ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (98)
  • Signal Transduction  (58)
  • Cells, Cultured  (49)
  • American Association for the Advancement of Science (AAAS)  (98)
  • American Chemical Society
  • American Institute of Physics (AIP)
  • Oxford University Press
  • Wiley
  • 1995-1999  (87)
  • 1980-1984  (11)
  • 1960-1964
  • 1999  (53)
  • 1997  (34)
  • 1981  (11)
Collection
  • Articles  (98)
Publisher
  • American Association for the Advancement of Science (AAAS)  (98)
  • American Chemical Society
  • American Institute of Physics (AIP)
  • Oxford University Press
  • Wiley
Years
  • 1995-1999  (87)
  • 1980-1984  (11)
  • 1960-1964
Year
  • 1
    Publication Date: 1999-06-12
    Description: To monitor changes in alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor distribution in living neurons, the AMPA receptor subunit GluR1 was tagged with green fluorescent protein (GFP). This protein (GluR1-GFP) was functional and was transiently expressed in hippocampal CA1 neurons. In dendrites visualized with two-photon laser scanning microscopy or electron microscopy, most of the GluR1-GFP was intracellular, mimicking endogenous GluR1 distribution. Tetanic synaptic stimulation induced a rapid delivery of tagged receptors into dendritic spines as well as clusters in dendrites. These postsynaptic trafficking events required synaptic N-methyl-D-aspartate (NMDA) receptor activation and may contribute to the enhanced AMPA receptor-mediatedtransmission observed during long-term potentiation and activity-dependent synaptic maturation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, S H -- Hayashi, Y -- Petralia, R S -- Zaman, S H -- Wenthold, R J -- Svoboda, K -- Malinow, R -- New York, N.Y. -- Science. 1999 Jun 11;284(5421):1811-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10364548" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Dendrites/*metabolism/ultrastructure ; Electric Stimulation ; Hippocampus/cytology/physiology ; Humans ; Long-Term Potentiation ; *Neuronal Plasticity ; Neurons/*physiology ; Organ Culture Techniques ; Rats ; Receptor Aggregation ; Receptors, AMPA/*metabolism ; Receptors, N-Methyl-D-Aspartate/*physiology ; Recombinant Fusion Proteins/metabolism ; Synapses/metabolism/*physiology ; Synaptic Transmission ; Tetany
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-12-03
    Description: Familial hemophagocytic lymphohistiocytosis (FHL) is a rare, rapidly fatal, autosomal recessive immune disorder characterized by uncontrolled activation of T cells and macrophages and overproduction of inflammatory cytokines. Linkage analyses indicate that FHL is genetically heterogeneous and linked to 9q21.3-22, 10q21-22, or another as yet undefined locus. Sequencing of the coding regions of the perforin gene of eight unrelated 10q21-22-linked FHL patients revealed homozygous nonsense mutations in four patients and missense mutations in the other four patients. Cultured lymphocytes from patients had defective cytotoxic activity, and immunostaining revealed little or no perforin in the granules. Thus, defects in perforin are responsible for 10q21-22-linked FHL. Perforin-based effector systems are, therefore, involved not only in the lysis of abnormal cells but also in the down-regulation of cellular immune activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stepp, S E -- Dufourcq-Lagelouse, R -- Le Deist, F -- Bhawan, S -- Certain, S -- Mathew, P A -- Henter, J I -- Bennett, M -- Fischer, A -- de Saint Basile, G -- Kumar, V -- New York, N.Y. -- Science. 1999 Dec 3;286(5446):1957-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and the Graduate Program in Immunology, University of Texas Southwestern Medical School, Dallas, TX 75235, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10583959" target="_blank"〉PubMed〈/a〉
    Keywords: Antigen-Presenting Cells/immunology ; Cell Death ; Cell Line ; Cells, Cultured ; Chromosome Mapping ; Chromosomes, Human, Pair 10/*genetics ; Codon, Terminator ; Cytoplasmic Granules/chemistry ; Cytotoxicity, Immunologic ; Frameshift Mutation ; Genetic Linkage ; Granzymes ; Heterozygote ; Histiocytosis, Non-Langerhans-Cell/*genetics/immunology ; Humans ; Lymphocyte Activation ; Membrane Glycoproteins/analysis/*genetics/physiology ; Mutation, Missense ; Perforin ; Point Mutation ; Pore Forming Cytotoxic Proteins ; Serine Endopeptidases/analysis ; T-Lymphocytes, Cytotoxic/chemistry/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-07-31
    Description: The generation of cell-mediated immunity against many infectious pathogens involves the production of interleukin-12 (IL-12), a key signal of the innate immune system. Yet, for many pathogens, the molecules that induce IL-12 production by macrophages and the mechanisms by which they do so remain undefined. Here it is shown that microbial lipoproteins are potent stimulators of IL-12 production by human macrophages, and that induction is mediated by Toll-like receptors (TLRs). Several lipoproteins stimulated TLR-dependent transcription of inducible nitric oxide synthase and the production of nitric oxide, a powerful microbicidal pathway. Activation of TLRs by microbial lipoproteins may initiate innate defense mechanisms against infectious pathogens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brightbill, H D -- Libraty, D H -- Krutzik, S R -- Yang, R B -- Belisle, J T -- Bleharski, J R -- Maitland, M -- Norgard, M V -- Plevy, S E -- Smale, S T -- Brennan, P J -- Bloom, B R -- Godowski, P J -- Modlin, R L -- New York, N.Y. -- Science. 1999 Jul 30;285(5428):732-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California Los Angeles School of Medicine, Los Anges, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10426995" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Bacterial/chemistry/*immunology/metabolism ; Cell Line ; *Drosophila Proteins ; Gene Expression Regulation ; Humans ; Interleukin-12/*biosynthesis/genetics ; Lipopolysaccharides/immunology ; Lipoproteins/chemistry/*immunology/metabolism ; Macrophages/*immunology/metabolism ; Membrane Glycoproteins/*metabolism ; Mice ; Monocytes/*immunology/metabolism ; Mycobacterium tuberculosis/*immunology ; NF-kappa B/biosynthesis ; Nitric Oxide Synthase/genetics ; Nitric Oxide Synthase Type II ; Promoter Regions, Genetic ; Receptors, Cell Surface/*metabolism ; Signal Transduction ; Toll-Like Receptors ; Transcription, Genetic ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-06-26
    Description: The p160 family of coactivators, SRC-1, GRIP1/TIF2, and p/CIP, mediate transcriptional activation by nuclear hormone receptors. Coactivator-associated arginine methyltransferase 1 (CARM1), a previously unidentified protein that binds to the carboxyl-terminal region of p160 coactivators, enhanced transcriptional activation by nuclear receptors, but only when GRIP1 or SRC-1a was coexpressed. Thus, CARM1 functions as a secondary coactivator through its association with p160 coactivators. CARM1 can methylate histone H3 in vitro, and a mutation in the putative S-adenosylmethionine binding domain of CARM1 substantially reduced both methyltransferase and coactivator activities. Thus, coactivator-mediated methylation of proteins in the transcription machinery may contribute to transcriptional regulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, D -- Ma, H -- Hong, H -- Koh, S S -- Huang, S M -- Schurter, B T -- Aswad, D W -- Stallcup, M R -- AG00093/AG/NIA NIH HHS/ -- DK43093/DK/NIDDK NIH HHS/ -- NS17269/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jun 25;284(5423):2174-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology HMR 301, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10381882" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Histone Acetyltransferases ; Histones/metabolism ; Methylation ; Mice ; Molecular Sequence Data ; Mutation ; Nuclear Receptor Coactivator 1 ; Nuclear Receptor Coactivator 2 ; Nuclear Receptor Coactivator 3 ; Protein-Arginine N-Methyltransferases/chemistry/genetics/*metabolism ; Receptors, Androgen/metabolism ; Receptors, Estrogen/metabolism ; Receptors, Thyroid Hormone/metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Trans-Activators/*metabolism ; Transcription Factors/metabolism ; *Transcriptional Activation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1999-07-10
    Description: The tumor necrosis factor (TNF) superfamily of cytokines includes both soluble and membrane-bound proteins that regulate immune responses. A member of the human TNF family, BLyS (B lymphocyte stimulator), was identified that induced B cell proliferation and immunoglobulin secretion. BLyS expression on human monocytes could be up-regulated by interferon-gamma. Soluble BLyS functioned as a potent B cell growth factor in costimulation assays. Administration of soluble recombinant BLyS to mice disrupted splenic B and T cell zones and resulted in elevated serum immunoglobulin concentrations. The B cell tropism of BLyS is consistent with its receptor expression on B-lineage cells. The biological profile of BLyS suggests it is involved in monocyte-driven B cell activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moore, P A -- Belvedere, O -- Orr, A -- Pieri, K -- LaFleur, D W -- Feng, P -- Soppet, D -- Charters, M -- Gentz, R -- Parmelee, D -- Li, Y -- Galperina, O -- Giri, J -- Roschke, V -- Nardelli, B -- Carrell, J -- Sosnovtseva, S -- Greenfield, W -- Ruben, S M -- Olsen, H S -- Fikes, J -- Hilbert, D M -- New York, N.Y. -- Science. 1999 Jul 9;285(5425):260-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Genome Sciences, 9410 Key West Avenue, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10398604" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; B-Cell Activating Factor ; B-Cell Activation Factor Receptor ; B-Lymphocyte Subsets/immunology ; B-Lymphocytes/*immunology ; Cell Line ; Cells, Cultured ; Humans ; Immunoglobulins/blood ; Interferon-gamma/pharmacology ; *Lymphocyte Activation ; Membrane Proteins/chemistry/genetics/pharmacology/*physiology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Monocytes/*immunology ; Receptors, Cytokine/metabolism ; Receptors, Tumor Necrosis Factor/metabolism ; Recombinant Proteins/pharmacology ; Sequence Alignment ; Species Specificity ; Tumor Necrosis Factor-alpha/chemistry/genetics/pharmacology/*physiology ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1997-07-04
    Description: Angiogenesis is thought to depend on a precise balance of positive and negative regulation. Angiopoietin-1 (Ang1) is an angiogenic factor that signals through the endothelial cell-specific Tie2 receptor tyrosine kinase. Like vascular endothelial growth factor, Ang1 is essential for normal vascular development in the mouse. An Ang1 relative, termed angiopoietin-2 (Ang2), was identified by homology screening and shown to be a naturally occurring antagonist for Ang1 and Tie2. Transgenic overexpression of Ang2 disrupts blood vessel formation in the mouse embryo. In adult mice and humans, Ang2 is expressed only at sites of vascular remodeling. Natural antagonists for vertebrate receptor tyrosine kinases are atypical; thus, the discovery of a negative regulator acting on Tie2 emphasizes the need for exquisite regulation of this angiogenic receptor system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maisonpierre, P C -- Suri, C -- Jones, P F -- Bartunkova, S -- Wiegand, S J -- Radziejewski, C -- Compton, D -- McClain, J -- Aldrich, T H -- Papadopoulos, N -- Daly, T J -- Davis, S -- Sato, T N -- Yancopoulos, G D -- New York, N.Y. -- Science. 1997 Jul 4;277(5322):55-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9204896" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Angiopoietin-1 ; Angiopoietin-2 ; Animals ; Blood Vessels/embryology/*metabolism ; Cells, Cultured ; Cloning, Molecular ; Embryo, Mammalian/metabolism ; Endothelial Growth Factors/genetics/metabolism ; Endothelium, Vascular/*cytology/metabolism ; Female ; Humans ; Ligands ; Lymphokines/genetics/metabolism ; Membrane Glycoproteins/antagonists & inhibitors/metabolism ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; *Neovascularization, Physiologic ; Phosphorylation ; Proteins/chemistry/*metabolism ; Rats ; Rats, Sprague-Dawley ; Receptor Protein-Tyrosine Kinases/*antagonists & inhibitors/metabolism ; Receptor, TIE-2 ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1999-06-12
    Description: Interferons (IFNs) are the most important cytokines in antiviral immune responses. "Natural IFN-producing cells" (IPCs) in human blood express CD4 and major histocompatibility complex class II proteins, but have not been isolated and further characterized because of their rarity, rapid apoptosis, and lack of lineage markers. Purified IPCs are here shown to be the CD4(+)CD11c- type 2 dendritic cell precursors (pDC2s), which produce 200 to 1000 times more IFN than other blood cells after microbial challenge. pDC2s are thus an effector cell type of the immune system, critical for antiviral and antitumor immune responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Siegal, F P -- Kadowaki, N -- Shodell, M -- Fitzgerald-Bocarsly, P A -- Shah, K -- Ho, S -- Antonenko, S -- Liu, Y J -- New York, N.Y. -- Science. 1999 Jun 11;284(5421):1835-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Saint Vincents Hospital and Medical Center, New York, NY 10011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10364556" target="_blank"〉PubMed〈/a〉
    Keywords: CD40 Ligand ; Cell Lineage ; Cell Separation ; Cells, Cultured ; Dendritic Cells/cytology/*immunology/ultrastructure ; Humans ; Interferon Type I/*biosynthesis ; Interferon-alpha/*biosynthesis/genetics ; Interferon-beta/biosynthesis/genetics ; Interleukin-3/pharmacology ; Leukocytes, Mononuclear/immunology ; Membrane Glycoproteins/pharmacology ; Organelles/ultrastructure ; RNA, Messenger/genetics/metabolism ; Simplexvirus/immunology ; Stem Cells/cytology/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1999-05-21
    Description: Bile acids regulate the transcription of genes that control cholesterol homeostasis through molecular mechanisms that are poorly understood. Physiological concentrations of free and conjugated chenodeoxycholic acid, lithocholic acid, and deoxycholic acid activated the farnesoid X receptor (FXR; NR1H4), an orphan nuclear receptor. As ligands, these bile acids and their conjugates modulated interaction of FXR with a peptide derived from steroid receptor coactivator 1. These results provide evidence for a nuclear bile acid signaling pathway that may regulate cholesterol homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parks, D J -- Blanchard, S G -- Bledsoe, R K -- Chandra, G -- Consler, T G -- Kliewer, S A -- Stimmel, J B -- Willson, T M -- Zavacki, A M -- Moore, D D -- Lehmann, J M -- F32 DK09793/DK/NIDDK NIH HHS/ -- R01 DK53366/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1999 May 21;284(5418):1365-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biochemistry, Glaxo Wellcome Research and Development, Research Triangle Park NC, 27709, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10334993" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bile Acids and Salts/chemistry/*metabolism/pharmacology ; Carrier Proteins/metabolism ; Cell Line ; Chenodeoxycholic Acid/*metabolism/pharmacology ; Cholesterol/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Deoxycholic Acid/metabolism/pharmacology ; Histone Acetyltransferases ; Homeostasis ; Humans ; Ligands ; Lithocholic Acid/metabolism/pharmacology ; Mice ; Nuclear Receptor Coactivator 1 ; *Organic Anion Transporters, Sodium-Dependent ; Protein Conformation ; Receptors, Cytoplasmic and Nuclear/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Structure-Activity Relationship ; *Symporters ; Transcription Factors/chemistry/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1999-10-09
    Description: Ubiquitination of receptor protein-tyrosine kinases (RPTKs) terminates signaling by marking active receptors for degradation. c-Cbl, an adapter protein for RPTKs, positively regulates RPTK ubiquitination in a manner dependent on its variant SRC homology 2 (SH2) and RING finger domains. Ubiquitin-protein ligases (or E3s) are the components of ubiquitination pathways that recognize target substrates and promote their ligation to ubiquitin. The c-Cbl protein acted as an E3 that can recognize tyrosine-phosphorylated substrates, such as the activated platelet-derived growth factor receptor, through its SH2 domain and that recruits and allosterically activates an E2 ubiquitin-conjugating enzyme through its RING domain. These results reveal an SH2-containing protein that functions as a ubiquitin-protein ligase and thus provide a distinct mechanism for substrate targeting in the ubiquitin system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joazeiro, C A -- Wing, S S -- Huang, H -- Leverson, J D -- Hunter, T -- Liu, Y C -- CA39780/CA/NCI NIH HHS/ -- R01 DK56558/DK/NIDDK NIH HHS/ -- T32CA09523/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Oct 8;286(5438):309-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Salk Institute, Molecular Biology and Virology Laboratory, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10514377" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Line ; Humans ; Ligases/chemistry/*metabolism ; Molecular Sequence Data ; Phosphotyrosine/metabolism ; Point Mutation ; Proto-Oncogene Proteins/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins c-cbl ; Receptor Protein-Tyrosine Kinases/*metabolism ; Receptor, Platelet-Derived Growth Factor beta/metabolism ; Recombinant Fusion Proteins/metabolism ; Sequence Alignment ; Signal Transduction ; *Ubiquitin-Conjugating Enzymes ; Ubiquitin-Protein Ligases ; Ubiquitins/*metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1999-04-02
    Description: The ability of p53 to promote apoptosis in response to mitogenic oncogenes appears to be critical for its tumor suppressor function. Caspase-9 and its cofactor Apaf-1 were found to be essential downstream components of p53 in Myc-induced apoptosis. Like p53 null cells, mouse embryo fibroblast cells deficient in Apaf-1 and caspase-9, and expressing c-Myc, were resistant to apoptotic stimuli that mimic conditions in developing tumors. Inactivation of Apaf-1 or caspase-9 substituted for p53 loss in promoting the oncogenic transformation of Myc-expressing cells. These results imply a role for Apaf-1 and caspase-9 in controlling tumor development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soengas, M S -- Alarcon, R M -- Yoshida, H -- Giaccia, A J -- Hakem, R -- Mak, T W -- Lowe, S W -- CA13106/CA/NCI NIH HHS/ -- CA64489/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 2;284(5411):156-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10102818" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptotic Protease-Activating Factor 1 ; Caspase 9 ; Caspases/genetics/*physiology ; Cell Division ; Cell Transformation, Neoplastic ; Cells, Cultured ; Cytochrome c Group/metabolism ; Genes, myc ; *Genes, p53 ; Genes, ras ; Mice ; Mice, Nude ; Mitochondria/metabolism ; Mutation ; Neoplasms, Experimental/genetics/metabolism/*pathology ; Proteins/genetics/*physiology ; Tumor Suppressor Protein p53/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...