ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-10-09
    Description: RNA silencing is a conserved regulatory mechanism in fungi, plants and animals that regulates gene expression and defence against viruses and transgenes. Small silencing RNAs of approximately 20-30 nucleotides and their associated effector proteins, the Argonaute family proteins, are the central components in RNA silencing. A subset of small RNAs, such as microRNAs and small interfering RNAs (siRNAs) in plants, Piwi-interacting RNAs in animals and siRNAs in Drosophila, requires an additional crucial step for their maturation; that is, 2'-O-methylation on the 3' terminal nucleotide. A conserved S-adenosyl-l-methionine-dependent RNA methyltransferase, HUA ENHANCER 1 (HEN1), and its homologues are responsible for this specific modification. Here we report the 3.1 A crystal structure of full-length HEN1 from Arabidopsis in complex with a 22-nucleotide small RNA duplex and cofactor product S-adenosyl-l-homocysteine. Highly cooperative recognition of the small RNA substrate by multiple RNA binding domains and the methyltransferase domain in HEN1 measures the length of the RNA duplex and determines the substrate specificity. Metal ion coordination by both 2' and 3' hydroxyls on the 3'-terminal nucleotide and four invariant residues in the active site of the methyltransferase domain suggests a novel Mg(2+)-dependent 2'-O-methylation mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Ying -- Ji, Lijuan -- Huang, Qichen -- Vassylyev, Dmitry G -- Chen, Xuemei -- Ma, Jin-Biao -- GM074252/GM/NIGMS NIH HHS/ -- R01 GM074840/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Oct 8;461(7265):823-7. doi: 10.1038/nature08433.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19812675" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Arabidopsis/*enzymology/genetics ; Arabidopsis Proteins/*chemistry/genetics/*metabolism ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Magnesium/metabolism ; Methylation ; Methyltransferases/*chemistry/*metabolism ; Models, Biological ; Models, Molecular ; Protein Structure, Tertiary ; RNA/genetics/*metabolism ; RNA-Binding Proteins/chemistry/metabolism ; S-Adenosylhomocysteine/chemistry/metabolism ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-02-12
    Description: Methylation on the base or the ribose is prevalent in eukaryotic ribosomal RNAs (rRNAs) and is thought to be crucial for ribosome biogenesis and function. Artificially introduced 2'-O-methyl groups in small interfering RNAs (siRNAs) can stabilize siRNAs in serum without affecting their activities in RNA interference in mammalian cells. Here, we show that plant microRNAs (miRNAs) have a naturally occurring methyl group on the ribose of the last nucleotide. Whereas methylation of rRNAs depends on guide RNAs, the methyltransferase protein HEN1 is sufficient to methylate miRNA/miRNA* duplexes. Our studies uncover a new and crucial step in plant miRNA biogenesis and have profound implications in the function of miRNAs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Bin -- Yang, Zhiyong -- Li, Junjie -- Minakhina, Svetlana -- Yang, Maocheng -- Padgett, Richard W -- Steward, Ruth -- Chen, Xuemei -- GM61146/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Feb 11;307(5711):932-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15705854" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*metabolism ; Arabidopsis Proteins/*metabolism ; Mass Spectrometry ; Methylation ; MicroRNAs/chemistry/*metabolism ; Oligonucleotides, Antisense ; RNA, Plant/chemistry/*metabolism ; RNA, Small Interfering/chemistry/metabolism ; Recombinant Fusion Proteins/genetics/metabolism ; Ribose/metabolism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-09-11
    Description: Chromosomal double-strand breaks (DSBs) are resected by 5' nucleases to form 3' single-stranded DNA substrates for binding by homologous recombination and DNA damage checkpoint proteins. Two redundant pathways of extensive resection have been described both in cells and in vitro, one relying on Exo1 exonuclease and the other on Sgs1 helicase and Dna2 nuclease. However, it remains unknown how resection proceeds within the context of chromatin, where histones and histone-bound proteins represent barriers for resection enzymes. Here we identify the yeast nucleosome-remodelling enzyme Fun30 as a factor promoting DSB end resection. Fun30 is the major nucleosome remodeller promoting extensive Exo1- and Sgs1-dependent resection of DSBs. The RSC and INO80 chromatin-remodelling complexes and Fun30 have redundant roles in resection adjacent to DSB ends. ATPase and helicase domains of Fun30, which are needed for nucleosome remodelling, are also required for resection. Fun30 is robustly recruited to DNA breaks and spreads along the DSB coincident with resection. Fun30 becomes less important for resection in the absence of the histone-bound Rad9 checkpoint adaptor protein known to block 5' strand processing and in the absence of either histone H3 K79 methylation or gamma-H2A, which mediate recruitment of Rad9 (refs 9, 10). Together these data suggest that Fun30 helps to overcome the inhibitory effect of Rad9 on DNA resection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640768/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640768/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Xuefeng -- Cui, Dandan -- Papusha, Alma -- Zhang, Xiaotian -- Chu, Chia-Dwo -- Tang, Jiangwu -- Chen, Kaifu -- Pan, Xuewen -- Ira, Grzegorz -- GM080600/GM/NIGMS NIH HHS/ -- HG004840/HG/NHGRI NIH HHS/ -- R01 GM080600/GM/NIGMS NIH HHS/ -- R01 HG004840/HG/NHGRI NIH HHS/ -- England -- Nature. 2012 Sep 27;489(7417):576-80. doi: 10.1038/nature11355. Epub 2012 Sep 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22960743" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle Proteins/metabolism ; *Chromatin Assembly and Disassembly ; *DNA Breaks, Double-Stranded ; *DNA Repair ; DNA, Fungal/genetics/*metabolism ; Exodeoxyribonucleases/metabolism ; Genes, Fungal/genetics ; Genome, Fungal/genetics ; Histones/metabolism ; Homologous Recombination ; Methylation ; Nucleosomes/genetics/*metabolism ; RecQ Helicases/metabolism ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/genetics/*metabolism ; Transcription Factors/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-06-23
    Description: Medulloblastoma is a malignant childhood brain tumour comprising four discrete subgroups. Here, to identify mutations that drive medulloblastoma, we sequenced the entire genomes of 37 tumours and matched normal blood. One-hundred and thirty-six genes harbouring somatic mutations in this discovery set were sequenced in an additional 56 medulloblastomas. Recurrent mutations were detected in 41 genes not yet implicated in medulloblastoma; several target distinct components of the epigenetic machinery in different disease subgroups, such as regulators of H3K27 and H3K4 trimethylation in subgroups 3 and 4 (for example, KDM6A and ZMYM3), and CTNNB1-associated chromatin re-modellers in WNT-subgroup tumours (for example, SMARCA4 and CREBBP). Modelling of mutations in mouse lower rhombic lip progenitors that generate WNT-subgroup tumours identified genes that maintain this cell lineage (DDX3X), as well as mutated genes that initiate (CDH1) or cooperate (PIK3CA) in tumorigenesis. These data provide important new insights into the pathogenesis of medulloblastoma subgroups and highlight targets for therapeutic development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412905/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412905/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Robinson, Giles -- Parker, Matthew -- Kranenburg, Tanya A -- Lu, Charles -- Chen, Xiang -- Ding, Li -- Phoenix, Timothy N -- Hedlund, Erin -- Wei, Lei -- Zhu, Xiaoyan -- Chalhoub, Nader -- Baker, Suzanne J -- Huether, Robert -- Kriwacki, Richard -- Curley, Natasha -- Thiruvenkatam, Radhika -- Wang, Jianmin -- Wu, Gang -- Rusch, Michael -- Hong, Xin -- Becksfort, Jared -- Gupta, Pankaj -- Ma, Jing -- Easton, John -- Vadodaria, Bhavin -- Onar-Thomas, Arzu -- Lin, Tong -- Li, Shaoyi -- Pounds, Stanley -- Paugh, Steven -- Zhao, David -- Kawauchi, Daisuke -- Roussel, Martine F -- Finkelstein, David -- Ellison, David W -- Lau, Ching C -- Bouffet, Eric -- Hassall, Tim -- Gururangan, Sridharan -- Cohn, Richard -- Fulton, Robert S -- Fulton, Lucinda L -- Dooling, David J -- Ochoa, Kerri -- Gajjar, Amar -- Mardis, Elaine R -- Wilson, Richard K -- Downing, James R -- Zhang, Jinghui -- Gilbertson, Richard J -- P01 CA096832/CA/NCI NIH HHS/ -- P01CA96832/CA/NCI NIH HHS/ -- P30 CA021765/CA/NCI NIH HHS/ -- P30CA021765/CA/NCI NIH HHS/ -- R01 CA129541/CA/NCI NIH HHS/ -- R01CA129541/CA/NCI NIH HHS/ -- England -- Nature. 2012 Aug 2;488(7409):43-8. doi: 10.1038/nature11213.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉St Jude Children's Research Hospital, Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722829" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CREB-Binding Protein/genetics ; Cadherins/genetics ; Cdh1 Proteins ; Cell Cycle Proteins/deficiency/genetics ; Cell Lineage ; Cerebellar Neoplasms/*classification/*genetics/pathology ; Child ; DEAD-box RNA Helicases/genetics ; DNA Copy Number Variations ; DNA Helicases/genetics ; DNA Mutational Analysis ; Disease Models, Animal ; Genome, Human/genetics ; Genomics ; Hedgehog Proteins/metabolism ; Histone Demethylases/genetics ; Histones/metabolism ; Humans ; Medulloblastoma/*classification/*genetics/pathology ; Methylation ; Mice ; Mutation/*genetics ; Nuclear Proteins/genetics ; Phosphatidylinositol 3-Kinases/genetics ; Transcription Factors/genetics ; Wnt Proteins/metabolism ; beta Catenin/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-09-13
    Description: microRNAs (miRNAs) play crucial roles in numerous developmental and metabolic processes in plants and animals. The steady-state levels of miRNAs need to be properly controlled to ensure normal development. Whereas the framework of miRNA biogenesis is established, factors involved in miRNA degradation remain unknown. Here, we show that a family of exoribonucleases encoded by the SMALL RNA DEGRADING NUCLEASE (SDN) genes degrades mature miRNAs in Arabidopsis. SDN1 acts specifically on single-stranded miRNAs in vitro and is sensitive to the 2'-O-methyl modification on the 3' terminal ribose of miRNAs. Simultaneous knockdown of three SDN genes in vivo results in elevated miRNA levels and pleiotropic developmental defects. Therefore, we have uncovered the enzymes that degrade miRNAs and demonstrated that miRNA turnover is crucial for plant development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570778/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570778/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ramachandran, Vanitharani -- Chen, Xuemei -- GM61146/GM/NIGMS NIH HHS/ -- R01 GM061146/GM/NIGMS NIH HHS/ -- R01 GM061146-08/GM/NIGMS NIH HHS/ -- R01 GM061146-09/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Sep 12;321(5895):1490-2. doi: 10.1126/science.1163728.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18787168" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/enzymology/*genetics/growth & development/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Argonaute Proteins ; Exoribonucleases/chemistry/genetics/*metabolism ; Genes, Plant ; MADS Domain Proteins/genetics ; Methylation ; MicroRNAs/*metabolism ; Plant Leaves/growth & development/metabolism ; RNA, Plant/*metabolism ; RNA, Small Interfering/metabolism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-06-16
    Description: Active DNA demethylation is an important part of epigenetic regulation in plants and animals. How active DNA demethylation is regulated and its relationship with histone modification patterns are unclear. Here, we report the discovery of IDM1, a regulator of DNA demethylation in Arabidopsis. IDM1 is required for preventing DNA hypermethylation of highly homologous multicopy genes and other repetitive sequences that are normally targeted for active DNA demethylation by Repressor of Silencing 1 and related 5-methylcytosine DNA glycosylases. IDM1 binds methylated DNA at chromatin sites lacking histone H3K4 di- or trimethylation and acetylates H3 to create a chromatin environment permissible for 5-methylcytosine DNA glycosylases to function. Our study reveals how some genes are indicated by multiple epigenetic marks for active DNA demethylation and protection from silencing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575687/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575687/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qian, Weiqiang -- Miki, Daisuke -- Zhang, Heng -- Liu, Yunhua -- Zhang, Xi -- Tang, Kai -- Kan, Yunchao -- La, Honggui -- Li, Xiaojie -- Li, Shaofang -- Zhu, Xiaohong -- Shi, Xiaobing -- Zhang, Kangling -- Pontes, Olga -- Chen, Xuemei -- Liu, Renyi -- Gong, Zhizhong -- Zhu, Jian-Kang -- R01 GM059138/GM/NIGMS NIH HHS/ -- R01 GM070795/GM/NIGMS NIH HHS/ -- R01GM059138/GM/NIGMS NIH HHS/ -- R01GM070795/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Jun 15;336(6087):1445-8. doi: 10.1126/science.1219416.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Shanghai Center for Plant Stress Biology and Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22700931" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Arabidopsis/*genetics/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Chromatin/metabolism ; DNA Glycosylases/metabolism ; *DNA Methylation ; DNA, Plant/*metabolism ; Gene Silencing ; Genes, Plant ; Histone Acetyltransferases/chemistry/genetics/*metabolism ; Histones/metabolism ; Methylation ; Mutation ; Nuclear Proteins/genetics/metabolism ; Protein Structure, Tertiary ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...