ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-07-31
    Description: The generation of cell-mediated immunity against many infectious pathogens involves the production of interleukin-12 (IL-12), a key signal of the innate immune system. Yet, for many pathogens, the molecules that induce IL-12 production by macrophages and the mechanisms by which they do so remain undefined. Here it is shown that microbial lipoproteins are potent stimulators of IL-12 production by human macrophages, and that induction is mediated by Toll-like receptors (TLRs). Several lipoproteins stimulated TLR-dependent transcription of inducible nitric oxide synthase and the production of nitric oxide, a powerful microbicidal pathway. Activation of TLRs by microbial lipoproteins may initiate innate defense mechanisms against infectious pathogens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brightbill, H D -- Libraty, D H -- Krutzik, S R -- Yang, R B -- Belisle, J T -- Bleharski, J R -- Maitland, M -- Norgard, M V -- Plevy, S E -- Smale, S T -- Brennan, P J -- Bloom, B R -- Godowski, P J -- Modlin, R L -- New York, N.Y. -- Science. 1999 Jul 30;285(5428):732-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California Los Angeles School of Medicine, Los Anges, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10426995" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Bacterial/chemistry/*immunology/metabolism ; Cell Line ; *Drosophila Proteins ; Gene Expression Regulation ; Humans ; Interleukin-12/*biosynthesis/genetics ; Lipopolysaccharides/immunology ; Lipoproteins/chemistry/*immunology/metabolism ; Macrophages/*immunology/metabolism ; Membrane Glycoproteins/*metabolism ; Mice ; Monocytes/*immunology/metabolism ; Mycobacterium tuberculosis/*immunology ; NF-kappa B/biosynthesis ; Nitric Oxide Synthase/genetics ; Nitric Oxide Synthase Type II ; Promoter Regions, Genetic ; Receptors, Cell Surface/*metabolism ; Signal Transduction ; Toll-Like Receptors ; Transcription, Genetic ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-02-27
    Description: The mammalian innate immune system retains from Drosophila a family of homologous Toll-like receptors (TLRs) that mediate responses to microbial ligands. Here, we show that TLR2 activation leads to killing of intracellular Mycobacterium tuberculosis in both mouse and human macrophages, through distinct mechanisms. In mouse macrophages, bacterial lipoprotein activation of TLR2 leads to a nitric oxide-dependent killing of intracellular tubercle bacilli, but in human monocytes and alveolar macrophages, this pathway was nitric oxide-independent. Thus, mammalian TLRs respond (as Drosophila Toll receptors do) to microbial ligands and also have the ability to activate antimicrobial effector pathways at the site of infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thoma-Uszynski, S -- Stenger, S -- Takeuchi, O -- Ochoa, M T -- Engele, M -- Sieling, P A -- Barnes, P F -- Rollinghoff, M -- Bolcskei, P L -- Wagner, M -- Akira, S -- Norgard, M V -- Belisle, J T -- Godowski, P J -- Bloom, B R -- Modlin, R L -- AI 07118/AI/NIAID NIH HHS/ -- AI 22553/AI/NIAID NIH HHS/ -- AI 47868/AI/NIAID NIH HHS/ -- AR 40312/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Feb 23;291(5508):1544-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Dermatology, Department of Microbiology and Immunology and Molecular Biology Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11222859" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/immunology ; Cell Line ; Cells, Cultured ; *Drosophila Proteins ; Humans ; Interferon-gamma/immunology/pharmacology ; Ligands ; Lipoproteins/*immunology ; Macrophage Activation ; Macrophages/immunology/metabolism/*microbiology ; Macrophages, Alveolar/immunology/metabolism/microbiology ; Macrophages, Peritoneal/immunology/metabolism/microbiology ; Membrane Glycoproteins/*metabolism ; Mice ; Monocytes/immunology/metabolism/*microbiology ; Mycobacterium tuberculosis/growth & development/*immunology ; Nitric Oxide/*metabolism ; Nitric Oxide Synthase/antagonists & inhibitors/metabolism ; Nitric Oxide Synthase Type II ; Receptors, Cell Surface/*metabolism ; Signal Transduction ; Toll-Like Receptor 2 ; Toll-Like Receptors ; Tumor Necrosis Factor-alpha/immunology/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2001-10-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Modlin, R L -- Bloom, B R -- New York, N.Y. -- Science. 2001 Oct 26;294(5543):799-801.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Dermatology and Department of Microbiology and Immunology, UCLA School of Medicine, Los Angeles, CA 90095, USA. rmodlin@mednet.ucla.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11679655" target="_blank"〉PubMed〈/a〉
    Keywords: Candida albicans/immunology ; Cells, Cultured ; Dendritic Cells/*immunology/*metabolism ; Escherichia coli/immunology ; *Gene Expression Profiling ; *Gene Expression Regulation ; Genomics ; Humans ; Immunity, Innate ; Influenza A virus/immunology ; Ligands ; Lipopolysaccharides/immunology ; Mannans/immunology ; Oligonucleotide Array Sequence Analysis ; RNA, Double-Stranded/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1998-10-02
    Description: Cytolytic T lymphocytes (CTLs) kill intracellular pathogens by a granule-dependent mechanism. Granulysin, a protein found in granules of CTLs, reduced the viability of a broad spectrum of pathogenic bacteria, fungi, and parasites in vitro. Granulysin directly killed extracellular Mycobacterium tuberculosis, altering the membrane integrity of the bacillus, and, in combination with perforin, decreased the viability of intracellular M. tuberculosis. The ability of CTLs to kill intracellular M. tuberculosis was dependent on the presence of granulysin in cytotoxic granules, defining a mechanism by which T cells directly contribute to immunity against intracellular pathogens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stenger, S -- Hanson, D A -- Teitelbaum, R -- Dewan, P -- Niazi, K R -- Froelich, C J -- Ganz, T -- Thoma-Uszynski, S -- Melian, A -- Bogdan, C -- Porcelli, S A -- Bloom, B R -- Krensky, A M -- Modlin, R L -- New York, N.Y. -- Science. 1998 Oct 2;282(5386):121-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, UCLA School of Medicine, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9756476" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Differentiation, T-Lymphocyte/analysis/*immunology/pharmacology ; Cell Line ; Cell Membrane/ultrastructure ; Cells, Cultured ; Cytoplasmic Granules/immunology ; *Cytotoxicity, Immunologic ; Humans ; Macrophages/immunology/microbiology ; Membrane Glycoproteins/immunology/pharmacology ; Microscopy, Confocal ; Microscopy, Electron, Scanning ; Mycobacterium tuberculosis/*immunology/physiology/ultrastructure ; Perforin ; Pore Forming Cytotoxic Proteins ; Recombinant Proteins/pharmacology ; T-Lymphocytes, Cytotoxic/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-11-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Modlin, R L -- Bloom, B R -- New York, N.Y. -- Science. 2001 Nov 9;294(5545):1279.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11702789" target="_blank"〉PubMed〈/a〉
    Keywords: *Bioterrorism ; Gene Expression ; Humans ; Infection/*diagnosis ; *Oligonucleotide Array Sequence Analysis ; Sensitivity and Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1991-10-11
    Description: Functional subsets of human T cells were delineated by analyzing patterns of lymphokines produced by clones from individuals with leprosy and by T cell clones of known function. CD4 clones from individuals with strong cell-mediated immunity produced predominantly interferon-gamma, whereas those clones that enhanced antibody formation produced interleukin-4. CD8 cytotoxic T cells secreted interferon-gamma. Interleukin-4 was produced by CD8 T suppressor clones from immunologically unresponsive individuals with leprosy and was found to be necessary for suppression in vitro. Both the classic reciprocal relation between antibody formation and cell-mediated immunity and resistance or susceptibility to certain infections may be explained by T cell subsets differing in patterns of lymphokine production.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Salgame, P -- Abrams, J S -- Clayberger, C -- Goldstein, H -- Convit, J -- Modlin, R L -- Bloom, B R -- AI-07118/AI/NIAID NIH HHS/ -- AI-20111/AI/NIAID NIH HHS/ -- AI-26491/AI/NIAID NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1991 Oct 11;254(5029):279-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Albert Einstein College of Medicine, New York, NY 10461.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1681588" target="_blank"〉PubMed〈/a〉
    Keywords: Antibody Formation ; *Antigens, CD4 ; *Antigens, CD8 ; CD4-Positive T-Lymphocytes/secretion ; Clone Cells ; Humans ; Interferon-gamma/secretion ; Interleukin-4/secretion ; Interleukins/secretion ; Leprosy/immunology ; Lymphokines/*secretion ; T-Lymphocyte Subsets/*secretion ; T-Lymphocytes/secretion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1991-10-11
    Description: The immunological mechanisms required to engender resistance have been defined in few infectious diseases of man, and the role of specific cytokines is unclear. Leprosy presents clinically as a spectrum in which resistance correlates with cell-mediated immunity to the pathogen. To assess in situ cytokine patterns, messenger RNA extracted from leprosy skin biopsy specimens was amplified by the polymerase chain reaction with 14 cytokine-specific primers. In lesions of the resistant form of the disease, messenger RNAs coding for interleukin-2 and interferon-gamma were most evident. In contrast, messenger RNAs for interleukin-4, interleukin-5, and interleukin-10 predominated in the multibacillary form. Thus, resistance and susceptibility were correlated with distinct patterns of cytokine production.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamamura, M -- Uyemura, K -- Deans, R J -- Weinberg, K -- Rea, T H -- Bloom, B R -- Modlin, R L -- AI 07118/AI/NIAID NIH HHS/ -- AI 22553/AI/NIAID NIH HHS/ -- AR 40312/AR/NIAMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1991 Oct 11;254(5029):277-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Dermatology, UCLA School of Medicine 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1925582" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cytokines/genetics/*physiology ; Humans ; Immunity, Innate ; Interferon-gamma/physiology ; Interleukin-10/physiology ; Interleukin-2/physiology ; Interleukin-4/physiology ; Interleukin-5/physiology ; Leprosy/*immunology ; Molecular Sequence Data ; Polymerase Chain Reaction ; RNA, Messenger/genetics ; Skin/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1997-10-10
    Description: The human CD1b protein presents lipid antigens to T cells, but the molecular mechanism is unknown. Identification of mycobacterial glucose monomycolate (GMM) as a CD1b-presented glycolipid allowed determination of the structural requirements for its recognition by T cells. Presentation of GMM to CD1b-restricted T cells was not affected by substantial variations in its lipid tails, but was extremely sensitive to chemical alterations in its carbohydrate or other polar substituents. These findings support the view that the recently demonstrated hydrophobic CD1 groove binds the acyl chains of lipid antigens relatively nonspecifically, thereby positioning the hydrophilic components for highly specific interactions with T cell antigen receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moody, D B -- Reinhold, B B -- Guy, M R -- Beckman, E M -- Frederique, D E -- Furlong, S T -- Ye, S -- Reinhold, V N -- Sieling, P A -- Modlin, R L -- Besra, G S -- Porcelli, S A -- AR01988/AR/NIAMS NIH HHS/ -- GM54045/GM/NIGMS NIH HHS/ -- RR10888/RR/NCRR NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1997 Oct 10;278(5336):283-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lymphocyte Biology Section, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9323206" target="_blank"〉PubMed〈/a〉
    Keywords: *Antigen Presentation ; Antigens, Bacterial/immunology ; Antigens, CD1/chemistry/*immunology/metabolism ; Epitopes/immunology ; Glycolipids/chemistry/*immunology/metabolism ; Glycosylation ; Humans ; Ligands ; Mass Spectrometry ; Mycobacterium/immunology ; Mycolic Acids/chemistry/immunology ; Receptors, Antigen, T-Cell/immunology/metabolism ; T-Lymphocyte Subsets/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1997-06-13
    Description: In analyzing mechanisms of protection against intracellular infections, a series of human CD1-restricted T cell lines of two distinct phenotypes were derived. Both CD4(-)CD8(-) (double-negative) T cells and CD8(+) T cells efficiently lysed macrophages infected with Mycobacterium tuberculosis. The cytotoxicity of CD4(-)CD8(-) T cells was mediated by Fas-FasL interaction and had no effect on the viability of the mycobacteria. The CD8(+) T cells lysed infected macrophages by a Fas-independent, granule-dependent mechanism that resulted in killing of bacteria. These data indicate that two phenotypically distinct subsets of human cytolytic T lymphocytes use different mechanisms to kill infected cells and contribute in different ways to host defense against intracellular infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stenger, S -- Mazzaccaro, R J -- Uyemura, K -- Cho, S -- Barnes, P F -- Rosat, J P -- Sette, A -- Brenner, M B -- Porcelli, S A -- Bloom, B R -- Modlin, R L -- New York, N.Y. -- Science. 1997 Jun 13;276(5319):1684-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of California Los Angeles School of Medicine, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9180075" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD1/*immunology ; Antigens, CD95/immunology/metabolism ; Cell Line ; Coculture Techniques ; Colony Count, Microbial ; Cytoplasmic Granules/immunology ; *Cytotoxicity, Immunologic ; Fas Ligand Protein ; Granzymes ; Humans ; Lymphocyte Activation ; Macrophages/*immunology/microbiology ; Membrane Glycoproteins/genetics/immunology/metabolism ; Mycobacterium tuberculosis/growth & development/*immunology ; Perforin ; Phenotype ; Pore Forming Cytotoxic Proteins ; Serine Endopeptidases/metabolism ; Strontium/pharmacology ; T-Lymphocyte Subsets/*immunology ; T-Lymphocytes, Cytotoxic/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-07-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Modlin, Robert L -- Sieling, Peter A -- New York, N.Y. -- Science. 2005 Jul 8;309(5732):252-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Dermatology and Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA. rmodlin@mednet.ucla.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16002604" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigen Presentation ; Antigen-Presenting Cells/*immunology ; Dendritic Cells/immunology ; Genes, T-Cell Receptor ; Histocompatibility Antigens Class II/immunology/metabolism ; Humans ; Immunity, Active ; Immunity, Innate ; Immunologic Memory ; Lymphocyte Activation ; Mice ; Receptors, Antigen, T-Cell, alpha-beta/immunology ; Receptors, Antigen, T-Cell, gamma-delta/*immunology ; T-Lymphocyte Subsets/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...