ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2008-03-22
    Description: Chlorides commonly precipitate during the evaporation of surface water or groundwater and during volcanic outgassing. Spectrally distinct surface deposits consistent with chloride-bearing materials have been identified and mapped using data from the 2001 Mars Odyssey Thermal Emission Imaging System. These deposits are found throughout regions of low albedo in the southern highlands of Mars. Geomorphologic evidence from orbiting imagery reveals these deposits to be light-toned relative to their surroundings and to be polygonally fractured. The deposits are small (〈 approximately 25 km(2)) but globally widespread, occurring in middle to late Noachian terrains with a few occurrences in early Hesperian terrains. The identification of chlorides in the ancient southern highlands suggests that near-surface water was available and widespread in early Martian history.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Osterloo, M M -- Hamilton, V E -- Bandfield, J L -- Glotch, T D -- Baldridge, A M -- Christensen, P R -- Tornabene, L L -- Anderson, F S -- New York, N.Y. -- Science. 2008 Mar 21;319(5870):1651-4. doi: 10.1126/science.1150690.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hawaii Institute of Geophysics and Planetology, University of Hawaii, 1680 East-West Road, Honolulu, HI 96822, USA. osterloo@higp.hawaii.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18356522" target="_blank"〉PubMed〈/a〉
    Keywords: Chemical Precipitation ; *Chlorides ; Extraterrestrial Environment ; *Mars ; Time ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-09-18
    Description: Using data from the Diviner Lunar Radiometer Experiment, we show that four regions of the Moon previously described as "red spots" exhibit mid-infrared spectra best explained by quartz, silica-rich glass, or alkali feldspar. These lithologies are consistent with evolved rocks similar to lunar granites in the Apollo samples. The spectral character of these spots is distinct from surrounding mare and highlands material and from regions composed of pure plagioclase feldspar. The variety of landforms associated with the silicic spectral character suggests that both extrusive and intrusive silicic magmatism occurred on the Moon. Basaltic underplating is the preferred mechanism for silicic magma generation, leading to the formation of extrusive landforms. This mechanism or silicate liquid immiscibility could lead to the formation of intrusive bodies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Glotch, Timothy D -- Lucey, Paul G -- Bandfield, Joshua L -- Greenhagen, Benjamin T -- Thomas, Ian R -- Elphic, Richard C -- Bowles, Neil -- Wyatt, Michael B -- Allen, Carlton C -- Donaldson Hanna, Kerri -- Paige, David A -- New York, N.Y. -- Science. 2010 Sep 17;329(5998):1510-3. doi: 10.1126/science.1192148.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geosciences, Stony Brook University, Stony Brook, NY, USA. tglotch@notes.cc.sunysb.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20847267" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-09-18
    Description: We obtained direct global measurements of the lunar surface using multispectral thermal emission mapping with the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment. Most lunar terrains have spectral signatures that are consistent with known lunar anorthosite and basalt compositions. However, the data have also revealed the presence of highly evolved, silica-rich lunar soils in kilometer-scale and larger exposures, expanded the compositional range of the anorthosites that dominate the lunar crust, and shown that pristine lunar mantle is not exposed at the lunar surface at the kilometer scale. Together, these observations provide compelling evidence that the Moon is a complex body that has experienced a diverse set of igneous processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Greenhagen, Benjamin T -- Lucey, Paul G -- Wyatt, Michael B -- Glotch, Timothy D -- Allen, Carlton C -- Arnold, Jessica A -- Bandfield, Joshua L -- Bowles, Neil E -- Donaldson Hanna, Kerri L -- Hayne, Paul O -- Song, Eugenie -- Thomas, Ian R -- Paige, David A -- New York, N.Y. -- Science. 2010 Sep 17;329(5998):1507-9. doi: 10.1126/science.1192196.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA. benjamin.t.greenhagen@jpl.nasa.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20847266" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-08-07
    Description: The Miniature Thermal Emission Spectrometer (Mini-TES) on Spirit has studied the mineralogy and thermophysical properties at Gusev crater. Undisturbed soil spectra show evidence for minor carbonates and bound water. Rocks are olivinerich basalts with varying degrees of dust and other coatings. Dark-toned soils observed on disturbed surfaces may be derived from rocks and have derived mineralogy (+/-5 to 10%) of 45% pyroxene (20% Ca-rich pyroxene and 25% pigeonite), 40% sodic to intermediate plagioclase, and 15% olivine (forsterite 45% +/-5 to 10). Two spectrally distinct coatings are observed on rocks, a possible indicator of the interaction of water, rock, and airfall dust. Diurnal temperature data indicate particle sizes from 40 to 80 microm in hollows to approximately 0.5 to 3 mm in soils.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Christensen, P R -- Ruff, S W -- Fergason, R L -- Knudson, A T -- Anwar, S -- Arvidson, R E -- Bandfield, J L -- Blaney, D L -- Budney, C -- Calvin, W M -- Glotch, T D -- Golombek, M P -- Gorelick, N -- Graff, T G -- Hamilton, V E -- Hayes, A -- Johnson, J R -- McSween, H Y Jr -- Mehall, G L -- Mehall, L K -- Moersch, J E -- Morris, R V -- Rogers, A D -- Smith, M D -- Squyres, S W -- Wolff, M J -- Wyatt, M B -- New York, N.Y. -- Science. 2004 Aug 6;305(5685):837-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geological Sciences, Arizona State University, Tempe, AZ 85287, USA. phil.christensen@asu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15297667" target="_blank"〉PubMed〈/a〉
    Keywords: Carbonates ; Geologic Sediments ; Interferometry ; Iron Compounds ; Magnesium Compounds ; *Mars ; *Minerals ; Oxides ; Silicates ; Spectrum Analysis ; Temperature ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2003-06-07
    Description: The Thermal Emission Imaging System (THEMIS) on Mars Odyssey has produced infrared to visible wavelength images of the martian surface that show lithologically distinct layers with variable thickness, implying temporal changes in the processes or environments during or after their formation. Kilometer-scale exposures of bedrock are observed; elsewhere airfall dust completely mantles the surface over thousands of square kilometers. Mars has compositional variations at 100-meter scales, for example, an exposure of olivine-rich basalt in the walls of Ganges Chasma. Thermally distinct ejecta facies occur around some craters with variations associated with crater age. Polar observations have identified temporal patches of water frost in the north polar cap. No thermal signatures associated with endogenic heat sources have been identified.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Christensen, Philip R -- Bandfield, Joshua L -- Bell, James F 3rd -- Gorelick, Noel -- Hamilton, Victoria E -- Ivanov, Anton -- Jakosky, Bruce M -- Kieffer, Hugh H -- Lane, Melissa D -- Malin, Michael C -- McConnochie, Timothy -- McEwen, Alfred S -- McSween, Harry Y Jr -- Mehall, Greg L -- Moersch, Jeffery E -- Nealson, Kenneth H -- Rice, James W Jr -- Richardson, Mark I -- Ruff, Steven W -- Smith, Michael D -- Titus, Timothy N -- Wyatt, Michael B -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2056-61. Epub 2003 Jun 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geological Sciences, Arizona State University, Tempe, AZ 85287-6305, USA. phil.christensen@asu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12791998" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon Dioxide ; Extraterrestrial Environment ; Geologic Sediments ; Geological Phenomena ; Geology ; *Mars ; Seasons ; Temperature ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2003-08-23
    Description: Thermal infrared spectra of the martian surface indicate the presence of small concentrations (approximately 2 to 5 weight %) of carbonates, specifically dominated by magnesite (MgCO3). The carbonates are widely distributed in the martian dust, and there is no indication of a concentrated source. The presence of small concentrations of carbonate minerals in the surface dust and in martian meteorites can sequester several bars of atmospheric carbon dioxide and may have been an important sink for a thicker carbon dioxide atmosphere in the martian past.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bandfield, Joshua L -- Glotch, Timothy D -- Christensen, Philip R -- New York, N.Y. -- Science. 2003 Aug 22;301(5636):1084-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geological Sciences, Arizona State University, Tempe, AZ 85287-6305, USA. joshband@asu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12934004" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Atmospheric Pressure ; Carbon Dioxide ; Carbonates/*analysis ; Extraterrestrial Environment ; Geologic Sediments ; Magnesium/*analysis ; *Mars ; Meteoroids ; Minerals/*analysis ; Particle Size ; Silicates/analysis ; Spectrophotometry, Infrared ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-12-04
    Description: The Miniature Thermal Emission Spectrometer (Mini-TES) on Opportunity investigated the mineral abundances and compositions of outcrops, rocks, and soils at Meridiani Planum. Coarse crystalline hematite and olivine-rich basaltic sands were observed as predicted from orbital TES spectroscopy. Outcrops of aqueous origin are composed of 15 to 35% by volume magnesium and calcium sulfates [a high-silica component modeled as a combination of glass, feldspar, and sheet silicates (approximately 20 to 30%)], and hematite; only minor jarosite is identified in Mini-TES spectra. Mini-TES spectra show only a hematite signature in the millimeter-sized spherules. Basaltic materials have more plagioclase than pyroxene, contain olivine, and are similar in inferred mineral composition to basalt mapped from orbit. Bounce rock is dominated by clinopyroxene and is close in inferred mineral composition to the basaltic martian meteorites. Bright wind streak material matches global dust. Waterlain rocks covered by unaltered basaltic sands suggest a change from an aqueous environment to one dominated by physical weathering.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Christensen, P R -- Wyatt, M B -- Glotch, T D -- Rogers, A D -- Anwar, S -- Arvidson, R E -- Bandfield, J L -- Blaney, D L -- Budney, C -- Calvin, W M -- Fallacaro, A -- Fergason, R L -- Gorelick, N -- Graff, T G -- Hamilton, V E -- Hayes, A G -- Johnson, J R -- Knudson, A T -- McSween, H Y Jr -- Mehall, G L -- Mehall, L K -- Moersch, J E -- Morris, R V -- Smith, M D -- Squyres, S W -- Ruff, S W -- Wolff, M J -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1733-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geological Sciences, Arizona State University, Tempe, AZ 85287, USA. phil.christensen@asu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576609" target="_blank"〉PubMed〈/a〉
    Keywords: Calcium Sulfate ; Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; Iron Compounds ; Magnesium Compounds ; Magnesium Sulfate ; *Mars ; *Minerals ; Silicates ; Spacecraft ; Sulfates ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2003-10-25
    Description: We have detected a 30,000-square-kilometer area rich in olivine in the Nili Fossae region of Mars. Nili Fossae has been interpreted as a complex of grabens and fractures related to the formation of the Isidis impact basin. We propose that post-impact faulting of this area has exposed subsurface layers rich in olivine. Linear mixture analysis of Thermal Emission Spectrometer spectra shows surface exposures of 30% olivine, where the composition of the olivine ranges from Fo30 to Fo70.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoefen, Todd M -- Clark, Roger N -- Bandfield, Joshua L -- Smith, Michael D -- Pearl, John C -- Christensen, Philip R -- New York, N.Y. -- Science. 2003 Oct 24;302(5645):627-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Geological Survey, Denver, CO 80225, USA. thoefen@usgs.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14576430" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: Abstract Directional emissivity (DE) describes how the emissivity of an isothermal surface changes with viewing angle across thermal infrared wavelengths. The Oxford Space Environment Goniometer (OSEG) is a novel instrument that has been specifically designed to measure the DE of regolith materials derived from planetary surfaces. The DE of Nextel high‐emissivity black paint was previously measured by the OSEG and showed that the measured emissivity decreases with increasing emission angle, from an emissivity of 0.97 ± 0.01 at 0° emission angle to an emissivity of 0.89 ± 0.01 at 71° emission angle. The Nextel target measured was isothermal (〈0.1 K surface temperature variation), and the observed change in emissivity was due to Fresnel‐related effects and was not due to nonisothermal effects. Here we apply several increasingly complex modeling techniques to model the measured DE of Nextel black paint. The modeling techniques used here include the Hapke DE model, the Fresnel equations, a multiple slope Fresnel model, and a Monte Carlo ray tracing model. It was found that only the Monte Carlo ray tracing model could accurately fit the OSEG measured Nextel data. We show that this is because the Monte Carlo ray tracing model is the only model that fully accounts for the surface roughness of the Nextel surface by including multiple scattering effects.
    Print ISSN: 2169-9097
    Electronic ISSN: 2169-9100
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...