ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-12-09
    Description: Surface-to-atmosphere emissions of dimethyl sulfide (DMS) may impact global climate through the formation of gaseous sulfuric acid, which can yield secondary sulfate aerosols and contribute to new particle formation. While oceans are generally considered the dominant source of DMS, a shortage of ecosystem observations prevents an accurate analysis of terrestrial DMS sources. Using mass spectrometry, we quantified ambient DMS mixing ratios within and above a primary rainforest ecosystem in the central Amazon Basin in real-time (2010–2011) and at high vertical resolution (2013–2014). Elevated but highly variable DMS mixing ratios were observed within the canopy, showing clear evidence of a net ecosystem source to the atmosphere during both day and night in both the dry and wet seasons. Periods of high DMS mixing ratios lasting up to 8 hours (up to 160 ppt) often occurred within the canopy and near the surface during many evenings and nights. Daytime gradients showed mixing ratios (up to 80 ppt) peaking near the top of the canopy as well as near the ground following a rain event. The spatial and temporal distribution of DMS suggests that ambient levels and their potential climatic impacts are dominated by local soil and plant emissions. A soil source was confirmed by measurements of DMS emission fluxes from Amazon soils as a function of temperature and soil moisture. Furthermore, light and temperature dependent DMS emissions were measured from seven tropical tree species. Our study has important implications for understanding terrestrial DMS sources and their role in coupled land-atmosphere climate feedbacks.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-05-29
    Description: We examine in detail a one-year global reanalysis of carbon monoxide (CO) that is based on joint assimilation of conventional meteorological observations and Measurement of Pollution in The Troposphere (MOPITT) multispectral CO retrievals in the Community Earth System Model (CESM). Our focus is to assess the impact to the chemical system when CO distribution is constrained in a coupled full chemistry-climate model like CESM. To do this, we first evaluate the joint reanalysis (MOPITT Reanalysis) against four sets of independent observations and compare its performance against a reanalysis with no MOPITT assimilation (Control Run). We then investigate the CO burden and chemical response with the aid of tagged sectoral CO tracers. We estimate the total tropospheric CO burden in 2002 (from ensemble mean and spread) to be 371 ±12% Tg for MOPITT Reanalysis and 291 ± 9 % Tg for Control Run. Our multi-species analysis of this difference suggests that: a) direct emissions of CO and hydrocarbons are too low in the inventory used in this study; and b) chemical oxidation, transport, and deposition processes are not accurately and consistently represented in the model. Increases in CO led to net reduction of OH and subsequent longer lifetime of CH 4 (Control Run: 8.7 years versus MOPITT Reanalysis: 9.3 years). Yet, at the same time, this increase led to 5-10% enhancement of northern hemisphere O 3 and overall photochemical activity via HO X recycling. Such nonlinear effects further complicate the attribution to uncertainties in direct emissions alone. This has implications to chemistry-climate modeling and inversion studies of longer-lived species.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-04-05
    Description: The impact of wildfires on surface air composition over central Siberia is investigated based on near-surface carbon monoxide (CO) measurements conducted at Zotino Tall Tower Observatory (ZOTTO), a remote station in the center of Siberia, during 2007 and 2008 warm seasons. Seasonal variations of intensity and spatial distribution of wildfires in south of western and eastern Siberia are found to be important factors contributing a substantial part of synoptic and year-to-year variability of background CO levels in the region. Based on the MODIS area burned product, the estimate of the total yearly CO emitted from wildfires in the regions potentially affecting the measurement site (those of European Russia and Siberia) is approximately 15 and 27 Tg CO in 2007 and 2008, versus 18.0 and 39.4 Tg CO from wildfires in all of Russia in 2007 and 2008, and 11 Tg CO from all anthropogenic sources in Russia according to EDGARv4.1 database for year 2005. The severe fire activity in northern Eurasia, particularly in western Siberia, during 2008 caused enhanced springtime surface CO levels observed at ZOTTO, with median CO mixing ratio in April–May 2008 by approximately 15 ppb higher compared to April–May 2007. Episodes of air transport from wildfires upwind of the measurements site are identified based on ensembles of backward trajectories and MODIS products. The impact of distinct wildfire smoke plumes on near-surface CO mixing ratios, along with the influence of wildfire and anthropogenic emissions on background CO levels in the region is estimated using backward Lagrangian trajectory statistics. The estimated relative CO enhancement in fire plumes with transport times up to 2 days is about 5–25 ppb in springs 2007 and 2008, and 50 ppb in summer 2008, based on the observed median values, with a maximal absolute value of 250 ppb observed in April 2008. Boreal forest fires over the vast areas of central Siberia along with regional anthropogenic sources are found to be the major factors driving short-term (synoptic) variability of near-surface CO during the warm season.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-02-13
    Description: The Indian Ocean Experiment (INDOEX) was an international, multiplatform field campaign to measure long-range transport of air pollution from South and Southeast Asia toward the Indian Ocean during the dry monsoon season in January to March 1999. Surprisingly high pollution levels were observed over the entire northern Indian Ocean toward the Intertropical Convergence Zone at about 6 degrees S. We show that agricultural burning and especially biofuel use enhance carbon monoxide concentrations. Fossil fuel combustion and biomass burning cause a high aerosol loading. The growing pollution in this region gives rise to extensive air quality degradation with local, regional, and global implications, including a reduction of the oxidizing power of the atmosphere.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lelieveld, J -- Crutzen, P J -- Ramanathan, V -- Andreae, M O -- Brenninkmeijer, C M -- Campos, T -- Cass, G R -- Dickerson, R R -- Fischer, H -- de Gouw, J A -- Hansel, A -- Jefferson, A -- Kley, D -- de Laat, A T -- Lal, S -- Lawrence, M G -- Lobert, J M -- Mayol-Bracero, O L -- Mitra, A P -- Novakov, T -- Oltmans, S J -- Prather, K A -- Reiner, T -- Rodhe, H -- Scheeren, H A -- Sikka, D -- Williams, J -- New York, N.Y. -- Science. 2001 Feb 9;291(5506):1031-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institute for Chemistry, Post Office Box 3060, D-55020 Mainz, Germany. lelieveld@mpch-mainz.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11161214" target="_blank"〉PubMed〈/a〉
    Keywords: Aerosols ; Agriculture ; *Air Pollution ; Asia ; Asia, Southeastern ; Atmosphere ; Biomass ; Carbon ; Carbon Monoxide ; Coal Ash ; Fossil Fuels ; Industrial Waste ; Nitrogen Oxides ; Oceans and Seas ; Ozone ; Particulate Matter ; Seasons
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1990-12-21
    Description: Biomass burning is widespread, especially in the tropics. It serves to clear land for shifting cultivation, to convert forests to agricultural and pastoral lands, and to remove dry vegetation in order to promote agricultural productivity and the growth of higher yield grasses. Furthermore, much agricultural waste and fuel wood is being combusted, particularly in developing countries. Biomass containing 2 to 5 petagrams of carbon is burned annually (1 petagram = 10(15) grams), producing large amounts of trace gases and aerosol particles that play important roles in atmospheric chemistry and climate. Emissions of carbon monoxide and methane by biomass burning affect the oxidation efficiency of the atmosphere by reacting with hydroxyl radicals, and emissions of nitric oxide and hydrocarbons lead to high ozone concentrations in the tropics during the dry season. Large quantities of smoke particles are produced as well, and these can serve as cloud condensation nuclei. These particles may thus substantially influence cloud microphysical and optical properties, an effect that could have repercussions for the radiation budget and the hydrological cycle in the tropics. Widespread burning may also disturb biogeochemical cycles, especially that of nitrogen. About 50 percent of the nitrogen in the biomass fuel can be released as molecular nitrogen. This pyrdenitrification process causes a sizable loss of fixed nitrogen in tropical ecosystems, in the range of 10 to 20 teragrams per year (1 teragram = 10(12) grams).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crutzen, P J -- Andreae, M O -- New York, N.Y. -- Science. 1990 Dec 21;250(4988):1669-78.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17734705" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-01-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andreae, Meinrat O -- New York, N.Y. -- Science. 2007 Jan 5;315(5808):50-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Chemistry, 55020 Mainz, Germany. andreae@mpch-mainz.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17204632" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-09-06
    Description: Aerosols serve as cloud condensation nuclei (CCN) and thus have a substantial effect on cloud properties and the initiation of precipitation. Large concentrations of human-made aerosols have been reported to both decrease and increase rainfall as a result of their radiative and CCN activities. At one extreme, pristine tropical clouds with low CCN concentrations rain out too quickly to mature into long-lived clouds. On the other hand, heavily polluted clouds evaporate much of their water before precipitation can occur, if they can form at all given the reduced surface heating resulting from the aerosol haze layer. We propose a conceptual model that explains this apparent dichotomy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosenfeld, Daniel -- Lohmann, Ulrike -- Raga, Graciela B -- O'Dowd, Colin D -- Kulmala, Markku -- Fuzzi, Sandro -- Reissell, Anni -- Andreae, Meinrat O -- New York, N.Y. -- Science. 2008 Sep 5;321(5894):1309-13. doi: 10.1126/science.1160606.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel. daniel.rosenfeld@huji.ac.il〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18772428" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-09-18
    Description: The Amazon is one of the few continental regions where atmospheric aerosol particles and their effects on climate are not dominated by anthropogenic sources. During the wet season, the ambient conditions approach those of the pristine pre-industrial era. We show that the fine submicrometer particles accounting for most cloud condensation nuclei are predominantly composed of secondary organic material formed by oxidation of gaseous biogenic precursors. Supermicrometer particles, which are relevant as ice nuclei, consist mostly of primary biological material directly released from rainforest biota. The Amazon Basin appears to be a biogeochemical reactor, in which the biosphere and atmospheric photochemistry produce nuclei for clouds and precipitation sustaining the hydrological cycle. The prevailing regime of aerosol-cloud interactions in this natural environment is distinctly different from polluted regions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Poschl, U -- Martin, S T -- Sinha, B -- Chen, Q -- Gunthe, S S -- Huffman, J A -- Borrmann, S -- Farmer, D K -- Garland, R M -- Helas, G -- Jimenez, J L -- King, S M -- Manzi, A -- Mikhailov, E -- Pauliquevis, T -- Petters, M D -- Prenni, A J -- Roldin, P -- Rose, D -- Schneider, J -- Su, H -- Zorn, S R -- Artaxo, P -- Andreae, M O -- New York, N.Y. -- Science. 2010 Sep 17;329(5998):1513-6. doi: 10.1126/science.1191056.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Chemistry, 55128 Mainz, Germany. u.poschl@mpic.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20847268" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-09-01
    Description: The fine particles serving as cloud condensation nuclei in pristine Amazonian rainforest air consist mostly of secondary organic aerosol. Their origin is enigmatic, however, because new particle formation in the atmosphere is not observed. Here, we show that the growth of organic aerosol particles can be initiated by potassium-salt-rich particles emitted by biota in the rainforest. These particles act as seeds for the condensation of low- or semi-volatile organic compounds from the atmospheric gas phase or multiphase oxidation of isoprene and terpenes. Our findings suggest that the primary emission of biogenic salt particles directly influences the number concentration of cloud condensation nuclei and affects the microphysics of cloud formation and precipitation over the rainforest.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pohlker, Christopher -- Wiedemann, Kenia T -- Sinha, Barbel -- Shiraiwa, Manabu -- Gunthe, Sachin S -- Smith, Mackenzie -- Su, Hang -- Artaxo, Paulo -- Chen, Qi -- Cheng, Yafang -- Elbert, Wolfgang -- Gilles, Mary K -- Kilcoyne, Arthur L D -- Moffet, Ryan C -- Weigand, Markus -- Martin, Scot T -- Poschl, Ulrich -- Andreae, Meinrat O -- New York, N.Y. -- Science. 2012 Aug 31;337(6098):1075-8. doi: 10.1126/science.1223264.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biogeochemistry Department, Max Planck Institute for Chemistry, Mainz 55020, Germany. c.pohlker@mpic.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22936773" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/*chemistry ; Particle Size ; Particulate Matter/*chemistry ; Potassium/*chemistry ; Rain/*chemistry ; Salts/chemistry ; South America ; Trees/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-02-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andreae, Meinrat O -- New York, N.Y. -- Science. 2013 Feb 22;339(6122):911-2. doi: 10.1126/science.1233798.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biogeochemistry Department, Max Planck Institute for Chemistry, Mainz, D-55020 Germany. m.andreae@mpic.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23430641" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...