ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (14)
  • Geologic Sediments  (14)
  • 2000-2004  (14)
  • 1975-1979
  • 2004  (14)
  • Computer Science  (14)
  • Economics
Collection
  • Articles  (14)
Years
  • 2000-2004  (14)
  • 1975-1979
Year
Topic
  • 1
    Publication Date: 2004-01-06
    Description: A newly discovered Paleolithic site on the Yana River, Siberia, at 71 degrees N, lies well above the Arctic circle and dates to 27,000 radiocarbon years before present, during glacial times. This age is twice that of other known human occupations in any Arctic region. Artifacts at the site include a rare rhinoceros foreshaft, other mammoth foreshafts, and a wide variety of tools and flakes. This site shows that people adapted to this harsh, high-latitude, Late Pleistocene environment much earlier than previously thought.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pitulko, V V -- Nikolsky, P A -- Girya, E Yu -- Basilyan, A E -- Tumskoy, V E -- Koulakov, S A -- Astakhov, S N -- Pavlova, E Yu -- Anisimov, M A -- New York, N.Y. -- Science. 2004 Jan 2;303(5654):52-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for the History of Material Culture, Russian Academy of Sciences, 18 Dvortsovaya nab., St. Petersburg 191186, Russia. pitulko.volodya@nmnh.si.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14704419" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Anthropology ; *Archaeology ; Arctic Regions ; Bone and Bones ; *Cold Climate ; Culture ; Emigration and Immigration ; Geologic Sediments ; Humans ; Paleodontology ; Paleontology ; Plants ; Siberia ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-08-07
    Description: Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bell, J F 3rd -- Squyres, S W -- Arvidson, R E -- Arneson, H M -- Bass, D -- Blaney, D -- Cabrol, N -- Calvin, W -- Farmer, J -- Farrand, W H -- Goetz, W -- Golombek, M -- Grant, J A -- Greeley, R -- Guinness, E -- Hayes, A G -- Hubbard, M Y H -- Herkenhoff, K E -- Johnson, M J -- Johnson, J R -- Joseph, J -- Kinch, K M -- Lemmon, M T -- Li, R -- Madsen, M B -- Maki, J N -- Malin, M -- McCartney, E -- McLennan, S -- McSween, H Y Jr -- Ming, D W -- Moersch, J E -- Morris, R V -- Dobrea, E Z Noe -- Parker, T J -- Proton, J -- Rice, J W Jr -- Seelos, F -- Soderblom, J -- Soderblom, L A -- Sohl-Dickstein, J N -- Sullivan, R J -- Wolff, M J -- Wang, A -- New York, N.Y. -- Science. 2004 Aug 6;305(5685):800-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cornell University, Ithaca, NY 14853-6801, USA. jfb8@cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15297658" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Evolution, Planetary ; Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; Iron Compounds ; *Mars ; Minerals ; Silicates ; Solar System ; Spectrum Analysis ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-04
    Description: Panoramic Camera (Pancam) images from Meridiani Planum reveal a low-albedo, generally flat, and relatively rock-free surface. Within and around impact craters and fractures, laminated outcrop rocks with higher albedo are observed. Fine-grained materials include dark sand, bright ferric iron-rich dust, angular rock clasts, and millimeter-size spheroidal granules that are eroding out of the laminated rocks. Spectra of sand, clasts, and one dark plains rock are consistent with mafic silicates such as pyroxene and olivine. Spectra of both the spherules and the laminated outcrop materials indicate the presence of crystalline ferric oxides or oxyhydroxides. Atmospheric observations show a steady decline in dust opacity during the mission. Astronomical observations captured solar transits by Phobos and Deimos and time-lapse observations of sunsets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bell, J F 3rd -- Squyres, S W -- Arvidson, R E -- Arneson, H M -- Bass, D -- Calvin, W -- Farrand, W H -- Goetz, W -- Golombek, M -- Greeley, R -- Grotzinger, J -- Guinness, E -- Hayes, A G -- Hubbard, M Y H -- Herkenhoff, K E -- Johnson, M J -- Johnson, J R -- Joseph, J -- Kinch, K M -- Lemmon, M T -- Li, R -- Madsen, M B -- Maki, J N -- Malin, M -- McCartney, E -- McLennan, S -- McSween, H Y Jr -- Ming, D W -- Morris, R V -- Dobrea, E Z Noe -- Parker, T J -- Proton, J -- Rice, J W Jr -- Seelos, F -- Soderblom, J M -- Soderblom, L A -- Sohl-Dickstein, J N -- Sullivan, R J -- Weitz, C M -- Wolff, M J -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1703-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Astronomy, Cornell University, Ithaca NY 14853, USA. jfb8@cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576603" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; Ice ; *Mars ; Silicates ; Spacecraft ; Spectrum Analysis ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-04
    Description: Sedimentary rocks at Eagle crater in Meridiani Planum are composed of fine-grained siliciclastic materials derived from weathering of basaltic rocks, sulfate minerals (including magnesium sulfate and jarosite) that constitute several tens of percent of the rock by weight, and hematite. Cross-stratification observed in rock outcrops indicates eolian and aqueous transport. Diagenetic features include hematite-rich concretions and crystal-mold vugs. We interpret the rocks to be a mixture of chemical and siliciclastic sediments with a complex diagenetic history. The environmental conditions that they record include episodic inundation by shallow surface water, evaporation, and desiccation. The geologic record at Meridiani Planum suggests that conditions were suitable for biological activity for a period of time in martian history.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Squyres, S W -- Grotzinger, J P -- Arvidson, R E -- Bell, J F 3rd -- Calvin, W -- Christensen, P R -- Clark, B C -- Crisp, J A -- Farrand, W H -- Herkenhoff, K E -- Johnson, J R -- Klingelhofer, G -- Knoll, A H -- McLennan, S M -- McSween, H Y Jr -- Morris, R V -- Rice, J W Jr -- Rieder, R -- Soderblom, L A -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1709-14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Astronomy, Cornell University, Ithaca, NY 14853, USA. squyres@astrosun.tn.cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576604" target="_blank"〉PubMed〈/a〉
    Keywords: Exobiology ; Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; Life ; *Mars ; Minerals ; Silicates ; Spacecraft ; Spectrum Analysis ; Sulfates ; Sulfur ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-08-07
    Description: The Miniature Thermal Emission Spectrometer (Mini-TES) on Spirit has studied the mineralogy and thermophysical properties at Gusev crater. Undisturbed soil spectra show evidence for minor carbonates and bound water. Rocks are olivinerich basalts with varying degrees of dust and other coatings. Dark-toned soils observed on disturbed surfaces may be derived from rocks and have derived mineralogy (+/-5 to 10%) of 45% pyroxene (20% Ca-rich pyroxene and 25% pigeonite), 40% sodic to intermediate plagioclase, and 15% olivine (forsterite 45% +/-5 to 10). Two spectrally distinct coatings are observed on rocks, a possible indicator of the interaction of water, rock, and airfall dust. Diurnal temperature data indicate particle sizes from 40 to 80 microm in hollows to approximately 0.5 to 3 mm in soils.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Christensen, P R -- Ruff, S W -- Fergason, R L -- Knudson, A T -- Anwar, S -- Arvidson, R E -- Bandfield, J L -- Blaney, D L -- Budney, C -- Calvin, W M -- Glotch, T D -- Golombek, M P -- Gorelick, N -- Graff, T G -- Hamilton, V E -- Hayes, A -- Johnson, J R -- McSween, H Y Jr -- Mehall, G L -- Mehall, L K -- Moersch, J E -- Morris, R V -- Rogers, A D -- Smith, M D -- Squyres, S W -- Wolff, M J -- Wyatt, M B -- New York, N.Y. -- Science. 2004 Aug 6;305(5685):837-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geological Sciences, Arizona State University, Tempe, AZ 85287, USA. phil.christensen@asu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15297667" target="_blank"〉PubMed〈/a〉
    Keywords: Carbonates ; Geologic Sediments ; Interferometry ; Iron Compounds ; Magnesium Compounds ; *Mars ; *Minerals ; Oxides ; Silicates ; Spectrum Analysis ; Temperature ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-08-07
    Description: The Spirit landing site in Gusev Crater on Mars contains dark, fine-grained, vesicular rocks interpreted as lavas. Pancam and Mini-Thermal Emission Spectrometer (Mini-TES) spectra suggest that all of these rocks are similar but have variable coatings and dust mantles. Magnified images of brushed and abraded rock surfaces show alteration rinds and veins. Rock interiors contain 〈/=25% megacrysts. Chemical analyses of rocks by the Alpha Particle X-ray Spectrometer are consistent with picritic basalts, containing normative olivine, pyroxenes, plagioclase, and accessory FeTi oxides. Mossbauer, Pancam, and Mini-TES spectra confirm the presence of olivine, magnetite, and probably pyroxene. These basalts extend the known range of rock compositions composing the martian crust.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McSween, H Y -- Arvidson, R E -- Bell, J F 3rd -- Blaney, D -- Cabrol, N A -- Christensen, P R -- Clark, B C -- Crisp, J A -- Crumpler, L S -- Des Marais, D J -- Farmer, J D -- Gellert, R -- Ghosh, A -- Gorevan, S -- Graff, T -- Grant, J -- Haskin, L A -- Herkenhoff, K E -- Johnson, J R -- Jolliff, B L -- Klingelhoefer, G -- Knudson, A T -- McLennan, S -- Milam, K A -- Moersch, J E -- Morris, R V -- Rieder, R -- Ruff, S W -- De Souza, P A Jr -- Squyres, S W -- Wanke, H -- Wang, A -- Wyatt, M B -- Yen, A -- Zipfel, J -- New York, N.Y. -- Science. 2004 Aug 6;305(5685):842-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996-1410, USA. mcsween@utk.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15297668" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; Geologic Sediments ; Iron Compounds ; Magnesium Compounds ; *Mars ; *Minerals ; Oxides ; *Silicates ; Spectroscopy, Mossbauer ; Spectrum Analysis ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-08-07
    Description: The Mars Exploration Rover Spirit has traversed a fairly flat, rock-strewn terrain whose surface is shaped primarily by impact events, although some of the landscape has been altered by eolian processes. Impacts ejected basaltic rocks that probably were part of locally formed lava flows from at least 10 meters depth. Some rocks have been textured and/or partially buried by windblown sediments less than 2 millimeters in diameter that concentrate within shallow, partially filled, circular impact depressions referred to as hollows. The terrain traversed during the 90-sol (martian solar day) nominal mission shows no evidence for an ancient lake in Gusev crater.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grant, J A -- Arvidson, R -- Bell, J F 3rd -- Cabrol, N A -- Carr, M H -- Christensen, P -- Crumpler, L -- Des Marais, D J -- Ehlmann, B L -- Farmer, J -- Golombek, M -- Grant, F D -- Greeley, R -- Herkenhoff, K -- Li, R -- McSween, H Y -- Ming, D W -- Moersch, J -- Rice, J W Jr -- Ruff, S -- Richter, L -- Squyres, S -- Sullivan, R -- Weitz, C -- New York, N.Y. -- Science. 2004 Aug 6;305(5685):807-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC 20560, USA. grantj@nasm.si.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15297659" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; Geologic Sediments ; *Mars ; Minerals ; Silicates ; Volcanic Eruptions ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-12-04
    Description: The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Squyres, S W -- Arvidson, R E -- Bell, J F 3rd -- Bruckner, J -- Cabrol, N A -- Calvin, W -- Carr, M H -- Christensen, P R -- Clark, B C -- Crumpler, L -- Marais, D J Des -- d'Uston, C -- Economou, T -- Farmer, J -- Farrand, W -- Folkner, W -- Golombek, M -- Gorevan, S -- Grant, J A -- Greeley, R -- Grotzinger, J -- Haskin, L -- Herkenhoff, K E -- Hviid, S -- Johnson, J -- Klingelhofer, G -- Knoll, A H -- Landis, G -- Lemmon, M -- Li, R -- Madsen, M B -- Malin, M C -- McLennan, S M -- McSween, H Y -- Ming, D W -- Moersch, J -- Morris, R V -- Parker, T -- Rice, J W Jr -- Richter, L -- Rieder, R -- Sims, M -- Smith, M -- Smith, P -- Soderblom, L A -- Sullivan, R -- Wanke, H -- Wdowiak, T -- Wolff, M -- Yen, A -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1698-703.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Astronomy, Space Sciences Building, Cornell University, Ithaca, NY 14853, USA. squyres@astro.cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576602" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Evolution, Planetary ; Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; *Mars ; Minerals ; Silicates ; Spacecraft ; Water ; Wind
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-08-07
    Description: The Microscopic Imager on the Spirit rover analyzed the textures of the soil and rocks at Gusev crater on Mars at a resolution of 100 micrometers. Weakly bound agglomerates of dust are present in the soil near the Columbia Memorial Station. Some of the brushed or abraded rock surfaces show igneous textures and evidence for alteration rinds, coatings, and veins consistent with secondary mineralization. The rock textures are consistent with a volcanic origin and subsequent alteration and/or weathering by impact events, wind, and possibly water.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herkenhoff, K E -- Squyres, S W -- Arvidson, R -- Bass, D S -- Bell, J F 3rd -- Bertelsen, P -- Cabrol, N A -- Gaddis, L -- Hayes, A G -- Hviid, S F -- Johnson, J R -- Kinch, K M -- Madsen, M B -- Maki, J N -- McLennan, S M -- McSween, H Y -- Rice, J W Jr -- Sims, M -- Smith, P H -- Soderblom, L A -- Spanovich, N -- Sullivan, R -- Wang, A -- New York, N.Y. -- Science. 2004 Aug 6;305(5685):824-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Geological Survey Astrogeology Team, Flagstaff, AZ 86001, USA. kherkenhoff@usgs.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15297663" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; Geologic Sediments ; *Mars ; Volcanic Eruptions ; Water ; Wind
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-12-04
    Description: The Microscopic Imager on the Opportunity rover analyzed textures of soils and rocks at Meridiani Planum at a scale of 31 micrometers per pixel. The uppermost millimeter of some soils is weakly cemented, whereas other soils show little evidence of cohesion. Rock outcrops are laminated on a millimeter scale; image mosaics of cross-stratification suggest that some sediments were deposited by flowing water. Vugs in some outcrop faces are probably molds formed by dissolution of relatively soluble minerals during diagenesis. Microscopic images support the hypothesis that hematite-rich spherules observed in outcrops and soils also formed diagenetically as concretions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herkenhoff, K E -- Squyres, S W -- Arvidson, R -- Bass, D S -- Bell, J F 3rd -- Bertelsen, P -- Ehlmann, B L -- Farrand, W -- Gaddis, L -- Greeley, R -- Grotzinger, J -- Hayes, A G -- Hviid, S F -- Johnson, J R -- Jolliff, B -- Kinch, K M -- Knoll, A H -- Madsen, M B -- Maki, J N -- McLennan, S M -- McSween, H Y -- Ming, D W -- Rice, J W Jr -- Richter, L -- Sims, M -- Smith, P H -- Soderblom, L A -- Spanovich, N -- Sullivan, R -- Thompson, S -- Wdowiak, T -- Weitz, C -- Whelley, P -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1727-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Geological Survey Astrogeology Team, Flagstaff, AZ 86001, USA. kherkenhoff@usgs.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576607" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; *Mars ; Minerals ; Silicates ; Spacecraft ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...