ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (138)
  • Meteorology and Climatology  (100)
  • AIRCRAFT PROPULSION AND POWER
  • ENERGY PRODUCTION AND CONVERSION
  • 2010-2014  (238)
  • 2005-2009
  • 1975-1979
  • 1950-1954
  • 2013  (115)
  • 2010  (123)
Collection
Keywords
Years
  • 2010-2014  (238)
  • 2005-2009
  • 1975-1979
  • 1950-1954
Year
  • 1
    Publication Date: 2014-11-22
    Description: The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MER) Spirit and Opportunity. The fraction of sand 〈150 micron in size contains approx. 55% crystalline material consistent with a basaltic heritage, and approx. 45% X-ray amorphous material. The amorphous component of Rocknest is Fe-rich and Si-poor, and is the host of the volatiles (H2O, O2, SO2, CO2, and Cl) detected by the Surface Analysis at Mars (SAM) instrument and of the fine-grained nanophase oxide (npOx) component first described from basaltic soils analyzed by MER. The similarity between soils and aeolian materials analyzed at Gusev crater, Meridiani Planum and Gale crater implies locally sourced, globally similar basaltic materials, or globally and regionally sourced basaltic components deposited locally at all three locations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN11260
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Ozone changes and associated climate impacts in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations are analyzed over the historical (1960-2005) and future (2006-2100) period under four Representative Concentration Pathways (RCP). In contrast to CMIP3, where half of the models prescribed constant stratospheric ozone, CMIP5 models all consider past ozone depletion and future ozone recovery. Multimodel mean climatologies and long-term changes in total and tropospheric column ozone calculated from CMIP5 models with either interactive or prescribed ozone are in reasonable agreement with observations. However, some large deviations from observations exist for individual models with interactive chemistry, and these models are excluded in the projections. Stratospheric ozone projections forced with a single halogen, but four greenhouse gas (GHG) scenarios show largest differences in the northern midlatitudes and in the Arctic in spring (approximately 20 and 40 Dobson units (DU) by 2100, respectively). By 2050, these differences are much smaller and negligible over Antarctica in austral spring. Differences in future tropospheric column ozone are mainly caused by differences in methane concentrations and stratospheric input, leading to approximately 10DU increases compared to 2000 in RCP 8.5. Large variations in stratospheric ozone particularly in CMIP5 models with interactive chemistry drive correspondingly large variations in lower stratospheric temperature trends. The results also illustrate that future Southern Hemisphere summertime circulation changes are controlled by both the ozone recovery rate and the rate of GHG increases, emphasizing the importance of simulating and taking into account ozone forcings when examining future climate projections.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN9138 , Journal of Geophysical Research: Atmospheres; 118; 10; 5029–5060
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: The evolution of stratospheric ozone from 1960 to 2100 is examined in simulations from fourteen chemistry-climate models. There is general agreement among the models at the broadest levels, showing column ozone decreasing at all latitudes from 1960 to around 2000, then increasing at all latitudes over the first half of the 21st century, and latitudinal variations in the rate of increase and date of return to historical values. In the second half of the century, ozone is projected to continue increasing, level off or even decrease depending on the latitude, resulting in variable dates of return to historical values at latitudes where column ozone has declined below those levels. Separation into partial column above and below 20 hPa reveals that these latitudinal differences are almost completely due to differences in the lower stratosphere. At all latitudes, upper stratospheric ozone increases throughout the 21st century and returns to 1960 levels before the end of the century, although there is a spread among the models in dates that ozone returns to historical values. Using multiple linear regression, we find decreasing halogens and increasing greenhouse gases contribute almost equally to increases in the upper stratospheric ozone. In the tropical lower stratosphere an increase in tropical upwelling causes a steady decrease in ozone through the 21st century, and total column ozone does not return to 1960 levels in all models. In contrast, lower stratospheric and total column ozone in middle and high latitudes increases during the 21st century and returns to 1960 levels.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-13
    Description: The CheMin mineralogical instrument on MSL will return quantitative powder X-ray diffraction data (XRD) and qualitative X-ray fluorescence data (XRF; 14〈Z〈92) from scooped soil samples and drilled rock powders collected on the Mars surface. The geometry of the source, sample, and detector is shown. A transmission geometry was chosen so that diffracted intensities in the low-20 region (5-15 deg), important for phyllosilicate identification, could be detected.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-19549 , Lunar and Planetary Science Conference; Mar 01, 2010 - Mar 05, 2010; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: The search for organic compounds on Mars, including molecules of either abiotic or biological origin is one of the key goals of the Mars Science Laboratory (MSL) mission. Previously the Viking and Phoenix Lander missions searched for organic compounds, but did not find any definitive evidence of martian organic material in the soils. The Viking pyrolysis gas chromatography mass spectrometry (GCMS) instruments did not detect any organic compounds of martian or exogenous origin above a level of a few parts-per-billion (ppb) in the near surface regolith at either landing site [1]. Viking did detect chloromethane and dichloromethane at pmol levels (up to 40 ppb) after heating the soil samples up to 500 C (Table 1), although it was originally argued that the chlorohydrocarbons were derived from cleaning solvents used on the instrument hardware, and not from the soil samples themselves [1]. More recently, it was suggested that the chlorohydrocarbons detected by Viking may have been formed by oxidation of indigenous organic matter during pyrolysis of the soil in the presence of perchlorates [2]. Although it is unknown if the Viking soils contained perchlorates, Phoenix did reveal relatively high concentrations (~0.6 wt%) of perchlorate salt in the icy regolith [3], therefore, it is possible that the chlorohydrocarbons detected by Viking were produced, at least partially, during the experiments [2,4]. The Sample Analysis at Mars (SAM) instrument suite on MSL analyzed the organic composition of the soil at Rocknest in Gale Crater using a combination of pyrolysis evolved gas analysis (EGA) and GCMS. One empty cup procedural blank followed by multiple EGA-GCMS analyses of the Rocknest soil were carried out. Here we will discuss the results from these SAM measurements at Rocknest and the steps taken to determine the source of the chlorohydrocarbons.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-27930 , Lunar and Planetary Science Conference; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN7237 , 44th Lunar and Planetary Science Conference; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: We have studied anorthositic clasts in the Y-86032 and Dhofar 908 meteorites by the Rb-Sr, Sm-Nd, and Ar-39-Ar-40 techniques combining isotopic studies with mineralogical/petrological studies of the same clasts. As a result of these studies, we conclude that the lunar crust is composed of a variety of anorthosites, at least some of which must have formed as plutons in the earliest formed ferroan anorthosite crust.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-20821 , 33rd Symposium on Antarctic Meteorites; Jun 08, 2010 - Jun 10, 2010; Tokyo, Japan; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: GRA06128 and GRA06129 (hereafter GRA 8 and GRA 9) are partial melts of a parent body of approximately chondritic composition. We reported a conventional SM-147Sm-ND_143 isochron age of 4.559 +/-.096 Ga and a SM-146-142Nd model age of 4.549 +/- 0.036 for combined data for the two rocks. Plagioclase plus whole rock and leachate (approximately phosphate) samples gave a secondary SM-147-ND-143 age of 3.4 +/-0.4 Ga. An Ar-39-Ar-40 age of 4.460+/-0.028 Ga was interpreted by as dating metamorphism in GRA 9. We report Ar-39-Ar-40 ages in the range approximately 4344-4366 Ma for GRA 8, establishing similar but different Ar-39-Ar-40 ages for the two rocks, consistent with their different Sr-istopic systematics, and discuss these ages in the context of the complex sequence of events that affected these samples
    Keywords: Lunar and Planetary Science and Exploration
    Type: M10-0160 , M10-0342 , Lunar and Planetary Science Conference; Mar 01, 2010 - Mar 05, 2010; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Though brecciated, the Norton County (NC) aubrite contains little or no trapped noble gas and has been widely assumed to have a simple if unusually long cosmic ray exposure (CRE), 115 Ma. One goal of this ongoing study of NC has been to search for signs of pre-irradiation as proposed. One may test for multiple stages of CRE by comparing thermal neutron fluences inferred from Ca-41 (t(sub 1/2)=0.1 Ma) activities, which reflect irradiation conditions over the last approximately 0.3 Ma, with those inferred from (stable) Sm isotope abundances, which integrate over the entire CRE history. In the case of a one-stage exposure the fluences should agree. We focus on these particular comparisons because the properties of NC - its long CRE exposure, relatively large size, and low iron concentration - all promised high production rates and ease of measurement. Previously, we reported on several cosmogenic nuclides in NC. Here we present new Ca-41 data, Sm isotope measurements, and comparisons with model calculations of cosmic ray production.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19502 , JSC-CN-19568 , Lunar and Planetary Conference; Mar 01, 2010 - Mar 05, 2010; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP) scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 410 mW m2. The model range of pre-industrial to present-day changes in O3 produces a spread (+/-1 standard deviation) in RFs of +/-17%. Three different radiation schemes were used - we find differences in RFs between schemes (for the same ozone fields) of +/-10 percent. Applying two different tropopause definitions gives differences in RFs of +/-3 percent. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of +/-30 percent for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44+/-12 percent), nitrogen oxides (31 +/- 9 percent), carbon monoxide (15 +/- 3 percent) and non-methane volatile organic compounds (9 +/- 2 percent); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m(2) DU(1), a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m(2); relative to 1750) for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) of 350, 420, 370 and 460 (in 2030), and 200, 300, 280 and 600 (in 2100). Models show some coherent responses of ozone to climate change: decreases in the tropical lower troposphere, associated with increases in water vapour; and increases in the sub-tropical to mid-latitude upper troposphere, associated with increases in lightning and stratosphere-to-troposphere transport. Climate change has relatively small impacts on global mean tropospheric ozone RF.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN9155 , Atmospheric Chemistry and Physics; 13; 6; 3063-3085
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...