ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-11-23
    Description: Oxamniquine resistance evolved in the human blood fluke (Schistosoma mansoni) in Brazil in the 1970s. We crossed parental parasites differing ~500-fold in drug response, determined drug sensitivity and marker segregation in clonally derived second-generation progeny, and identified a single quantitative trait locus (logarithm of odds = 31) on chromosome 6. A sulfotransferase was identified as the causative gene by using RNA interference knockdown and biochemical complementation assays, and we subsequently demonstrated independent origins of loss-of-function mutations in field-derived and laboratory-selected resistant parasites. These results demonstrate the utility of linkage mapping in a human helminth parasite, while crystallographic analyses of protein-drug interactions illuminate the mode of drug action and provide a framework for rational design of oxamniquine derivatives that kill both S. mansoni and S. haematobium, the two species responsible for 〉99% of schistosomiasis cases worldwide.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136436/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136436/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Valentim, Claudia L L -- Cioli, Donato -- Chevalier, Frederic D -- Cao, Xiaohang -- Taylor, Alexander B -- Holloway, Stephen P -- Pica-Mattoccia, Livia -- Guidi, Alessandra -- Basso, Annalisa -- Tsai, Isheng J -- Berriman, Matthew -- Carvalho-Queiroz, Claudia -- Almeida, Marcio -- Aguilar, Hector -- Frantz, Doug E -- Hart, P John -- LoVerde, Philip T -- Anderson, Timothy J C -- 098051/Wellcome Trust/United Kingdom -- 5R21-AI072704/AI/NIAID NIH HHS/ -- 5R21-AI096277/AI/NIAID NIH HHS/ -- C06 RR013556/RR/NCRR NIH HHS/ -- HHSN272201000005I/PHS HHS/ -- R01 AI097576/AI/NIAID NIH HHS/ -- R01-AI097576/AI/NIAID NIH HHS/ -- R21 AI072704/AI/NIAID NIH HHS/ -- R21 AI096277/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 13;342(6164):1385-9. doi: 10.1126/science.1243106. Epub 2013 Nov 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Biochemistry and Pathology, University of Texas Health Science Center, San Antonio, TX 78229, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24263136" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Drug Resistance/*genetics ; Gene Knockdown Techniques ; Genetic Linkage ; Helminth Proteins/*genetics ; Humans ; Molecular Sequence Data ; Mutation ; Oxamniquine/*pharmacology ; Phylogeny ; Protein Conformation ; Quantitative Trait Loci ; RNA Interference ; Schistosoma mansoni/*drug effects/*genetics ; Schistosomicides/*pharmacology ; Sulfotransferases/chemistry/classification/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-07-06
    Description: DNA methylation is implicated in mammalian brain development and plasticity underlying learning and memory. We report the genome-wide composition, patterning, cell specificity, and dynamics of DNA methylation at single-base resolution in human and mouse frontal cortex throughout their lifespan. Widespread methylome reconfiguration occurs during fetal to young adult development, coincident with synaptogenesis. During this period, highly conserved non-CG methylation (mCH) accumulates in neurons, but not glia, to become the dominant form of methylation in the human neuronal genome. Moreover, we found an mCH signature that identifies genes escaping X-chromosome inactivation. Last, whole-genome single-base resolution 5-hydroxymethylcytosine (hmC) maps revealed that hmC marks fetal brain cell genomes at putative regulatory regions that are CG-demethylated and activated in the adult brain and that CG demethylation at these hmC-poised loci depends on Tet2 activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785061/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785061/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lister, Ryan -- Mukamel, Eran A -- Nery, Joseph R -- Urich, Mark -- Puddifoot, Clare A -- Johnson, Nicholas D -- Lucero, Jacinta -- Huang, Yun -- Dwork, Andrew J -- Schultz, Matthew D -- Yu, Miao -- Tonti-Filippini, Julian -- Heyn, Holger -- Hu, Shijun -- Wu, Joseph C -- Rao, Anjana -- Esteller, Manel -- He, Chuan -- Haghighi, Fatemeh G -- Sejnowski, Terrence J -- Behrens, M Margarita -- Ecker, Joseph R -- AI44432/AI/NIAID NIH HHS/ -- CA151535/CA/NCI NIH HHS/ -- HD065812/HD/NICHD NIH HHS/ -- HG006827/HG/NHGRI NIH HHS/ -- K99NS080911/NS/NINDS NIH HHS/ -- MH094670/MH/NIMH NIH HHS/ -- R01 AI044432/AI/NIAID NIH HHS/ -- R01 CA151535/CA/NCI NIH HHS/ -- R01 HD065812/HD/NICHD NIH HHS/ -- R01 HG006827/HG/NHGRI NIH HHS/ -- R01 MH094670/MH/NIMH NIH HHS/ -- R01 MH094774/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Aug 9;341(6146):1237905. doi: 10.1126/science.1237905. Epub 2013 Jul 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA. ryan.lister@uwa.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23828890" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/metabolism ; Adult ; Animals ; Base Sequence ; Conserved Sequence ; Cytosine/*analogs & derivatives/metabolism ; *DNA Methylation ; *Epigenesis, Genetic ; Epigenomics ; Frontal Lobe/*growth & development ; *Gene Expression Regulation, Developmental ; Genome-Wide Association Study ; Humans ; Longevity ; Mice ; Mice, Inbred C57BL ; X Chromosome Inactivation/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-10
    Description: Tree-building with diverse data maximizes explanatory power. Application of molecular clock models to ancient speciation events risks a bias against detection of fast radiations subsequent to the Cretaceous-Paleogene (K-Pg) event. Contrary to Springer et al., post-K-Pg placental diversification does not require "virus-like" substitution rates. Even constraining clade ages to their model, the explosive model best explains placental evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Leary, Maureen A -- Bloch, Jonathan I -- Flynn, John J -- Gaudin, Timothy J -- Giallombardo, Andres -- Giannini, Norberto P -- Goldberg, Suzann L -- Kraatz, Brian P -- Luo, Zhe-Xi -- Meng, Jin -- Ni, Xijun -- Novacek, Michael J -- Perini, Fernando A -- Randall, Zachary -- Rougier, Guillermo W -- Sargis, Eric J -- Silcox, Mary T -- Simmons, Nancy B -- Spaulding, Michelle -- Velazco, Paul M -- Weksler, Marcelo -- Wible, John R -- Cirranello, Andrea L -- New York, N.Y. -- Science. 2013 Aug 9;341(6146):613. doi: 10.1126/science.1238162.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomical Sciences, HSC T-8 (040), Stony Brook University, Stony Brook, NY 11794-8081, USA. maureen.oleary@stonybrook.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23929968" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Female ; *Fossils ; *Mammals ; *Phylogeny ; Pregnancy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-04-13
    Description: Since the announcement of the species Australopithecus sediba, questions have been raised over whether the Malapa fossils represent a valid taxon or whether inadequate allowance was made for intraspecific variation, in particular with reference to the temporally and geographically proximate species Au. africanus. The morphology of mandibular remains of Au. sediba, including newly recovered material discussed here, shows that it is not merely a late-surviving morph of Au. africanus. Rather-as is seen elsewhere in the cranium, dentition, and postcranial skeleton-these mandibular remains share similarities with other australopiths but can be differentiated from the hypodigm of Au. africanus in both size and shape as well as in their ontogenetic growth trajectory.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Ruiter, Darryl J -- DeWitt, Thomas J -- Carlson, Keely B -- Brophy, Juliet K -- Schroeder, Lauren -- Ackermann, Rebecca R -- Churchill, Steven E -- Berger, Lee R -- New York, N.Y. -- Science. 2013 Apr 12;340(6129):1232997. doi: 10.1126/science.1232997.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anthropology, Texas A&M University, College Station, TX 77843, USA. deruiter@tamu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23580533" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dentition ; Female ; *Fossils ; Hominidae/*anatomy & histology/*classification/growth & development ; Male ; Mandible/*anatomy & histology/growth & development ; Paleodontology ; South Africa ; Tooth/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-07-28
    Description: Memories can be unreliable. We created a false memory in mice by optogenetically manipulating memory engram-bearing cells in the hippocampus. Dentate gyrus (DG) or CA1 neurons activated by exposure to a particular context were labeled with channelrhodopsin-2. These neurons were later optically reactivated during fear conditioning in a different context. The DG experimental group showed increased freezing in the original context, in which a foot shock was never delivered. The recall of this false memory was context-specific, activated similar downstream regions engaged during natural fear memory recall, and was also capable of driving an active fear response. Our data demonstrate that it is possible to generate an internally represented and behaviorally expressed fear memory via artificial means.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ramirez, Steve -- Liu, Xu -- Lin, Pei-Ann -- Suh, Junghyup -- Pignatelli, Michele -- Redondo, Roger L -- Ryan, Tomas J -- Tonegawa, Susumu -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):387-91. doi: 10.1126/science.1239073.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉RIKEN-Massachusetts Institute of Technology Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology, MIT, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23888038" target="_blank"〉PubMed〈/a〉
    Keywords: Amygdala/physiology ; Animals ; Association ; CA1 Region, Hippocampal/cytology/*physiology ; *Conditioning (Psychology) ; Dentate Gyrus/cytology/*physiology ; Dependovirus/genetics ; Doxycycline/administration & dosage ; Fear ; Genes, fos ; Light ; Memory/*physiology ; Mental Recall/physiology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Neurons/*physiology ; Optogenetics ; Rhodopsin/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-12-03
    Description: How an individual's longevity is affected by the opposite sex is still largely unclear. In the nematode Caenorhabditis elegans, the presence of males accelerated aging and shortened the life span of individuals of the opposite sex (hermaphrodites), including long-lived or sterile hermaphrodites. The male-induced demise could occur without mating and required only exposure of hermaphrodites to medium in which males were once present. Such communication through pheromones or other diffusible substances points to a nonindividual autonomous mode of aging regulation. The male-induced demise also occurred in other species of nematodes, suggesting an evolutionary conserved process whereby males may induce the disposal of the opposite sex to save resources for the next generation or to prevent competition from other males.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126796/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126796/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maures, Travis J -- Booth, Lauren N -- Benayoun, Berenice A -- Izrayelit, Yevgeniy -- Schroeder, Frank C -- Brunet, Anne -- DP1 AG044848/AG/NIA NIH HHS/ -- DP1AG044848/AG/NIA NIH HHS/ -- F32AG37254/AG/NIA NIH HHS/ -- R01 AG031198/AG/NIA NIH HHS/ -- R01 GM088290/GM/NIGMS NIH HHS/ -- R01AG031198/AG/NIA NIH HHS/ -- R01GM088290/GM/NIGMS NIH HHS/ -- T32 GM008500/GM/NIGMS NIH HHS/ -- T32 HG000044/HG/NHGRI NIH HHS/ -- T32GM008500/GM/NIGMS NIH HHS/ -- T32HG000044/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2014 Jan 31;343(6170):541-4. doi: 10.1126/science.1244160. Epub 2013 Nov 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24292626" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Caenorhabditis elegans/drug effects/genetics/*physiology ; Caenorhabditis elegans Proteins/genetics ; Carrier Proteins/genetics ; Culture Media, Conditioned/metabolism/pharmacology ; Female ; Gene Expression Regulation ; Genes, Helminth/genetics ; Longevity/drug effects/genetics/*physiology ; Male ; Peptide Hormones/genetics ; RNA Interference
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lawrence, Robert S -- Nachman, Keeve E -- Smith, Tyler J -- England -- Nature. 2013 Aug 22;500(7463):400. doi: 10.1038/500400b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23969450" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Domestic/*microbiology ; Humans ; Meat/*microbiology ; Methicillin-Resistant Staphylococcus aureus/*isolation & purification ; Staphylococcal Infections/*transmission/*veterinary ; Zoonoses/*microbiology/*transmission
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-04-12
    Description: Obtaining high-resolution information from a complex system, while maintaining the global perspective needed to understand system function, represents a key challenge in biology. Here we address this challenge with a method (termed CLARITY) for the transformation of intact tissue into a nanoporous hydrogel-hybridized form (crosslinked to a three-dimensional network of hydrophilic polymers) that is fully assembled but optically transparent and macromolecule-permeable. Using mouse brains, we show intact-tissue imaging of long-range projections, local circuit wiring, cellular relationships, subcellular structures, protein complexes, nucleic acids and neurotransmitters. CLARITY also enables intact-tissue in situ hybridization, immunohistochemistry with multiple rounds of staining and de-staining in non-sectioned tissue, and antibody labelling throughout the intact adult mouse brain. Finally, we show that CLARITY enables fine structural analysis of clinical samples, including non-sectioned human tissue from a neuropsychiatric-disease setting, establishing a path for the transmutation of human tissue into a stable, intact and accessible form suitable for probing structural and molecular underpinnings of physiological function and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4092167/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4092167/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chung, Kwanghun -- Wallace, Jenelle -- Kim, Sung-Yon -- Kalyanasundaram, Sandhiya -- Andalman, Aaron S -- Davidson, Thomas J -- Mirzabekov, Julie J -- Zalocusky, Kelly A -- Mattis, Joanna -- Denisin, Aleksandra K -- Pak, Sally -- Bernstein, Hannah -- Ramakrishnan, Charu -- Grosenick, Logan -- Gradinaru, Viviana -- Deisseroth, Karl -- DP1 OD000616/OD/NIH HHS/ -- R01 DA020794/DA/NIDA NIH HHS/ -- R01 MH099647/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 May 16;497(7449):332-7. doi: 10.1038/nature12107. Epub 2013 Apr 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23575631" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*anatomy & histology ; Cross-Linking Reagents/chemistry ; Formaldehyde/chemistry ; Humans ; Hydrogel/chemistry ; Imaging, Three-Dimensional/*methods ; In Situ Hybridization/methods ; Lipids/isolation & purification ; Mice ; Molecular Imaging/*methods ; Permeability ; Phenotype ; Scattering, Radiation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-11-08
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049315/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049315/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Desai, Tushar J -- Krasnow, Mark A -- U01 HL099995/HL/NHLBI NIH HHS/ -- U01 HL099999/HL/NHLBI NIH HHS/ -- England -- Nature. 2013 Nov 14;503(7475):204-5. doi: 10.1038/nature12706. Epub 2013 Nov 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Division of Pulmonary and Critical Care, Stanford University School of Medicine, Stanford, California 94305-5307, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24196710" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Dedifferentiation ; Epithelial Cells/*cytology ; Female ; Male ; Stem Cells/*cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-09-27
    Description: Large-scale chromosome structure and spatial nuclear arrangement have been linked to control of gene expression and DNA replication and repair. Genomic techniques based on chromosome conformation capture (3C) assess contacts for millions of loci simultaneously, but do so by averaging chromosome conformations from millions of nuclei. Here we introduce single-cell Hi-C, combined with genome-wide statistical analysis and structural modelling of single-copy X chromosomes, to show that individual chromosomes maintain domain organization at the megabase scale, but show variable cell-to-cell chromosome structures at larger scales. Despite this structural stochasticity, localization of active gene domains to boundaries of chromosome territories is a hallmark of chromosomal conformation. Single-cell Hi-C data bridge current gaps between genomics and microscopy studies of chromosomes, demonstrating how modular organization underlies dynamic chromosome structure, and how this structure is probabilistically linked with genome activity patterns.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869051/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869051/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nagano, Takashi -- Lubling, Yaniv -- Stevens, Tim J -- Schoenfelder, Stefan -- Yaffe, Eitan -- Dean, Wendy -- Laue, Ernest D -- Tanay, Amos -- Fraser, Peter -- BBS/E/B/0000M241/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBS/E/B/000C0404/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0800036/Medical Research Council/United Kingdom -- G117/530/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- Medical Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2013 Oct 3;502(7469):59-64. doi: 10.1038/nature12593. Epub 2013 Sep 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Nuclear Dynamics Programme, The Babraham Institute, Cambridge CB22 3AT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24067610" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Nucleus/genetics ; Chromatin/chemistry ; Chromosomes/*chemistry/genetics ; *Genetic Techniques ; Male ; Mice ; *Models, Molecular ; Molecular Conformation ; Single-Cell Analysis ; X Chromosome/chemistry/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...