived from three independent records from two Antarctic ice cores. We conclude that a pronounced 0.3 per mil decrease in delta(13)C(atm) during the early deglaciation can be best explained by upwelling of old, carbon-enriched waters in the Southern Ocean. Later in the deglaciation, regrowth of the terrestrial biosphere, changes in sea surface temperature, and ocean circulation governed the delta(13)C(atm) evolution. During the Last Glacial Maximum, delta(13)C(atm) and atmospheric CO(2) concentration were essentially constant, which suggests that the carbon cycle was in dynamic equilibrium and that the net transfer of carbon to the deep ocean had occurred before then.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmitt, Jochen -- Schneider, Robert -- Elsig, Joachim -- Leuenberger, Daiana -- Lourantou, Anna -- Chappellaz, Jerome -- Kohler, Peter -- Joos, Fortunat -- Stocker, Thomas F -- Leuenberger, Markus -- Fischer, Hubertus -- New York, N.Y. -- Science. 2012 May 11;336(6082):711-4. doi: 10.1126/science.1217161. Epub 2012 Mar 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, CH-3012 Bern, Switzerland. schmitt@climate.unibe.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22461496" target="_blank"〉PubMed〈/a〉
    Keywords: Antarctic Regions ; *Atmosphere ; *Carbon Cycle ; Carbon Dioxide ; *Carbon Isotopes ; *Climate Change ; *Ice Cover ; Oceans and Seas ; *Seawater ; Temperature ; Time ; Water Movements
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: The reconstruction of δ13CO2 using Antarctic ice cores promises a deeper understanding on the causes of past atmospheric CO2 changes. Previous measurements on the Taylor Dome ice core over the last 30,000 years (Smith et al., 1999) indicated marine processes to be dominating the significant δ13CO2 changes over the transition, whereas glacial δ13CO2 was only slightly depleted relative to the Holocene (Leuenberger et al., 1992; Smith et al., 1999). However, significant uncertainty and the low temporal resolution of the Taylor Dome δ13CO2 data prevented a more detailed interpretation.Recently, substantial improvements have been made in the analysis and the resolution of ice core δ13CO2 records (Elsig et al., 2009; Lourantou et al., 2010). With these and new measurements presented here, three independent δ13CO2 data sets over the last glacial/interglacial transition have now been derived from the two EPICA and the Talos Dome ice cores. Two of the methods use traditional dry extraction techniques with a reproducibility of 0.07-0.1. The third method uses a novel sublimation technique with a reproducibility of 0.05. Here we compare the data sets, their analytical setups and discuss their joint information as well as their differences. The three records provide a more detailed picture on the temporal evolution of δ13CO2 and confirm two pronounced isotope minima between 18-12,000 years BP in parallel to the two major phases of CO2 increase (Lourantou et al., 2010; Smith et al., 1999) as also reflected in marine sediments (Marchitto et al., 2007; Skinner et al., 2010). Accordingly, a release of old carbon from the deep ocean is most likely responsible for a large part of the long-term increase in atmospheric CO2 in this time interval. However, the fast CO2 jumps at a round 12,000 and 14,000 years BP may be partly of terrestrial origin (Elsig, 2009; Köhler et al., 2010b). The new sublimation data set provides also unambiguous δ13CO2 data for clathrate ice in the LGM. This shows a rather constant δ13CO2 level, which is only about 0.1 lower than the Holocene, despite significant changes in the terrestrial and marine carbon storage. Accordingly, during the LGM the changes in the different processes acting on the glacial carbon cycle largely compensate each other with respect to δ13CO2 as predicted by carbon cycle modeling (Köhler et al., 2010a).References:Elsig, J. (2009), PhD thesis, University of Bern.Elsig, J. et al. (2009), Nature 461, 507-510.Köhler, P. et al. (2010a), Paleoceanogr. 25, doi:10.1029/2008PA001703.Köhler, P. et al. (2010b), Climate of the Past Disc. 6, 1473-1501.Leuenberger et al. (1992), Nature 357, 488-490.Lourantou, A. et al. (2010), Global Biogeochem. Cycles 24, doi:10.1029/2009GB003545.Marchitto et al. (2007), Science 316, 1456-1459.Skinner, L. C. et al. (2010), Science 328, 1147-1151.Smith, H. J. et al. (1999), Nature 400, 248-250.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Pages International Project Office
    In:  EPIC3PAGES Magazine, Pages International Project Office, 23(1), pp. 12-13, ISSN: 1811-1602
    Publication Date: 2015-01-23
    Description: High-precision ice core data on both atmospheric CO2 concentrations and their carbon isotopic composition (δ13Catm) provide improved constraints on the marine and terrestrial processes responsible for carbon cycle changes during the last two interglacials and the preceding glacial/interglacial transitions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: The stable carbon isotope ratio of atmospheric CO2 (d13Catm) is a key parameter in deciphering past carbon cycle changes. Here we present d13Catm data for the past 24,000 years derived from three independent records from two Antarctic ice cores. We conclude that a pronounced 0.3 per mil decrease in d13Catm during the early deglaciation can be best explained by upwelling of old, carbon-enriched waters in the Southern Ocean. Later in the deglaciation, regrowth of the terrestrial biosphere, changes in sea surface temperature, and ocean circulation governed the d13Catm evolution. During the Last Glacial Maximum, d13Catm and atmospheric CO2 concentration were essentially constant, which suggests that the carbon cycle was in dynamic equilibrium and that the net transfer of carbon to the deep ocean had occurred before then.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...