ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-03-29
    Description: Chromatin profiling has emerged as a powerful means of genome annotation and detection of regulatory activity. The approach is especially well suited to the characterization of non-coding portions of the genome, which critically contribute to cellular phenotypes yet remain largely uncharted. Here we map nine chromatin marks across nine cell types to systematically characterize regulatory elements, their cell-type specificities and their functional interactions. Focusing on cell-type-specific patterns of promoters and enhancers, we define multicell activity profiles for chromatin state, gene expression, regulatory motif enrichment and regulator expression. We use correlations between these profiles to link enhancers to putative target genes, and predict the cell-type-specific activators and repressors that modulate them. The resulting annotations and regulatory predictions have implications for the interpretation of genome-wide association studies. Top-scoring disease single nucleotide polymorphisms are frequently positioned within enhancer elements specifically active in relevant cell types, and in some cases affect a motif instance for a predicted regulator, thus suggesting a mechanism for the association. Our study presents a general framework for deciphering cis-regulatory connections and their roles in disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088773/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088773/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ernst, Jason -- Kheradpour, Pouya -- Mikkelsen, Tarjei S -- Shoresh, Noam -- Ward, Lucas D -- Epstein, Charles B -- Zhang, Xiaolan -- Wang, Li -- Issner, Robbyn -- Coyne, Michael -- Ku, Manching -- Durham, Timothy -- Kellis, Manolis -- Bernstein, Bradley E -- R01 HG004037/HG/NHGRI NIH HHS/ -- R01HG004037/HG/NHGRI NIH HHS/ -- RC1HG005334/HG/NHGRI NIH HHS/ -- U54 HG004570/HG/NHGRI NIH HHS/ -- U54 HG004570-01/HG/NHGRI NIH HHS/ -- U54 HG004570-02/HG/NHGRI NIH HHS/ -- U54 HG004570-02S1/HG/NHGRI NIH HHS/ -- U54 HG004570-03/HG/NHGRI NIH HHS/ -- U54 HG004570-03S1/HG/NHGRI NIH HHS/ -- U54 HG004570-04/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 May 5;473(7345):43-9. doi: 10.1038/nature09906. Epub 2011 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21441907" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Line ; Cell Line, Tumor ; *Cell Physiological Phenomena ; Cells, Cultured ; Chromatin/*genetics/*metabolism ; *Chromosome Mapping ; Gene Expression Regulation ; Genome, Human/genetics ; Hep G2 Cells ; Humans ; Promoter Regions, Genetic/genetics ; Reproducibility of Results ; Transcription Factors/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-05-25
    Description: An outstanding question is how cells control the number and size of membrane organelles. The small GTPase Rab5 has been proposed to be a master regulator of endosome biogenesis. Here, to test this hypothesis, we developed a mathematical model of endosome dependency on Rab5 and validated it by titrating down all three Rab5 isoforms in adult mouse liver using state-of-the-art RNA interference technology. Unexpectedly, the endocytic system was resilient to depletion of Rab5 and collapsed only when Rab5 decreased to a critical level. Loss of Rab5 below this threshold caused a marked reduction in the number of early endosomes, late endosomes and lysosomes, associated with a block of low-density lipoprotein endocytosis. Loss of endosomes caused failure to deliver apical proteins to the bile canaliculi, suggesting a requirement for polarized cargo sorting. Our results demonstrate for the first time, to our knowledge, the role of Rab5 as an endosome organizer in vivo and reveal the resilience mechanisms of the endocytic system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zeigerer, Anja -- Gilleron, Jerome -- Bogorad, Roman L -- Marsico, Giovanni -- Nonaka, Hidenori -- Seifert, Sarah -- Epstein-Barash, Hila -- Kuchimanchi, Satya -- Peng, Chang Geng -- Ruda, Vera M -- Del Conte-Zerial, Perla -- Hengstler, Jan G -- Kalaidzidis, Yannis -- Koteliansky, Victor -- Zerial, Marino -- England -- Nature. 2012 May 23;485(7399):465-70. doi: 10.1038/nature11133.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22622570" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Polarity ; Cells, Cultured ; Endocytosis ; Endosomes/*metabolism ; Gene Knockdown Techniques ; Hepatocytes/cytology/metabolism ; Isoenzymes/biosynthesis/deficiency/genetics/metabolism ; Lipoproteins, LDL/metabolism ; Liver/cytology/enzymology/metabolism ; Lysosomes/*metabolism ; Mice ; Multivesicular Bodies/metabolism ; Organ Specificity ; Protein Biosynthesis ; RNA Interference ; RNA, Messenger/analysis/genetics ; Time Factors ; Vesicular Transport Proteins/metabolism ; rab5 GTP-Binding Proteins/biosynthesis/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-11-01
    Description: The 2002-3 pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV) was one of the most significant public health events in recent history. An ongoing outbreak of Middle East respiratory syndrome coronavirus suggests that this group of viruses remains a key threat and that their distribution is wider than previously recognized. Although bats have been suggested to be the natural reservoirs of both viruses, attempts to isolate the progenitor virus of SARS-CoV from bats have been unsuccessful. Diverse SARS-like coronaviruses (SL-CoVs) have now been reported from bats in China, Europe and Africa, but none is considered a direct progenitor of SARS-CoV because of their phylogenetic disparity from this virus and the inability of their spike proteins to use the SARS-CoV cellular receptor molecule, the human angiotensin converting enzyme II (ACE2). Here we report whole-genome sequences of two novel bat coronaviruses from Chinese horseshoe bats (family: Rhinolophidae) in Yunnan, China: RsSHC014 and Rs3367. These viruses are far more closely related to SARS-CoV than any previously identified bat coronaviruses, particularly in the receptor binding domain of the spike protein. Most importantly, we report the first recorded isolation of a live SL-CoV (bat SL-CoV-WIV1) from bat faecal samples in Vero E6 cells, which has typical coronavirus morphology, 99.9% sequence identity to Rs3367 and uses ACE2 from humans, civets and Chinese horseshoe bats for cell entry. Preliminary in vitro testing indicates that WIV1 also has a broad species tropism. Our results provide the strongest evidence to date that Chinese horseshoe bats are natural reservoirs of SARS-CoV, and that intermediate hosts may not be necessary for direct human infection by some bat SL-CoVs. They also highlight the importance of pathogen-discovery programs targeting high-risk wildlife groups in emerging disease hotspots as a strategy for pandemic preparedness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ge, Xing-Yi -- Li, Jia-Lu -- Yang, Xing-Lou -- Chmura, Aleksei A -- Zhu, Guangjian -- Epstein, Jonathan H -- Mazet, Jonna K -- Hu, Ben -- Zhang, Wei -- Peng, Cheng -- Zhang, Yu-Ji -- Luo, Chu-Ming -- Tan, Bing -- Wang, Ning -- Zhu, Yan -- Crameri, Gary -- Zhang, Shu-Yi -- Wang, Lin-Fa -- Daszak, Peter -- Shi, Zheng-Li -- R01AI079231/AI/NIAID NIH HHS/ -- R01TW005869/TW/FIC NIH HHS/ -- R56TW009502/TW/FIC NIH HHS/ -- England -- Nature. 2013 Nov 28;503(7477):535-8. doi: 10.1038/nature12711. Epub 2013 Oct 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Emerging Infectious Diseases, State Key Laboratory of Virology, Wuhan Institute of Virology of the Chinese Academy of Sciences, Wuhan 430071, China [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24172901" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cercopithecus aethiops ; China ; Chiroptera/*virology ; Disease Reservoirs/virology ; Feces/virology ; Fluorescent Antibody Technique ; Genome, Viral/genetics ; Host Specificity ; Humans ; Molecular Sequence Data ; Pandemics/prevention & control/veterinary ; Peptidyl-Dipeptidase A/genetics/*metabolism ; Real-Time Polymerase Chain Reaction ; Receptors, Virus/genetics/metabolism ; SARS Virus/genetics/*isolation & purification/*metabolism/ultrastructure ; Severe Acute Respiratory Syndrome/prevention & ; control/transmission/veterinary/virology ; Species Specificity ; Spike Glycoprotein, Coronavirus/chemistry/metabolism ; Vero Cells ; Virion/isolation & purification/ultrastructure ; Virus Internalization ; Viverridae/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-08-29
    Description: Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal 'arms', and centromeres distributed along their lengths. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227084/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227084/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ho, Joshua W K -- Jung, Youngsook L -- Liu, Tao -- Alver, Burak H -- Lee, Soohyun -- Ikegami, Kohta -- Sohn, Kyung-Ah -- Minoda, Aki -- Tolstorukov, Michael Y -- Appert, Alex -- Parker, Stephen C J -- Gu, Tingting -- Kundaje, Anshul -- Riddle, Nicole C -- Bishop, Eric -- Egelhofer, Thea A -- Hu, Sheng'en Shawn -- Alekseyenko, Artyom A -- Rechtsteiner, Andreas -- Asker, Dalal -- Belsky, Jason A -- Bowman, Sarah K -- Chen, Q Brent -- Chen, Ron A-J -- Day, Daniel S -- Dong, Yan -- Dose, Andrea C -- Duan, Xikun -- Epstein, Charles B -- Ercan, Sevinc -- Feingold, Elise A -- Ferrari, Francesco -- Garrigues, Jacob M -- Gehlenborg, Nils -- Good, Peter J -- Haseley, Psalm -- He, Daniel -- Herrmann, Moritz -- Hoffman, Michael M -- Jeffers, Tess E -- Kharchenko, Peter V -- Kolasinska-Zwierz, Paulina -- Kotwaliwale, Chitra V -- Kumar, Nischay -- Langley, Sasha A -- Larschan, Erica N -- Latorre, Isabel -- Libbrecht, Maxwell W -- Lin, Xueqiu -- Park, Richard -- Pazin, Michael J -- Pham, Hoang N -- Plachetka, Annette -- Qin, Bo -- Schwartz, Yuri B -- Shoresh, Noam -- Stempor, Przemyslaw -- Vielle, Anne -- Wang, Chengyang -- Whittle, Christina M -- Xue, Huiling -- Kingston, Robert E -- Kim, Ju Han -- Bernstein, Bradley E -- Dernburg, Abby F -- Pirrotta, Vincenzo -- Kuroda, Mitzi I -- Noble, William S -- Tullius, Thomas D -- Kellis, Manolis -- MacAlpine, David M -- Strome, Susan -- Elgin, Sarah C R -- Liu, Xiaole Shirley -- Lieb, Jason D -- Ahringer, Julie -- Karpen, Gary H -- Park, Peter J -- 092096/Wellcome Trust/United Kingdom -- 101863/Wellcome Trust/United Kingdom -- 54523/Wellcome Trust/United Kingdom -- 5RL9EB008539/EB/NIBIB NIH HHS/ -- K99 HG006259/HG/NHGRI NIH HHS/ -- K99HG006259/HG/NHGRI NIH HHS/ -- R01 GM098461/GM/NIGMS NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- R37 GM048405/GM/NIGMS NIH HHS/ -- T32 GM071340/GM/NIGMS NIH HHS/ -- T32 HG002295/HG/NHGRI NIH HHS/ -- U01 HG004258/HG/NHGRI NIH HHS/ -- U01 HG004270/HG/NHGRI NIH HHS/ -- U01 HG004279/HG/NHGRI NIH HHS/ -- U01 HG004695/HG/NHGRI NIH HHS/ -- U01HG004258/HG/NHGRI NIH HHS/ -- U01HG004270/HG/NHGRI NIH HHS/ -- U01HG004279/HG/NHGRI NIH HHS/ -- U01HG004695/HG/NHGRI NIH HHS/ -- U54 CA121852/CA/NCI NIH HHS/ -- U54 HG004570/HG/NHGRI NIH HHS/ -- U54 HG006991/HG/NHGRI NIH HHS/ -- U54CA121852/CA/NCI NIH HHS/ -- U54HG004570/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Aug 28;512(7515):449-52. doi: 10.1038/nature13415.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [3] [4] Victor Chang Cardiac Research Institute and The University of New South Wales, Sydney, New South Wales 2052, Australia (J.W.K.H.); Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, USA (T.L.); Department of Molecular Biology and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA (K.I., T.E.J.); Department of Human Genetics, University of Chicago, Chicago, Illinois 06037, USA (J.D.L.); Division of Genomic Technologies, Center for Life Science Technologies, RIKEN, Yokohama 230-0045, Japan (A.M.); Department of Genetics, Department of Computer Science, Stanford University, Stanford, California 94305, USA (A.K.); Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA (N.C.R.). ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [3]. ; 1] Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, 450 Brookline Avenue, Boston, Massachusetts 02215, USA [3] [4] Victor Chang Cardiac Research Institute and The University of New South Wales, Sydney, New South Wales 2052, Australia (J.W.K.H.); Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, USA (T.L.); Department of Molecular Biology and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA (K.I., T.E.J.); Department of Human Genetics, University of Chicago, Chicago, Illinois 06037, USA (J.D.L.); Division of Genomic Technologies, Center for Life Science Technologies, RIKEN, Yokohama 230-0045, Japan (A.M.); Department of Genetics, Department of Computer Science, Stanford University, Stanford, California 94305, USA (A.K.); Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA (N.C.R.). ; Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Department of Biology and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA [2] Victor Chang Cardiac Research Institute and The University of New South Wales, Sydney, New South Wales 2052, Australia (J.W.K.H.); Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, USA (T.L.); Department of Molecular Biology and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA (K.I., T.E.J.); Department of Human Genetics, University of Chicago, Chicago, Illinois 06037, USA (J.D.L.); Division of Genomic Technologies, Center for Life Science Technologies, RIKEN, Yokohama 230-0045, Japan (A.M.); Department of Genetics, Department of Computer Science, Stanford University, Stanford, California 94305, USA (A.K.); Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA (N.C.R.). ; 1] Department of Information and Computer Engineering, Ajou University, Suwon 443-749, Korea [2] Systems Biomedical Informatics Research Center, College of Medicine, Seoul National University, Seoul 110-799, Korea. ; 1] Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA [2] Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA [3] Victor Chang Cardiac Research Institute and The University of New South Wales, Sydney, New South Wales 2052, Australia (J.W.K.H.); Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, USA (T.L.); Department of Molecular Biology and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA (K.I., T.E.J.); Department of Human Genetics, University of Chicago, Chicago, Illinois 06037, USA (J.D.L.); Division of Genomic Technologies, Center for Life Science Technologies, RIKEN, Yokohama 230-0045, Japan (A.M.); Department of Genetics, Department of Computer Science, Stanford University, Stanford, California 94305, USA (A.K.); Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA (N.C.R.). ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA. ; The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK. ; 1] National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland 20892, USA [2] National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, USA. ; 1] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Broad Institute, Cambridge, Massachusetts 02141, USA [3] Victor Chang Cardiac Research Institute and The University of New South Wales, Sydney, New South Wales 2052, Australia (J.W.K.H.); Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, USA (T.L.); Department of Molecular Biology and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA (K.I., T.E.J.); Department of Human Genetics, University of Chicago, Chicago, Illinois 06037, USA (J.D.L.); Division of Genomic Technologies, Center for Life Science Technologies, RIKEN, Yokohama 230-0045, Japan (A.M.); Department of Genetics, Department of Computer Science, Stanford University, Stanford, California 94305, USA (A.K.); Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA (N.C.R.). ; 1] Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, USA [2] Victor Chang Cardiac Research Institute and The University of New South Wales, Sydney, New South Wales 2052, Australia (J.W.K.H.); Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, USA (T.L.); Department of Molecular Biology and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA (K.I., T.E.J.); Department of Human Genetics, University of Chicago, Chicago, Illinois 06037, USA (J.D.L.); Division of Genomic Technologies, Center for Life Science Technologies, RIKEN, Yokohama 230-0045, Japan (A.M.); Department of Genetics, Department of Computer Science, Stanford University, Stanford, California 94305, USA (A.K.); Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA (N.C.R.). ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Program in Bioinformatics, Boston University, Boston, Massachusetts 02215, USA. ; Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA. ; Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai 200092, China. ; 1] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA [2] Food Science and Technology Department, Faculty of Agriculture, Alexandria University, 21545 El-Shatby, Alexandria, Egypt. ; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA. ; Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA. ; Department of Biology and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA. ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Harvard/MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, USA. ; Department of Anatomy Physiology and Cell Biology, University of California Davis, Davis, California 95616, USA. ; Broad Institute, Cambridge, Massachusetts 02141, USA. ; 1] Department of Biology and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA [2] Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA. ; National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Broad Institute, Cambridge, Massachusetts 02141, USA. ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA. ; Princess Margaret Cancer Centre, Toronto, Ontario M6G 1L7, Canada. ; 1] Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA [2] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA. ; 1] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Broad Institute, Cambridge, Massachusetts 02141, USA. ; 1] Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA [2] Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA. ; Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA. ; Department of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA. ; 1] Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA [2] Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA [3] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA. ; 1] Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA [2] Department of Molecular Biology, Umea University, 901 87 Umea, Sweden. ; 1] Systems Biomedical Informatics Research Center, College of Medicine, Seoul National University, Seoul 110-799, Korea [2] Seoul National University Biomedical Informatics, Division of Biomedical Informatics, College of Medicine, Seoul National University, Seoul 110-799, Korea. ; 1] Broad Institute, Cambridge, Massachusetts 02141, USA [2] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA [3] Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA. ; Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA. ; 1] Department of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA [2] Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. ; 1] Program in Bioinformatics, Boston University, Boston, Massachusetts 02215, USA [2] Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA. ; 1] Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, 450 Brookline Avenue, Boston, Massachusetts 02215, USA [3] Broad Institute, Cambridge, Massachusetts 02141, USA. ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Informatics Program, Children's Hospital, Boston, Massachusetts 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25164756" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*cytology/*genetics ; Cell Line ; Centromere/genetics/metabolism ; Chromatin/chemistry/*genetics/*metabolism ; Chromatin Assembly and Disassembly/genetics ; DNA Replication/genetics ; Drosophila melanogaster/*cytology/*genetics ; Enhancer Elements, Genetic/genetics ; Epigenesis, Genetic ; Heterochromatin/chemistry/genetics/metabolism ; Histones/chemistry/metabolism ; Humans ; Molecular Sequence Annotation ; Nuclear Lamina/metabolism ; Nucleosomes/chemistry/genetics/metabolism ; Promoter Regions, Genetic/genetics ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-02-20
    Description: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530010/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530010/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roadmap Epigenomics Consortium -- Kundaje, Anshul -- Meuleman, Wouter -- Ernst, Jason -- Bilenky, Misha -- Yen, Angela -- Heravi-Moussavi, Alireza -- Kheradpour, Pouya -- Zhang, Zhizhuo -- Wang, Jianrong -- Ziller, Michael J -- Amin, Viren -- Whitaker, John W -- Schultz, Matthew D -- Ward, Lucas D -- Sarkar, Abhishek -- Quon, Gerald -- Sandstrom, Richard S -- Eaton, Matthew L -- Wu, Yi-Chieh -- Pfenning, Andreas R -- Wang, Xinchen -- Claussnitzer, Melina -- Liu, Yaping -- Coarfa, Cristian -- Harris, R Alan -- Shoresh, Noam -- Epstein, Charles B -- Gjoneska, Elizabeta -- Leung, Danny -- Xie, Wei -- Hawkins, R David -- Lister, Ryan -- Hong, Chibo -- Gascard, Philippe -- Mungall, Andrew J -- Moore, Richard -- Chuah, Eric -- Tam, Angela -- Canfield, Theresa K -- Hansen, R Scott -- Kaul, Rajinder -- Sabo, Peter J -- Bansal, Mukul S -- Carles, Annaick -- Dixon, Jesse R -- Farh, Kai-How -- Feizi, Soheil -- Karlic, Rosa -- Kim, Ah-Ram -- Kulkarni, Ashwinikumar -- Li, Daofeng -- Lowdon, Rebecca -- Elliott, GiNell -- Mercer, Tim R -- Neph, Shane J -- Onuchic, Vitor -- Polak, Paz -- Rajagopal, Nisha -- Ray, Pradipta -- Sallari, Richard C -- Siebenthall, Kyle T -- Sinnott-Armstrong, Nicholas A -- Stevens, Michael -- Thurman, Robert E -- Wu, Jie -- Zhang, Bo -- Zhou, Xin -- Beaudet, Arthur E -- Boyer, Laurie A -- De Jager, Philip L -- Farnham, Peggy J -- Fisher, Susan J -- Haussler, David -- Jones, Steven J M -- Li, Wei -- Marra, Marco A -- McManus, Michael T -- Sunyaev, Shamil -- Thomson, James A -- Tlsty, Thea D -- Tsai, Li-Huei -- Wang, Wei -- Waterland, Robert A -- Zhang, Michael Q -- Chadwick, Lisa H -- Bernstein, Bradley E -- Costello, Joseph F -- Ecker, Joseph R -- Hirst, Martin -- Meissner, Alexander -- Milosavljevic, Aleksandar -- Ren, Bing -- Stamatoyannopoulos, John A -- Wang, Ting -- Kellis, Manolis -- 5R24HD000836/HD/NICHD NIH HHS/ -- ES017166/ES/NIEHS NIH HHS/ -- F32 HL110473/HL/NHLBI NIH HHS/ -- F32HL110473/HL/NHLBI NIH HHS/ -- K99 HL119617/HL/NHLBI NIH HHS/ -- K99HL119617/HL/NHLBI NIH HHS/ -- P01 DA008227/DA/NIDA NIH HHS/ -- P30AG10161/AG/NIA NIH HHS/ -- P50 MH096890/MH/NIMH NIH HHS/ -- R01 AG015819/AG/NIA NIH HHS/ -- R01 AG017917/AG/NIA NIH HHS/ -- R01 ES024984/ES/NIEHS NIH HHS/ -- R01 ES024992/ES/NIEHS NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- R01 HG007175/HG/NHGRI NIH HHS/ -- R01 HG007354/HG/NHGRI NIH HHS/ -- R01AG15819/AG/NIA NIH HHS/ -- R01AG17917/AG/NIA NIH HHS/ -- R01HG004037/HG/NHGRI NIH HHS/ -- R01HG004037-S1/HG/NHGRI NIH HHS/ -- R01NS078839/NS/NINDS NIH HHS/ -- RC1HG005334/HG/NHGRI NIH HHS/ -- RF1 AG015819/AG/NIA NIH HHS/ -- T32 ES007032/ES/NIEHS NIH HHS/ -- T32 GM007198/GM/NIGMS NIH HHS/ -- T32 GM007266/GM/NIGMS NIH HHS/ -- T32 GM081739/GM/NIGMS NIH HHS/ -- U01 ES017154/ES/NIEHS NIH HHS/ -- U01AG46152/AG/NIA NIH HHS/ -- U01DA025956/DA/NIDA NIH HHS/ -- U01ES017154/ES/NIEHS NIH HHS/ -- U01ES017155/ES/NIEHS NIH HHS/ -- U01ES017156/ES/NIEHS NIH HHS/ -- U01ES017166/ES/NIEHS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Feb 19;518(7539):317-30. doi: 10.1038/nature14248.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Department of Genetics, Department of Computer Science, 300 Pasteur Dr., Lane Building, L301, Stanford, California 94305-5120, USA. ; 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. ; 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Department of Biological Chemistry, University of California, Los Angeles, 615 Charles E Young Dr South, Los Angeles, California 90095, USA. ; Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Department of Stem Cell and Regenerative Biology, 7 Divinity Ave, Cambridge, Massachusetts 02138, USA. ; Epigenome Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Genomic Analysis Laboratory, Howard Hughes Medical Institute &The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, California 92037, USA. ; Department of Genome Sciences, University of Washington, 3720 15th Ave. NE, Seattle, Washington 98195, USA. ; 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Biology Department, Massachusetts Institute of Technology, 31 Ames St, Cambridge, Massachusetts 02142, USA. ; The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, Massachusetts 02139, USA. ; 1] Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. [2] Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 3rd Street, San Francisco, California 94158, USA. ; Department of Pathology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, California 94143-0511, USA. ; Department of Medicine, Division of Medical Genetics, University of Washington, 2211 Elliot Avenue, Seattle, Washington 98121, USA. ; 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Department of Computer Science &Engineering, University of Connecticut, 371 Fairfield Way, Storrs, Connecticut 06269, USA. ; Department of Microbiology and Immunology and Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, British Columbia V6T 1Z4, Canada. ; Bioinformatics Group, Department of Molecular Biology, Division of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia. ; Department of Molecular and Cell Biology, Center for Systems Biology, The University of Texas, Dallas, NSERL, RL10, 800 W Campbell Road, Richardson, Texas 75080, USA. ; Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University in St Louis, 4444 Forest Park Ave, St Louis, Missouri 63108, USA. ; Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Brigham &Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA. ; 1] Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University in St Louis, 4444 Forest Park Ave, St Louis, Missouri 63108, USA. [2] Department of Computer Science and Engineeering, Washington University in St. Louis, St. Louis, Missouri 63130, USA. ; 1] Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794-3600, USA. [2] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA. ; Molecular and Human Genetics Department, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; Biology Department, Massachusetts Institute of Technology, 31 Ames St, Cambridge, Massachusetts 02142, USA. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Brigham &Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA. [3] Harvard Medical School, 25 Shattuck St, Boston, Massachusetts 02115, USA. ; Department of Biochemistry, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, California 90089-9601, USA. ; ObGyn, Reproductive Sciences, University of California San Francisco, 35 Medical Center Way, San Francisco, California 94143, USA. ; Center for Biomolecular Sciences and Engineering, University of Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA. ; 1] Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. [2] Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada. [3] Department of Medical Genetics, University of British Columbia, 2329 West Mall, Vancouver, BC, Canada, V6T 1Z4. ; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; 1] Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. [2] Department of Medical Genetics, University of British Columbia, 2329 West Mall, Vancouver, BC, Canada, V6T 1Z4. ; Department of Microbiology and Immunology, Diabetes Center, University of California, San Francisco, 513 Parnassus Ave, San Francisco, California 94143-0534, USA. ; 1] University of Wisconsin, Madison, Wisconsin 53715, USA. [2] Morgridge Institute for Research, 330 N. Orchard Street, Madison, Wisconsin 53707, USA. ; USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, Texas 77030, USA. ; 1] Department of Molecular and Cell Biology, Center for Systems Biology, The University of Texas, Dallas, NSERL, RL10, 800 W Campbell Road, Richardson, Texas 75080, USA. [2] Bioinformatics Division, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing 100084, China. ; National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, North Carolina 27709, USA. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Massachusetts General Hospital, 55 Fruit St, Boston, Massachusetts 02114, USA. [3] Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815-6789, USA. ; 1] Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. [2] Department of Microbiology and Immunology and Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, British Columbia V6T 1Z4, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25693563" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Lineage/genetics ; Cells, Cultured ; Chromatin/chemistry/genetics/metabolism ; Chromosomes, Human/chemistry/genetics/metabolism ; DNA/chemistry/genetics/metabolism ; DNA Methylation ; Datasets as Topic ; Enhancer Elements, Genetic/genetics ; Epigenesis, Genetic/*genetics ; *Epigenomics ; Genetic Variation/genetics ; Genome, Human/*genetics ; Genome-Wide Association Study ; Histones/metabolism ; Humans ; Organ Specificity/genetics ; RNA/genetics ; Reference Values
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-01-07
    Description: Antibiotic resistance is spreading faster than the introduction of new compounds into clinical practice, causing a public health crisis. Most antibiotics were produced by screening soil microorganisms, but this limited resource of cultivable bacteria was overmined by the 1960s. Synthetic approaches to produce antibiotics have been unable to replace this platform. Uncultured bacteria make up approximately 99% of all species in external environments, and are an untapped source of new antibiotics. We developed several methods to grow uncultured organisms by cultivation in situ or by using specific growth factors. Here we report a new antibiotic that we term teixobactin, discovered in a screen of uncultured bacteria. Teixobactin inhibits cell wall synthesis by binding to a highly conserved motif of lipid II (precursor of peptidoglycan) and lipid III (precursor of cell wall teichoic acid). We did not obtain any mutants of Staphylococcus aureus or Mycobacterium tuberculosis resistant to teixobactin. The properties of this compound suggest a path towards developing antibiotics that are likely to avoid development of resistance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ling, Losee L -- Schneider, Tanja -- Peoples, Aaron J -- Spoering, Amy L -- Engels, Ina -- Conlon, Brian P -- Mueller, Anna -- Schaberle, Till F -- Hughes, Dallas E -- Epstein, Slava -- Jones, Michael -- Lazarides, Linos -- Steadman, Victoria A -- Cohen, Douglas R -- Felix, Cintia R -- Fetterman, K Ashley -- Millett, William P -- Nitti, Anthony G -- Zullo, Ashley M -- Chen, Chao -- Lewis, Kim -- AI085612/AI/NIAID NIH HHS/ -- T-RO1AI085585/AI/NIAID NIH HHS/ -- England -- Nature. 2015 Jan 22;517(7535):455-9. doi: 10.1038/nature14098. Epub 2015 Jan 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NovoBiotic Pharmaceuticals, Cambridge, Massachusetts 02138, USA. ; 1] Institute of Medical Microbiology, Immunology and Parasitology-Pharmaceutical Microbiology Section, University of Bonn, Bonn 53115, Germany [2] German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 53115 Bonn, Germany. ; Antimicrobial Discovery Center, Northeastern University, Department of Biology, Boston, Massachusetts 02115, USA. ; 1] German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 53115 Bonn, Germany [2] Institute for Pharmaceutical Biology, University of Bonn, Bonn 53115, Germany. ; Department of Biology, Northeastern University, Boston, Massachusetts 02115, USA. ; Selcia, Ongar, Essex CM5 0GS, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25561178" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/biosynthesis/chemistry/isolation & ; purification/*pharmacology ; Betaproteobacteria/chemistry/genetics ; Biological Products/chemistry/isolation & purification/pharmacology ; Cell Wall/chemistry/drug effects/metabolism ; Depsipeptides/biosynthesis/chemistry/isolation & purification/*pharmacology ; Disease Models, Animal ; *Drug Resistance, Microbial/genetics ; Female ; Mice ; Microbial Sensitivity Tests ; Microbial Viability/*drug effects ; Molecular Sequence Data ; Multigene Family/genetics ; Mycobacterium tuberculosis/cytology/*drug effects/genetics ; Peptidoglycan/biosynthesis ; Staphylococcal Infections/drug therapy/microbiology ; Staphylococcus aureus/chemistry/cytology/*drug effects/genetics ; Teichoic Acids/biosynthesis ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...