ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
  • 1
    Publication Date: 2016-08-13
    Description: The timing of landscape change, post-settlement alluvium (PSA) deposition and gully erosion in the southeastern Australian Tablelands remains at the centre of a long-standing discussion over the geomorphological effects of European land-use compared with Aboriginal land-use and climate change. Few quantitative studies date the onset of gully erosion and subsequent PSA deposition in the Tablelands and those that do determine the timing of landscape change for individual catchments rather than across the region. In this study, we present optically stimulated luminescence (OSL) burial ages of swampy meadow (SM) sediment and PSA from six sites spread throughout the Goulburn Plains to place better regional constraints on the timing of landscape change. PSA burial ages at each of our sample sites range between 213 and 81 years before AD 2013, the year during which all samples were collected and measured – corresponding to AD 1800–1932. All measured PSA burial ages post-date European arrival to Australia and are therefore consistent with the generic name and implied age assigned to these sediments before quantitative age estimates were available for them. We suggest, however, that the term ‘post-European settlement alluvium’ may be more appropriate in the Australian context as Aboriginal Australians were living in the Tablelands prior to European arrival. Associations between the occurrence of gully incision and PSA deposition throughout the Tablelands and climatic factors are tenuous, and we suggest that European land-use practices in the region dominate landscape evolution, which had been driven by climatic factors throughout the Holocene.
    Print ISSN: 0959-6836
    Electronic ISSN: 1477-0911
    Topics: Geography , Geosciences
    Published by Sage
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-02-08
    Description: We examine the use of a linear softening cohesive fracture model (LCFM) to predict single-trace fracture growth in short-rod (SR) and notched 3-point-bend (N3PB) test configurations in Indiana Limestone. The broad goal of this work is to understand (a) the underlying assumptions of LCFM, and (b) use experimental similarities and deviations from the LCFM to understand the role of loading paths of tensile fracture propagation. Cohesive fracture models are being applied in prediction of structural and subsurface fracture propagation in geomaterials. They lump the inelastic processes occurring during fracture propagation into a thin zone between elastic subdomains. LCFM assumes the cohesive zone initially deforms elastically to a maximum tensile stress (σ max ), and then softens linearly from the crack opening width at σ max to zero stress at a critical crack opening width w 1 . Using commercial finite element software, we developed LCFMs for the SR and N3PB configurations. After fixing σ max with results from cylinder splitting tests and finding an initial Young's modulus (E) with unconfined compressive strength tests, we manually calibrate E and w 1 in the SR model against an envelope of experimental data. We apply the calibrated LCFM parameters in the N3PB geometry and compare the model against an envelope of N3PB experiments. For accurate simulation of fracture propagation, simulated off-crack stresses are high enough to require inclusion of damage. Different elastic moduli are needed in tension and compression. We hypothesize that the timing and location of shear vs. extensional micromechanical failures control the qualitative macroscopic force-vs.-displacement response in different tests. For accurate prediction, the LCFM requires a constant style of failure, which the SR configuration maintains until very late in deformation. The N3PB configuration does not maintain this constancy. To be broadly applicable between geometries and failure styles, the LCFM would require additional physics, possibly including elastoplastic damage in the bulk material and more complicated cohesive softening models.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer Nature
    In: Nature
    Publication Date: 2019
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-06-04
    Description: Long-term potentiation (LTP) is a persistent increase in synaptic strength required for many behavioral adaptations, including learning and memory, visual and somatosensory system functional development, and drug addiction. Recent work has suggested a role for LTP-like phenomena in the processing of nociceptive information in the dorsal horn and in the...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-01-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bishop, J E -- New York, N.Y. -- Science. 1992 Jan 3;255(5040):10.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1553521" target="_blank"〉PubMed〈/a〉
    Keywords: Humans ; Newspapers as Topic/standards ; Periodicals as Topic/*standards ; Publishing/*standards ; Quackery ; Science/*standards ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018
    Description: Background: Season and weather are associated with many health outcomes, which can influence hospital admission rates. We examined associations between hospital admissions (all diagnoses) and local meteorological parameters in Southwestern Uganda, with the aim of supporting hospital planning and preparedness in the context of climate change. Methods: Hospital admissions data and meteorological data were collected from Bwindi Community Hospital and a satellite database of weather conditions, respectively (2011 to 2014). Descriptive statistics were used to describe admission patterns. A mixed-effects Poisson regression model was fitted to investigate associations between hospital admissions and season, precipitation, and temperature. Results: Admission counts were highest for acute respiratory infections, malaria, and acute gastrointestinal illness, which are climate-sensitive diseases. Hospital admissions were 1.16 (95% CI: 1.04, 1.31; p = 0.008) times higher during extreme high temperatures (i.e., 〉95th percentile) on the day of admission. Hospital admissions association with season depended on year; admissions were higher in the dry season than the rainy season every year, except for 2014. Discussion: Effective adaptation strategy characteristics include being low-cost and quick and practical to implement at local scales. Herein, we illustrate how analyzing hospital data alongside meteorological parameters may inform climate-health planning in low-resource contexts.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-07-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bishop, Russell E -- England -- Nature. 2014 Jul 3;511(7507):37-8. doi: 10.1038/nature13508. Epub 2014 Jun 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biomedical Sciences, and at the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24990738" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/*chemistry/*metabolism ; Lipopolysaccharides/*metabolism ; Multiprotein Complexes/*chemistry/*metabolism ; Salmonella typhimurium/*chemistry ; Shigella flexneri/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-08-29
    Description: Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal 'arms', and centromeres distributed along their lengths. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227084/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227084/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ho, Joshua W K -- Jung, Youngsook L -- Liu, Tao -- Alver, Burak H -- Lee, Soohyun -- Ikegami, Kohta -- Sohn, Kyung-Ah -- Minoda, Aki -- Tolstorukov, Michael Y -- Appert, Alex -- Parker, Stephen C J -- Gu, Tingting -- Kundaje, Anshul -- Riddle, Nicole C -- Bishop, Eric -- Egelhofer, Thea A -- Hu, Sheng'en Shawn -- Alekseyenko, Artyom A -- Rechtsteiner, Andreas -- Asker, Dalal -- Belsky, Jason A -- Bowman, Sarah K -- Chen, Q Brent -- Chen, Ron A-J -- Day, Daniel S -- Dong, Yan -- Dose, Andrea C -- Duan, Xikun -- Epstein, Charles B -- Ercan, Sevinc -- Feingold, Elise A -- Ferrari, Francesco -- Garrigues, Jacob M -- Gehlenborg, Nils -- Good, Peter J -- Haseley, Psalm -- He, Daniel -- Herrmann, Moritz -- Hoffman, Michael M -- Jeffers, Tess E -- Kharchenko, Peter V -- Kolasinska-Zwierz, Paulina -- Kotwaliwale, Chitra V -- Kumar, Nischay -- Langley, Sasha A -- Larschan, Erica N -- Latorre, Isabel -- Libbrecht, Maxwell W -- Lin, Xueqiu -- Park, Richard -- Pazin, Michael J -- Pham, Hoang N -- Plachetka, Annette -- Qin, Bo -- Schwartz, Yuri B -- Shoresh, Noam -- Stempor, Przemyslaw -- Vielle, Anne -- Wang, Chengyang -- Whittle, Christina M -- Xue, Huiling -- Kingston, Robert E -- Kim, Ju Han -- Bernstein, Bradley E -- Dernburg, Abby F -- Pirrotta, Vincenzo -- Kuroda, Mitzi I -- Noble, William S -- Tullius, Thomas D -- Kellis, Manolis -- MacAlpine, David M -- Strome, Susan -- Elgin, Sarah C R -- Liu, Xiaole Shirley -- Lieb, Jason D -- Ahringer, Julie -- Karpen, Gary H -- Park, Peter J -- 092096/Wellcome Trust/United Kingdom -- 101863/Wellcome Trust/United Kingdom -- 54523/Wellcome Trust/United Kingdom -- 5RL9EB008539/EB/NIBIB NIH HHS/ -- K99 HG006259/HG/NHGRI NIH HHS/ -- K99HG006259/HG/NHGRI NIH HHS/ -- R01 GM098461/GM/NIGMS NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- R37 GM048405/GM/NIGMS NIH HHS/ -- T32 GM071340/GM/NIGMS NIH HHS/ -- T32 HG002295/HG/NHGRI NIH HHS/ -- U01 HG004258/HG/NHGRI NIH HHS/ -- U01 HG004270/HG/NHGRI NIH HHS/ -- U01 HG004279/HG/NHGRI NIH HHS/ -- U01 HG004695/HG/NHGRI NIH HHS/ -- U01HG004258/HG/NHGRI NIH HHS/ -- U01HG004270/HG/NHGRI NIH HHS/ -- U01HG004279/HG/NHGRI NIH HHS/ -- U01HG004695/HG/NHGRI NIH HHS/ -- U54 CA121852/CA/NCI NIH HHS/ -- U54 HG004570/HG/NHGRI NIH HHS/ -- U54 HG006991/HG/NHGRI NIH HHS/ -- U54CA121852/CA/NCI NIH HHS/ -- U54HG004570/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Aug 28;512(7515):449-52. doi: 10.1038/nature13415.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [3] [4] Victor Chang Cardiac Research Institute and The University of New South Wales, Sydney, New South Wales 2052, Australia (J.W.K.H.); Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, USA (T.L.); Department of Molecular Biology and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA (K.I., T.E.J.); Department of Human Genetics, University of Chicago, Chicago, Illinois 06037, USA (J.D.L.); Division of Genomic Technologies, Center for Life Science Technologies, RIKEN, Yokohama 230-0045, Japan (A.M.); Department of Genetics, Department of Computer Science, Stanford University, Stanford, California 94305, USA (A.K.); Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA (N.C.R.). ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [3]. ; 1] Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, 450 Brookline Avenue, Boston, Massachusetts 02215, USA [3] [4] Victor Chang Cardiac Research Institute and The University of New South Wales, Sydney, New South Wales 2052, Australia (J.W.K.H.); Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, USA (T.L.); Department of Molecular Biology and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA (K.I., T.E.J.); Department of Human Genetics, University of Chicago, Chicago, Illinois 06037, USA (J.D.L.); Division of Genomic Technologies, Center for Life Science Technologies, RIKEN, Yokohama 230-0045, Japan (A.M.); Department of Genetics, Department of Computer Science, Stanford University, Stanford, California 94305, USA (A.K.); Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA (N.C.R.). ; Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Department of Biology and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA [2] Victor Chang Cardiac Research Institute and The University of New South Wales, Sydney, New South Wales 2052, Australia (J.W.K.H.); Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, USA (T.L.); Department of Molecular Biology and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA (K.I., T.E.J.); Department of Human Genetics, University of Chicago, Chicago, Illinois 06037, USA (J.D.L.); Division of Genomic Technologies, Center for Life Science Technologies, RIKEN, Yokohama 230-0045, Japan (A.M.); Department of Genetics, Department of Computer Science, Stanford University, Stanford, California 94305, USA (A.K.); Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA (N.C.R.). ; 1] Department of Information and Computer Engineering, Ajou University, Suwon 443-749, Korea [2] Systems Biomedical Informatics Research Center, College of Medicine, Seoul National University, Seoul 110-799, Korea. ; 1] Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA [2] Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA [3] Victor Chang Cardiac Research Institute and The University of New South Wales, Sydney, New South Wales 2052, Australia (J.W.K.H.); Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, USA (T.L.); Department of Molecular Biology and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA (K.I., T.E.J.); Department of Human Genetics, University of Chicago, Chicago, Illinois 06037, USA (J.D.L.); Division of Genomic Technologies, Center for Life Science Technologies, RIKEN, Yokohama 230-0045, Japan (A.M.); Department of Genetics, Department of Computer Science, Stanford University, Stanford, California 94305, USA (A.K.); Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA (N.C.R.). ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA. ; The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK. ; 1] National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland 20892, USA [2] National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, USA. ; 1] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Broad Institute, Cambridge, Massachusetts 02141, USA [3] Victor Chang Cardiac Research Institute and The University of New South Wales, Sydney, New South Wales 2052, Australia (J.W.K.H.); Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, USA (T.L.); Department of Molecular Biology and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA (K.I., T.E.J.); Department of Human Genetics, University of Chicago, Chicago, Illinois 06037, USA (J.D.L.); Division of Genomic Technologies, Center for Life Science Technologies, RIKEN, Yokohama 230-0045, Japan (A.M.); Department of Genetics, Department of Computer Science, Stanford University, Stanford, California 94305, USA (A.K.); Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA (N.C.R.). ; 1] Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, USA [2] Victor Chang Cardiac Research Institute and The University of New South Wales, Sydney, New South Wales 2052, Australia (J.W.K.H.); Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, USA (T.L.); Department of Molecular Biology and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA (K.I., T.E.J.); Department of Human Genetics, University of Chicago, Chicago, Illinois 06037, USA (J.D.L.); Division of Genomic Technologies, Center for Life Science Technologies, RIKEN, Yokohama 230-0045, Japan (A.M.); Department of Genetics, Department of Computer Science, Stanford University, Stanford, California 94305, USA (A.K.); Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA (N.C.R.). ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Program in Bioinformatics, Boston University, Boston, Massachusetts 02215, USA. ; Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA. ; Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai 200092, China. ; 1] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA [2] Food Science and Technology Department, Faculty of Agriculture, Alexandria University, 21545 El-Shatby, Alexandria, Egypt. ; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA. ; Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA. ; Department of Biology and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA. ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Harvard/MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, USA. ; Department of Anatomy Physiology and Cell Biology, University of California Davis, Davis, California 95616, USA. ; Broad Institute, Cambridge, Massachusetts 02141, USA. ; 1] Department of Biology and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA [2] Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA. ; National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Broad Institute, Cambridge, Massachusetts 02141, USA. ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA. ; Princess Margaret Cancer Centre, Toronto, Ontario M6G 1L7, Canada. ; 1] Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA [2] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA. ; 1] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Broad Institute, Cambridge, Massachusetts 02141, USA. ; 1] Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA [2] Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA. ; Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA. ; Department of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA. ; 1] Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA [2] Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA [3] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA. ; 1] Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA [2] Department of Molecular Biology, Umea University, 901 87 Umea, Sweden. ; 1] Systems Biomedical Informatics Research Center, College of Medicine, Seoul National University, Seoul 110-799, Korea [2] Seoul National University Biomedical Informatics, Division of Biomedical Informatics, College of Medicine, Seoul National University, Seoul 110-799, Korea. ; 1] Broad Institute, Cambridge, Massachusetts 02141, USA [2] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA [3] Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA. ; Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA. ; 1] Department of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA [2] Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. ; 1] Program in Bioinformatics, Boston University, Boston, Massachusetts 02215, USA [2] Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA. ; 1] Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, 450 Brookline Avenue, Boston, Massachusetts 02215, USA [3] Broad Institute, Cambridge, Massachusetts 02141, USA. ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Informatics Program, Children's Hospital, Boston, Massachusetts 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25164756" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*cytology/*genetics ; Cell Line ; Centromere/genetics/metabolism ; Chromatin/chemistry/*genetics/*metabolism ; Chromatin Assembly and Disassembly/genetics ; DNA Replication/genetics ; Drosophila melanogaster/*cytology/*genetics ; Enhancer Elements, Genetic/genetics ; Epigenesis, Genetic ; Heterochromatin/chemistry/genetics/metabolism ; Histones/chemistry/metabolism ; Humans ; Molecular Sequence Annotation ; Nuclear Lamina/metabolism ; Nucleosomes/chemistry/genetics/metabolism ; Promoter Regions, Genetic/genetics ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-03-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bishop, C E -- New York, N.Y. -- Science. 1989 Mar 31;243(4899):1738-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17751284" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1995-09-15
    Description: H-Y is a transplantation antigen that can lead to rejection of male organ and bone marrow grafts by female recipients, even if the donor and recipient match at the major histocompatibility locus of humans, the HLA (human leukocyte antigen) locus. However, the origin and function of H-Y antigens has eluded researchers for 40 years. One human H-Y antigen presented by HLA-B7 was identified as an 11-residue peptide derived from SMCY, an evolutionarily conserved protein encoded on the Y chromosome. The protein from the homologous gene on the X chromosome, SMCX, differs by two amino acid residues in the same region. The identification of H-Y may aid in transplantation prognosis, prenatal diagnosis, and fertilization strategies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, W -- Meadows, L R -- den Haan, J M -- Sherman, N E -- Chen, Y -- Blokland, E -- Shabanowitz, J -- Agulnik, A I -- Hendrickson, R C -- Bishop, C E -- AI20963/AI/NIAID NIH HHS/ -- AI33993/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1995 Sep 15;269(5230):1588-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Virginia, Charlottesville 22908, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7667640" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; B-Lymphocytes ; Cell Line ; Chromatography, High Pressure Liquid ; H-Y Antigen/*chemistry/genetics/immunology ; HLA-B7 Antigen/immunology ; Histone Demethylases ; Histone-Lysine N-Methyltransferase ; Humans ; Male ; Mass Spectrometry/methods ; Molecular Sequence Data ; Molecular Weight ; Oxidoreductases, N-Demethylating ; Proteins/*chemistry/genetics/immunology ; T-Lymphocytes, Cytotoxic/immunology ; X Chromosome ; *Y Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...