ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Sequence Data  (13)
  • Models, Molecular  (11)
  • Nature Publishing Group (NPG)  (22)
  • 2010-2014  (22)
  • 2000-2004
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2012-03-01
    Description: The human X and Y chromosomes evolved from an ordinary pair of autosomes during the past 200-300 million years. The human MSY (male-specific region of Y chromosome) retains only three percent of the ancestral autosomes' genes owing to genetic decay. This evolutionary decay was driven by a series of five 'stratification' events. Each event suppressed X-Y crossing over within a chromosome segment or 'stratum', incorporated that segment into the MSY and subjected its genes to the erosive forces that attend the absence of crossing over. The last of these events occurred 30 million years ago, 5 million years before the human and Old World monkey lineages diverged. Although speculation abounds regarding ongoing decay and looming extinction of the human Y chromosome, remarkably little is known about how many MSY genes were lost in the human lineage in the 25 million years that have followed its separation from the Old World monkey lineage. To investigate this question, we sequenced the MSY of the rhesus macaque, an Old World monkey, and compared it to the human MSY. We discovered that during the last 25 million years MSY gene loss in the human lineage was limited to the youngest stratum (stratum 5), which comprises three percent of the human MSY. In the older strata, which collectively comprise the bulk of the human MSY, gene loss evidently ceased more than 25 million years ago. Likewise, the rhesus MSY has not lost any older genes (from strata 1-4) during the past 25 million years, despite its major structural differences to the human MSY. The rhesus MSY is simpler, with few amplified gene families or palindromes that might enable intrachromosomal recombination and repair. We present an empirical reconstruction of human MSY evolution in which each stratum transitioned from rapid, exponential loss of ancestral genes to strict conservation through purifying selection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292678/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292678/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hughes, Jennifer F -- Skaletsky, Helen -- Brown, Laura G -- Pyntikova, Tatyana -- Graves, Tina -- Fulton, Robert S -- Dugan, Shannon -- Ding, Yan -- Buhay, Christian J -- Kremitzki, Colin -- Wang, Qiaoyan -- Shen, Hua -- Holder, Michael -- Villasana, Donna -- Nazareth, Lynne V -- Cree, Andrew -- Courtney, Laura -- Veizer, Joelle -- Kotkiewicz, Holland -- Cho, Ting-Jan -- Koutseva, Natalia -- Rozen, Steve -- Muzny, Donna M -- Warren, Wesley C -- Gibbs, Richard A -- Wilson, Richard K -- Page, David C -- R01 HG000257/HG/NHGRI NIH HHS/ -- R01 HG000257-17/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Feb 22;483(7387):82-6. doi: 10.1038/nature10843.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA. jhughes@wi.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22367542" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes, Human, Y/*genetics ; Conserved Sequence/*genetics ; Crossing Over, Genetic/genetics ; *Evolution, Molecular ; Gene Amplification/genetics ; *Gene Deletion ; Humans ; In Situ Hybridization, Fluorescence ; Macaca mulatta/*genetics ; Male ; Models, Genetic ; Molecular Sequence Data ; Pan troglodytes/genetics ; Radiation Hybrid Mapping ; Selection, Genetic/genetics ; Time Factors ; Y Chromosome/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-03-25
    Description: Multiple myeloma is an incurable malignancy of plasma cells, and its pathogenesis is poorly understood. Here we report the massively parallel sequencing of 38 tumour genomes and their comparison to matched normal DNAs. Several new and unexpected oncogenic mechanisms were suggested by the pattern of somatic mutation across the data set. These include the mutation of genes involved in protein translation (seen in nearly half of the patients), genes involved in histone methylation, and genes involved in blood coagulation. In addition, a broader than anticipated role of NF-kappaB signalling was indicated by mutations in 11 members of the NF-kappaB pathway. Of potential immediate clinical relevance, activating mutations of the kinase BRAF were observed in 4% of patients, suggesting the evaluation of BRAF inhibitors in multiple myeloma clinical trials. These results indicate that cancer genome sequencing of large collections of samples will yield new insights into cancer not anticipated by existing knowledge.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560292/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560292/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapman, Michael A -- Lawrence, Michael S -- Keats, Jonathan J -- Cibulskis, Kristian -- Sougnez, Carrie -- Schinzel, Anna C -- Harview, Christina L -- Brunet, Jean-Philippe -- Ahmann, Gregory J -- Adli, Mazhar -- Anderson, Kenneth C -- Ardlie, Kristin G -- Auclair, Daniel -- Baker, Angela -- Bergsagel, P Leif -- Bernstein, Bradley E -- Drier, Yotam -- Fonseca, Rafael -- Gabriel, Stacey B -- Hofmeister, Craig C -- Jagannath, Sundar -- Jakubowiak, Andrzej J -- Krishnan, Amrita -- Levy, Joan -- Liefeld, Ted -- Lonial, Sagar -- Mahan, Scott -- Mfuko, Bunmi -- Monti, Stefano -- Perkins, Louise M -- Onofrio, Robb -- Pugh, Trevor J -- Rajkumar, S Vincent -- Ramos, Alex H -- Siegel, David S -- Sivachenko, Andrey -- Stewart, A Keith -- Trudel, Suzanne -- Vij, Ravi -- Voet, Douglas -- Winckler, Wendy -- Zimmerman, Todd -- Carpten, John -- Trent, Jeff -- Hahn, William C -- Garraway, Levi A -- Meyerson, Matthew -- Lander, Eric S -- Getz, Gad -- Golub, Todd R -- K12 CA133250/CA/NCI NIH HHS/ -- R01 AG020686/AG/NIA NIH HHS/ -- R01 AG020686-07/AG/NIA NIH HHS/ -- R01 CA133115/CA/NCI NIH HHS/ -- R01 CA133115-04/CA/NCI NIH HHS/ -- R01 CA133966/CA/NCI NIH HHS/ -- R01 CA133966-03/CA/NCI NIH HHS/ -- England -- Nature. 2011 Mar 24;471(7339):467-72. doi: 10.1038/nature09837.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Eli and Edythe L. Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02412, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21430775" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Blood Coagulation/genetics ; CpG Islands/genetics ; DNA Mutational Analysis ; DNA Repair/genetics ; Exons/genetics ; Exosome Multienzyme Ribonuclease Complex ; Genome, Human/*genetics ; Genomics ; Histones/metabolism ; Homeodomain Proteins/genetics ; Homeostasis/genetics ; Humans ; Methylation ; Models, Molecular ; Molecular Sequence Data ; Multiple Myeloma/drug therapy/enzymology/*genetics/metabolism ; Mutation/*genetics ; NF-kappa B/metabolism ; Oncogenes/genetics ; Open Reading Frames/genetics ; Protein Biosynthesis/genetics ; Protein Conformation ; Proto-Oncogene Proteins B-raf/antagonists & inhibitors/genetics/metabolism ; RNA Processing, Post-Transcriptional/genetics ; Ribonucleases/chemistry/genetics ; Signal Transduction/genetics ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-08-24
    Description: Materials exhibiting a spontaneous electrical polarization that can be switched easily between antiparallel orientations are of potential value for sensors, photonics and energy-efficient memories. In this context, organic ferroelectrics are of particular interest because they promise to be lightweight, inexpensive and easily processed into devices. A recently identified family of organic ferroelectric structures is based on intermolecular charge transfer, where donor and acceptor molecules co-crystallize in an alternating fashion known as a mixed stack: in the crystalline lattice, a collective transfer of electrons from donor to acceptor molecules results in the formation of dipoles that can be realigned by an external field as molecules switch partners in the mixed stack. Although mixed stacks have been investigated extensively, only three systems are known to show ferroelectric switching, all below 71 kelvin. Here we describe supramolecular charge-transfer networks that undergo ferroelectric polarization switching with a ferroelectric Curie temperature above room temperature. These polar and switchable systems utilize a structural synergy between a hydrogen-bonded network and charge-transfer complexation of donor and acceptor molecules in a mixed stack. This supramolecular motif could help guide the development of other functional organic systems that can switch polarization under the influence of electric fields at ambient temperatures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tayi, Alok S -- Shveyd, Alexander K -- Sue, Andrew C-H -- Szarko, Jodi M -- Rolczynski, Brian S -- Cao, Dennis -- Kennedy, T Jackson -- Sarjeant, Amy A -- Stern, Charlotte L -- Paxton, Walter F -- Wu, Wei -- Dey, Sanjeev K -- Fahrenbach, Albert C -- Guest, Jeffrey R -- Mohseni, Hooman -- Chen, Lin X -- Wang, Kang L -- Stoddart, J Fraser -- Stupp, Samuel I -- England -- Nature. 2012 Aug 23;488(7412):485-9. doi: 10.1038/nature11395.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22914165" target="_blank"〉PubMed〈/a〉
    Keywords: Anisotropy ; Crystallization ; *Electricity ; Electron Transport ; *Electrons ; Hydrogen Bonding ; Iron/*chemistry ; Models, Molecular ; Molecular Conformation ; Organometallic Compounds/*chemistry ; Surface Properties ; *Temperature
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-12-14
    Description: Soybean (Glycine max (L.) Merr.) is an important crop that provides a sustainable source of protein and oil worldwide. Soybean cyst nematode (Heterodera glycines Ichinohe) is a microscopic roundworm that feeds on the roots of soybean and is a major constraint to soybean production. This nematode causes more than US$1 billion in yield losses annually in the United States alone, making it the most economically important pathogen on soybean. Although planting of resistant cultivars forms the core management strategy for this pathogen, nothing is known about the nature of resistance. Moreover, the increase in virulent populations of this parasite on most known resistance sources necessitates the development of novel approaches for control. Here we report the map-based cloning of a gene at the Rhg4 (for resistance to Heterodera glycines 4) locus, a major quantitative trait locus contributing to resistance to this pathogen. Mutation analysis, gene silencing and transgenic complementation confirm that the gene confers resistance. The gene encodes a serine hydroxymethyltransferase, an enzyme that is ubiquitous in nature and structurally conserved across kingdoms. The enzyme is responsible for interconversion of serine and glycine and is essential for cellular one-carbon metabolism. Alleles of Rhg4 conferring resistance or susceptibility differ by two genetic polymorphisms that alter a key regulatory property of the enzyme. Our discovery reveals an unprecedented plant resistance mechanism against a pathogen. The mechanistic knowledge of the resistance gene can be readily exploited to improve nematode resistance of soybean, an increasingly important global crop.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Shiming -- Kandoth, Pramod K -- Warren, Samantha D -- Yeckel, Greg -- Heinz, Robert -- Alden, John -- Yang, Chunling -- Jamai, Aziz -- El-Mellouki, Tarik -- Juvale, Parijat S -- Hill, John -- Baum, Thomas J -- Cianzio, Silvia -- Whitham, Steven A -- Korkin, Dmitry -- Mitchum, Melissa G -- Meksem, Khalid -- England -- Nature. 2012 Dec 13;492(7428):256-60. doi: 10.1038/nature11651. Epub 2012 Oct 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, Illinois 62901, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23235880" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; DNA Mutational Analysis ; Gene Order ; Gene Silencing ; Genetic Complementation Test ; Glycine Hydroxymethyltransferase/genetics/metabolism ; Haplotypes ; *Host-Parasite Interactions ; Models, Molecular ; Molecular Sequence Data ; Nematoda/*physiology ; Plant Proteins/chemistry/*genetics/*metabolism ; Polymorphism, Genetic/genetics ; Protein Structure, Tertiary ; Quantitative Trait Loci/genetics ; Soybeans/enzymology/*genetics/*parasitology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-01-13
    Description: Early T-cell precursor acute lymphoblastic leukaemia (ETP ALL) is an aggressive malignancy of unknown genetic basis. We performed whole-genome sequencing of 12 ETP ALL cases and assessed the frequency of the identified somatic mutations in 94 T-cell acute lymphoblastic leukaemia cases. ETP ALL was characterized by activating mutations in genes regulating cytokine receptor and RAS signalling (67% of cases; NRAS, KRAS, FLT3, IL7R, JAK3, JAK1, SH2B3 and BRAF), inactivating lesions disrupting haematopoietic development (58%; GATA3, ETV6, RUNX1, IKZF1 and EP300) and histone-modifying genes (48%; EZH2, EED, SUZ12, SETD2 and EP300). We also identified new targets of recurrent mutation including DNM2, ECT2L and RELN. The mutational spectrum is similar to myeloid tumours, and moreover, the global transcriptional profile of ETP ALL was similar to that of normal and myeloid leukaemia haematopoietic stem cells. These findings suggest that addition of myeloid-directed therapies might improve the poor outcome of ETP ALL.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267575/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267575/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Jinghui -- Ding, Li -- Holmfeldt, Linda -- Wu, Gang -- Heatley, Sue L -- Payne-Turner, Debbie -- Easton, John -- Chen, Xiang -- Wang, Jianmin -- Rusch, Michael -- Lu, Charles -- Chen, Shann-Ching -- Wei, Lei -- Collins-Underwood, J Racquel -- Ma, Jing -- Roberts, Kathryn G -- Pounds, Stanley B -- Ulyanov, Anatoly -- Becksfort, Jared -- Gupta, Pankaj -- Huether, Robert -- Kriwacki, Richard W -- Parker, Matthew -- McGoldrick, Daniel J -- Zhao, David -- Alford, Daniel -- Espy, Stephen -- Bobba, Kiran Chand -- Song, Guangchun -- Pei, Deqing -- Cheng, Cheng -- Roberts, Stefan -- Barbato, Michael I -- Campana, Dario -- Coustan-Smith, Elaine -- Shurtleff, Sheila A -- Raimondi, Susana C -- Kleppe, Maria -- Cools, Jan -- Shimano, Kristin A -- Hermiston, Michelle L -- Doulatov, Sergei -- Eppert, Kolja -- Laurenti, Elisa -- Notta, Faiyaz -- Dick, John E -- Basso, Giuseppe -- Hunger, Stephen P -- Loh, Mignon L -- Devidas, Meenakshi -- Wood, Brent -- Winter, Stuart -- Dunsmore, Kimberley P -- Fulton, Robert S -- Fulton, Lucinda L -- Hong, Xin -- Harris, Christopher C -- Dooling, David J -- Ochoa, Kerri -- Johnson, Kimberly J -- Obenauer, John C -- Evans, William E -- Pui, Ching-Hon -- Naeve, Clayton W -- Ley, Timothy J -- Mardis, Elaine R -- Wilson, Richard K -- Downing, James R -- Mullighan, Charles G -- CA114766/CA/NCI NIH HHS/ -- CA98413/CA/NCI NIH HHS/ -- CA98543/CA/NCI NIH HHS/ -- P30 CA021765/CA/NCI NIH HHS/ -- P30 CA021765-33/CA/NCI NIH HHS/ -- P30CA021765/CA/NCI NIH HHS/ -- U01GM92666/GM/NIGMS NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- England -- Nature. 2012 Jan 11;481(7380):157-63. doi: 10.1038/nature10725.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Computational Biology and Bioinformatics, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22237106" target="_blank"〉PubMed〈/a〉
    Keywords: Age of Onset ; Child ; DNA Copy Number Variations/genetics ; Genes, ras/genetics ; Genetic Predisposition to Disease/*genetics ; Genome, Human/genetics ; Genomics ; Hematopoiesis/genetics ; Histones/metabolism ; Humans ; Janus Kinases/genetics/metabolism ; Leukemia, Myeloid, Acute/drug therapy/genetics/pathology ; Molecular Sequence Data ; Mutation/*genetics ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy/*genetics/pathology ; Receptors, Interleukin-7/genetics ; Sequence Analysis, DNA ; Signal Transduction/genetics ; Stem Cells/metabolism/pathology ; T-Lymphocytes/metabolism/pathology ; Translocation, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-07-24
    Description: Medulloblastomas are the most common malignant brain tumours in children. Identifying and understanding the genetic events that drive these tumours is critical for the development of more effective diagnostic, prognostic and therapeutic strategies. Recently, our group and others described distinct molecular subtypes of medulloblastoma on the basis of transcriptional and copy number profiles. Here we use whole-exome hybrid capture and deep sequencing to identify somatic mutations across the coding regions of 92 primary medulloblastoma/normal pairs. Overall, medulloblastomas have low mutation rates consistent with other paediatric tumours, with a median of 0.35 non-silent mutations per megabase. We identified twelve genes mutated at statistically significant frequencies, including previously known mutated genes in medulloblastoma such as CTNNB1, PTCH1, MLL2, SMARCA4 and TP53. Recurrent somatic mutations were newly identified in an RNA helicase gene, DDX3X, often concurrent with CTNNB1 mutations, and in the nuclear co-repressor (N-CoR) complex genes GPS2, BCOR and LDB1. We show that mutant DDX3X potentiates transactivation of a TCF promoter and enhances cell viability in combination with mutant, but not wild-type, beta-catenin. Together, our study reveals the alteration of WNT, hedgehog, histone methyltransferase and now N-CoR pathways across medulloblastomas and within specific subtypes of this disease, and nominates the RNA helicase DDX3X as a component of pathogenic beta-catenin signalling in medulloblastoma.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3413789/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3413789/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pugh, Trevor J -- Weeraratne, Shyamal Dilhan -- Archer, Tenley C -- Pomeranz Krummel, Daniel A -- Auclair, Daniel -- Bochicchio, James -- Carneiro, Mauricio O -- Carter, Scott L -- Cibulskis, Kristian -- Erlich, Rachel L -- Greulich, Heidi -- Lawrence, Michael S -- Lennon, Niall J -- McKenna, Aaron -- Meldrim, James -- Ramos, Alex H -- Ross, Michael G -- Russ, Carsten -- Shefler, Erica -- Sivachenko, Andrey -- Sogoloff, Brian -- Stojanov, Petar -- Tamayo, Pablo -- Mesirov, Jill P -- Amani, Vladimir -- Teider, Natalia -- Sengupta, Soma -- Francois, Jessica Pierre -- Northcott, Paul A -- Taylor, Michael D -- Yu, Furong -- Crabtree, Gerald R -- Kautzman, Amanda G -- Gabriel, Stacey B -- Getz, Gad -- Jager, Natalie -- Jones, David T W -- Lichter, Peter -- Pfister, Stefan M -- Roberts, Thomas M -- Meyerson, Matthew -- Pomeroy, Scott L -- Cho, Yoon-Jae -- CA050661/CA/NCI NIH HHS/ -- L40 NS063706/NS/NINDS NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- P30 HD18655/HD/NICHD NIH HHS/ -- R01 CA030002/CA/NCI NIH HHS/ -- R01 CA105607/CA/NCI NIH HHS/ -- R01 CA109467/CA/NCI NIH HHS/ -- R01 CA148699/CA/NCI NIH HHS/ -- R01 CA154480/CA/NCI NIH HHS/ -- R01 NS046789/NS/NINDS NIH HHS/ -- R01CA105607/CA/NCI NIH HHS/ -- R01CA109467/CA/NCI NIH HHS/ -- R01CA148699/CA/NCI NIH HHS/ -- R25 NS070682/NS/NINDS NIH HHS/ -- R25NS070682/NS/NINDS NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- U54HG003067/HG/NHGRI NIH HHS/ -- Canadian Institutes of Health Research/Canada -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Aug 2;488(7409):106-10. doi: 10.1038/nature11329.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22820256" target="_blank"〉PubMed〈/a〉
    Keywords: Cerebellar Neoplasms/classification/*genetics ; Child ; DEAD-box RNA Helicases/chemistry/genetics/metabolism ; DNA Helicases/chemistry/genetics ; DNA-Binding Proteins/genetics ; Exome/*genetics ; Genome, Human/*genetics ; Hedgehog Proteins/metabolism ; Histone-Lysine N-Methyltransferase/genetics/metabolism ; Humans ; Intracellular Signaling Peptides and Proteins/genetics ; LIM Domain Proteins/genetics ; Medulloblastoma/classification/*genetics ; Models, Molecular ; Mutation/*genetics ; Neoplasm Proteins/genetics ; Nuclear Proteins/chemistry/genetics ; Promoter Regions, Genetic/genetics ; Protein Structure, Tertiary/genetics ; Proto-Oncogene Proteins/genetics ; Receptors, Cell Surface/genetics ; Repressor Proteins/genetics ; Signal Transduction ; TCF Transcription Factors/metabolism ; Transcription Factors/chemistry/genetics ; Tumor Suppressor Protein p53/genetics ; Wnt Proteins/metabolism ; beta Catenin/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-04-25
    Description: The human X and Y chromosomes evolved from an ordinary pair of autosomes, but millions of years ago genetic decay ravaged the Y chromosome, and only three per cent of its ancestral genes survived. We reconstructed the evolution of the Y chromosome across eight mammals to identify biases in gene content and the selective pressures that preserved the surviving ancestral genes. Our findings indicate that survival was nonrandom, and in two cases, convergent across placental and marsupial mammals. We conclude that the gene content of the Y chromosome became specialized through selection to maintain the ancestral dosage of homologous X-Y gene pairs that function as broadly expressed regulators of transcription, translation and protein stability. We propose that beyond its roles in testis determination and spermatogenesis, the Y chromosome is essential for male viability, and has unappreciated roles in Turner's syndrome and in phenotypic differences between the sexes in health and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4139287/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4139287/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bellott, Daniel W -- Hughes, Jennifer F -- Skaletsky, Helen -- Brown, Laura G -- Pyntikova, Tatyana -- Cho, Ting-Jan -- Koutseva, Natalia -- Zaghlul, Sara -- Graves, Tina -- Rock, Susie -- Kremitzki, Colin -- Fulton, Robert S -- Dugan, Shannon -- Ding, Yan -- Morton, Donna -- Khan, Ziad -- Lewis, Lora -- Buhay, Christian -- Wang, Qiaoyan -- Watt, Jennifer -- Holder, Michael -- Lee, Sandy -- Nazareth, Lynne -- Alfoldi, Jessica -- Rozen, Steve -- Muzny, Donna M -- Warren, Wesley C -- Gibbs, Richard A -- Wilson, Richard K -- Page, David C -- P51 RR013986/RR/NCRR NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Apr 24;508(7497):494-9. doi: 10.1038/nature13206.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute, Howard Hughes Medical Institute, & Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. ; The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA. ; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24759411" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes, Human, X/genetics ; Chromosomes, Human, Y/genetics ; Disease ; *Evolution, Molecular ; Female ; Gene Dosage/*genetics ; Gene Expression Regulation ; Health ; Humans ; Male ; Mammals/*genetics ; Marsupialia/genetics ; Molecular Sequence Annotation ; Molecular Sequence Data ; Protein Biosynthesis/genetics ; Protein Stability ; Selection, Genetic/genetics ; Sequence Homology ; Sex Characteristics ; Spermatogenesis/genetics ; Testis/metabolism ; Transcription, Genetic/genetics ; Turner Syndrome/genetics ; X Chromosome/genetics ; Y Chromosome/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-05-31
    Description: The four-chambered mammalian heart develops from two fields of cardiac progenitor cells distinguished by their spatiotemporal patterns of differentiation and contributions to the definitive heart. The first heart field differentiates earlier in lateral plate mesoderm, generates the linear heart tube and ultimately gives rise to the left ventricle. The second heart field (SHF) differentiates later in pharyngeal mesoderm, elongates the heart tube, and gives rise to the outflow tract and much of the right ventricle. Because hearts in lower vertebrates contain a rudimentary outflow tract but not a right ventricle, the existence and function of SHF-like cells in these species has remained a topic of speculation. Here we provide direct evidence from Cre/Lox-mediated lineage tracing and loss-of-function studies in zebrafish, a lower vertebrate with a single ventricle, that latent TGF-beta binding protein 3 (ltbp3) transcripts mark a field of cardiac progenitor cells with defining characteristics of the anterior SHF in mammals. Specifically, ltbp3(+) cells differentiate in pharyngeal mesoderm after formation of the heart tube, elongate the heart tube at the outflow pole, and give rise to three cardiovascular lineages in the outflow tract and myocardium in the distal ventricle. In addition to expressing Ltbp3, a protein that regulates the bioavailability of TGF-beta ligands, zebrafish SHF cells co-express nkx2.5, an evolutionarily conserved marker of cardiac progenitor cells in both fields. Embryos devoid of ltbp3 lack the same cardiac structures derived from ltbp3(+) cells due to compromised progenitor proliferation. Furthermore, small-molecule inhibition of TGF-beta signalling phenocopies the ltbp3-morphant phenotype whereas expression of a constitutively active TGF-beta type I receptor rescues it. Taken together, our findings uncover a requirement for ltbp3-TGF-beta signalling during zebrafish SHF development, a process that serves to enlarge the single ventricular chamber in this species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319150/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319150/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Yong -- Cashman, Timothy J -- Nevis, Kathleen R -- Obregon, Pablo -- Carney, Sara A -- Liu, Yan -- Gu, Aihua -- Mosimann, Christian -- Sondalle, Samuel -- Peterson, Richard E -- Heideman, Warren -- Burns, Caroline E -- Burns, C Geoffrey -- 5R01HL096816/HL/NHLBI NIH HHS/ -- R01 ES012716/ES/NIEHS NIH HHS/ -- R01 HL096816/HL/NHLBI NIH HHS/ -- R01 HL096816-03/HL/NHLBI NIH HHS/ -- T32 GM007205/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 May 29;474(7353):645-8. doi: 10.1038/nature10094.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21623370" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cardiovascular Abnormalities/embryology ; Cell Lineage ; Gene Knockdown Techniques ; Heart/*embryology ; Latent TGF-beta Binding Proteins/*metabolism ; Molecular Sequence Data ; Myocardium/cytology/*metabolism ; Phenotype ; Signal Transduction ; Transcription Factors/metabolism ; Zebrafish/*embryology/genetics ; Zebrafish Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-10-14
    Description: The naked mole rat (Heterocephalus glaber) is a strictly subterranean, extraordinarily long-lived eusocial mammal. Although it is the size of a mouse, its maximum lifespan exceeds 30 years, making this animal the longest-living rodent. Naked mole rats show negligible senescence, no age-related increase in mortality, and high fecundity until death. In addition to delayed ageing, they are resistant to both spontaneous cancer and experimentally induced tumorigenesis. Naked mole rats pose a challenge to the theories that link ageing, cancer and redox homeostasis. Although characterized by significant oxidative stress, the naked mole rat proteome does not show age-related susceptibility to oxidative damage or increased ubiquitination. Naked mole rats naturally reside in large colonies with a single breeding female, the 'queen', who suppresses the sexual maturity of her subordinates. They also live in full darkness, at low oxygen and high carbon dioxide concentrations, and are unable to sustain thermogenesis nor feel certain types of pain. Here we report the sequencing and analysis of the naked mole rat genome, which reveals unique genome features and molecular adaptations consistent with cancer resistance, poikilothermy, hairlessness and insensitivity to low oxygen, and altered visual function, circadian rythms and taste sensing. This information provides insights into the naked mole rat's exceptional longevity and ability to live in hostile conditions, in the dark and at low oxygen. The extreme traits of the naked mole rat, together with the reported genome and transcriptome information, offer opportunities for understanding ageing and advancing other areas of biological and biomedical research.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319411/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319411/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Eun Bae -- Fang, Xiaodong -- Fushan, Alexey A -- Huang, Zhiyong -- Lobanov, Alexei V -- Han, Lijuan -- Marino, Stefano M -- Sun, Xiaoqing -- Turanov, Anton A -- Yang, Pengcheng -- Yim, Sun Hee -- Zhao, Xiang -- Kasaikina, Marina V -- Stoletzki, Nina -- Peng, Chunfang -- Polak, Paz -- Xiong, Zhiqiang -- Kiezun, Adam -- Zhu, Yabing -- Chen, Yuanxin -- Kryukov, Gregory V -- Zhang, Qiang -- Peshkin, Leonid -- Yang, Lan -- Bronson, Roderick T -- Buffenstein, Rochelle -- Wang, Bo -- Han, Changlei -- Li, Qiye -- Chen, Li -- Zhao, Wei -- Sunyaev, Shamil R -- Park, Thomas J -- Zhang, Guojie -- Wang, Jun -- Gladyshev, Vadim N -- AG021518/AG/NIA NIH HHS/ -- AG038004/AG/NIA NIH HHS/ -- CA080946/CA/NCI NIH HHS/ -- R01 AG021518/AG/NIA NIH HHS/ -- R01 AG021518-10/AG/NIA NIH HHS/ -- R01 AG038004/AG/NIA NIH HHS/ -- R01 AG038004-02/AG/NIA NIH HHS/ -- R01 CA080946/CA/NCI NIH HHS/ -- R01 CA080946-11/CA/NCI NIH HHS/ -- England -- Nature. 2011 Oct 12;479(7372):223-7. doi: 10.1038/nature10533.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioinspired Science, Ewha Womans University, Seoul, 120-750, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21993625" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/*genetics ; Aging/genetics ; Amino Acid Sequence ; Animals ; Body Temperature Regulation/genetics ; Carbon Dioxide/analysis/metabolism ; Circadian Rhythm/genetics ; Darkness ; Genes/genetics ; Genome/*genetics ; Genomic Instability/genetics ; Genomics ; Humans ; Ion Channels/genetics ; Longevity/*genetics/physiology ; Male ; Mitochondrial Proteins/genetics ; Mole Rats/*genetics/*physiology ; Molecular Sequence Data ; Mutagenesis/genetics ; Oxygen/analysis/metabolism ; Taste/genetics ; Transcriptome/genetics ; Visual Perception/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-04-29
    Description: Site-specific recognition of DNA in eukaryotic organisms depends on the arrangement of nucleosomes in chromatin. In the yeast Saccharomyces cerevisiae, ISW1a and related chromatin remodelling factors are implicated in establishing the nucleosome repeat during replication and altering nucleosome position to affect gene activity. Here we have solved the crystal structures of S. cerevisiae ISW1a lacking its ATPase domain both alone and with DNA bound at resolutions of 3.25 A and 3.60 A, respectively, and we have visualized two different nucleosome-containing remodelling complexes using cryo-electron microscopy. The composite X-ray and electron microscopy structures combined with site-directed photocrosslinking analyses of these complexes suggest that ISW1a uses a dinucleosome substrate for chromatin remodelling. Results from a remodelling assay corroborate the dinucleosome model. We show how a chromatin remodelling factor could set the spacing between two adjacent nucleosomes acting as a 'protein ruler'.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamada, Kazuhiro -- Frouws, Timothy D -- Angst, Brigitte -- Fitzgerald, Daniel J -- DeLuca, Carl -- Schimmele, Kyoko -- Sargent, David F -- Richmond, Timothy J -- England -- Nature. 2011 Apr 28;472(7344):448-53. doi: 10.1038/nature09947.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ETH Zurich, Institute of Molecular Biology and Biophysics, Schafmattstr. 20, CH-8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21525927" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*chemistry/*metabolism ; Animals ; *Chromatin Assembly and Disassembly ; Cryoelectron Microscopy ; Crystallography, X-Ray ; DNA/chemistry/genetics/metabolism ; DNA-Binding Proteins/*chemistry/*metabolism ; Models, Biological ; Models, Molecular ; Nucleosomes/chemistry/genetics/*metabolism ; Protein Conformation ; Saccharomyces cerevisiae/*chemistry/genetics ; Saccharomyces cerevisiae Proteins/*chemistry/*metabolism ; Xenopus laevis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...