ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (16)
  • Latest Papers from Table of Contents or Articles in Press  (16)
  • Mutation  (11)
  • Protein Binding  (6)
  • Medicine  (16)
  • Geography
  • Mathematics
Collection
  • Articles  (16)
Source
  • Latest Papers from Table of Contents or Articles in Press  (16)
Topic
  • 1
    Publication Date: 2002-01-05
    Description: The Drosophila melanogaster fourth chromosome, believed to be nonrecombining and invariable, is a classic example of the effect of natural selection in eliminating genetic variation in linked loci. However, in a chromosome-wide assay of nucleotide variation in natural populations, we have observed a high level of polymorphism in a approximately 200-kilobase region and marked levels of polymorphism in several other fragments interspersed with regions of little variation, suggesting different evolutionary histories in different chromosomal domains. Statistical tests of neutral evolution showed that a few haplotypes predominate in the 200-kilobase polymorphic region. Finally, contrary to the expectation of no recombination, we identified six recombination events within the chromosome. Thus, positive Darwinian selection and recombination have affected the evolution of this chromosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Wen -- Thornton, Kevin -- Berry, Andrew -- Long, Manyuan -- New York, N.Y. -- Science. 2002 Jan 4;295(5552):134-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolution, Committee on Genetics, University of Chicago, 1101 East 57 Street, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11778050" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Pairing ; Chromosome Inversion ; Chromosomes/*genetics ; Drosophila Proteins/genetics ; Drosophila melanogaster/*genetics ; Evolution, Molecular ; *Genes, Insect ; *Genetic Variation ; Haplotypes ; Introns ; Linkage Disequilibrium ; Monte Carlo Method ; Mutation ; Nucleotides/genetics ; *Polymorphism, Genetic ; *Recombination, Genetic ; Selection, Genetic ; Sequence Analysis, DNA ; Trans-Activators/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-07-18
    Description: Cell divisions that produce progeny differing in their patterns of gene expression are key to the development of multicellular organisms. In the budding yeast Saccharomyces cerevisiae, mother cells but not daughter cells can switch mating type because they selectively express the HO endonuclease gene. This asymmetry is due to the preferential accumulation of an unstable transcriptional repressor protein, Ash1p, in daughter cell nuclei. Here it is shown that ASH1 messenger RNA (mRNA) preferentially accumulates in daughter cells by a process that is dependent on actin and myosin. A cis-acting element in the 3'-untranslated region of ASH1 mRNA is sufficient to localize a chimeric RNA to daughter cells. These results suggest that localization of mRNA may have been an early property of the eukaryotic lineage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, R M -- Singer, R H -- Meng, X -- Gonzalez, I -- Nasmyth, K -- Jansen, R P -- 7 F32 HD08088-02/HD/NICHD NIH HHS/ -- GM54887/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Jul 18;277(5324):383-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9219698" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/genetics/*physiology ; Cell Cycle ; Cell Nucleus/metabolism ; *DNA-Binding Proteins ; Deoxyribonucleases, Type II Site-Specific/genetics ; Fungal Proteins/genetics ; Genes, Fungal ; Genes, Mating Type, Fungal ; In Situ Hybridization, Fluorescence ; Microtubules/physiology ; Mutation ; *Myosin Heavy Chains ; *Myosin Type V ; Myosins/genetics ; RNA, Fungal/genetics/*metabolism ; RNA, Messenger/genetics/*metabolism ; Repressor Proteins/biosynthesis/*genetics ; Saccharomyces cerevisiae/cytology/genetics/metabolism/*physiology ; *Saccharomyces cerevisiae Proteins ; Transcription Factors/biosynthesis/*genetics ; Transformation, Genetic ; Tropomyosin/genetics/physiology ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-04-03
    Description: Jasmonoyl-isoleucine (JA-Ile) is a plant hormone that regulates a broad array of plant defence and developmental processes. JA-Ile-responsive gene expression is regulated by the transcriptional activator MYC2 that interacts physically with the jasmonate ZIM-domain (JAZ) repressor proteins. On perception of JA-Ile, JAZ proteins are degraded and JA-Ile-dependent gene expression is activated. The molecular mechanisms by which JAZ proteins repress gene expression remain unknown. Here we show that the Arabidopsis JAZ proteins recruit the Groucho/Tup1-type co-repressor TOPLESS (TPL) and TPL-related proteins (TPRs) through a previously uncharacterized adaptor protein, designated Novel Interactor of JAZ (NINJA). NINJA acts as a transcriptional repressor whose activity is mediated by a functional TPL-binding EAR repression motif. Accordingly, both NINJA and TPL proteins function as negative regulators of jasmonate responses. Our results point to TPL proteins as general co-repressors that affect multiple signalling pathways through the interaction with specific adaptor proteins. This new insight reveals how stress-related and growth-related signalling cascades use common molecular mechanisms to regulate gene expression in plants.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849182/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849182/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pauwels, Laurens -- Barbero, Gemma Fernandez -- Geerinck, Jan -- Tilleman, Sofie -- Grunewald, Wim -- Perez, Amparo Cuellar -- Chico, Jose Manuel -- Bossche, Robin Vanden -- Sewell, Jared -- Gil, Eduardo -- Garcia-Casado, Gloria -- Witters, Erwin -- Inze, Dirk -- Long, Jeff A -- De Jaeger, Geert -- Solano, Roberto -- Goossens, Alain -- R01 GM072764/GM/NIGMS NIH HHS/ -- R01 GM072764-06/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Apr 1;464(7289):788-91. doi: 10.1038/nature08854.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, B-9052 Gent, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20360743" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/cytology/*drug effects/*metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Cyclopentanes/antagonists & inhibitors/*pharmacology ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Models, Biological ; Oxylipins/antagonists & inhibitors/*pharmacology ; Plants, Genetically Modified ; Protein Binding ; Repressor Proteins/genetics/*metabolism ; Signal Transduction/*drug effects ; Two-Hybrid System Techniques
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-07-02
    Description: DNA interstrand cross-links (ICLs) are toxic DNA lesions whose repair in S phase of eukaryotic cells is incompletely understood. In Xenopus egg extracts, ICL repair is initiated when two replication forks converge on the lesion. Dual incisions then create a DNA double-strand break (DSB) in one sister chromatid, whereas lesion bypass restores the other sister. We report that the broken sister chromatid is repaired via RAD51-dependent strand invasion into the regenerated sister. Recombination acts downstream of FANCI-FANCD2, yet RAD51 binds ICL-stalled replication forks independently of FANCI-FANCD2 and before DSB formation. Our results elucidate the functional link between the Fanconi anemia pathway and the recombination machinery during ICL repair. In addition, they demonstrate the complete repair of a DSB via homologous recombination in vitro.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4068331/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4068331/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, David T -- Raschle, Markus -- Joukov, Vladimir -- Walter, Johannes C -- GM80676/GM/NIGMS NIH HHS/ -- HL098316/HL/NHLBI NIH HHS/ -- R01 HL098316/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2011 Jul 1;333(6038):84-7. doi: 10.1126/science.1204258.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21719678" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromatids/metabolism ; DNA/*metabolism ; *DNA Breaks, Double-Stranded ; *DNA Repair ; DNA Replication ; Fanconi Anemia Complementation Group D2 Protein/genetics/metabolism ; Fanconi Anemia Complementation Group Proteins/metabolism ; Protein Binding ; Rad51 Recombinase/*metabolism ; Recombinant Proteins/metabolism ; Recombination, Genetic ; Replication Protein A/metabolism ; Xenopus Proteins/*metabolism ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-11-28
    Description: The plasma membrane protein Orai forms the pore of the calcium release-activated calcium (CRAC) channel and generates sustained cytosolic calcium signals when triggered by depletion of calcium from the endoplasmic reticulum. The crystal structure of Orai from Drosophila melanogaster, determined at 3.35 angstrom resolution, reveals that the calcium channel is composed of a hexameric assembly of Orai subunits arranged around a central ion pore. The pore traverses the membrane and extends into the cytosol. A ring of glutamate residues on its extracellular side forms the selectivity filter. A basic region near the intracellular side can bind anions that may stabilize the closed state. The architecture of the channel differs markedly from other ion channels and gives insight into the principles of selective calcium permeation and gating.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695727/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695727/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hou, Xiaowei -- Pedi, Leanne -- Diver, Melinda M -- Long, Stephen B -- GM094273/GM/NIGMS NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 GM094273/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Dec 7;338(6112):1308-13. doi: 10.1126/science.1228757. Epub 2012 Nov 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23180775" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Calcium/*chemistry ; Calcium Channels/*chemistry ; Crystallography, X-Ray ; Drosophila Proteins/agonists/*chemistry ; Glutamic Acid/chemistry ; Membrane Proteins/agonists/*chemistry ; Porosity ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-01-24
    Description: Mammalian sex chromosomes have undergone profound changes since evolving from ancestral autosomes. By examining retroposed genes in the human and mouse genomes, we demonstrate that, during evolution, the mammalian X chromosome has generated and recruited a disproportionately high number of functional retroposed genes, whereas the autosomes experienced lower gene turnover. Most autosomal copies originating from X-linked genes exhibited testis-biased expression. Such export is incompatible with mutational bias and is likely driven by natural selection to attain male germline function. However, the excess recruitment is consistent with a combination of both natural selection and mutational bias.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Emerson, J J -- Kaessmann, Henrik -- Betran, Esther -- Long, Manyuan -- GM-065429-01A1/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jan 23;303(5657):537-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14739461" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Chromosomes, Human/genetics ; Chromosomes, Human, X/*genetics ; Chromosomes, Mammalian/genetics ; Computational Biology ; Dosage Compensation, Genetic ; Female ; Gene Expression Profiling ; Genes, Duplicate ; Genetic Linkage ; Genome ; Genome, Human ; Humans ; Introns ; Male ; Mice ; Monte Carlo Method ; Mutation ; Oligonucleotide Array Sequence Analysis ; Ovary/metabolism ; Pseudogenes/*genetics ; *Recombination, Genetic ; Retroelements/*genetics ; Selection, Genetic ; Sex Characteristics ; Testis/metabolism ; X Chromosome/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2005-06-18
    Description: Rhizobial bacteria enter a symbiotic interaction with legumes, activating diverse responses in roots through the lipochito oligosaccharide signaling molecule Nod factor. Here, we show that NSP2 from Medicago truncatula encodes a GRAS protein essential for Nod-factor signaling. NSP2 functions downstream of Nod-factor-induced calcium spiking and a calcium/calmodulin-dependent protein kinase. We show that NSP2-GFP expressed from a constitutive promoter is localized to the endoplasmic reticulum/nuclear envelope and relocalizes to the nucleus after Nod-factor elicitation. This work provides evidence that a GRAS protein transduces calcium signals in plants and provides a possible regulator of Nod-factor-inducible gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kalo, Peter -- Gleason, Cynthia -- Edwards, Anne -- Marsh, John -- Mitra, Raka M -- Hirsch, Sibylle -- Jakab, Julia -- Sims, Sarah -- Long, Sharon R -- Rogers, Jane -- Kiss, Gyorgy B -- Downie, J Allan -- Oldroyd, Giles E D -- New York, N.Y. -- Science. 2005 Jun 17;308(5729):1786-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Disease and Stress Biology and Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15961668" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Calcium/metabolism ; Calcium Signaling ; Calcium-Calmodulin-Dependent Protein Kinases/genetics/metabolism ; Cell Nucleus/metabolism ; Cloning, Molecular ; Gene Expression Regulation, Plant ; Genes, Plant ; Lipopolysaccharides/*metabolism ; Medicago/genetics/*metabolism/*microbiology ; Molecular Sequence Data ; Mutation ; Oligonucleotide Array Sequence Analysis ; Peas/genetics/metabolism ; Plant Proteins/chemistry/genetics/*metabolism ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Sinorhizobium meliloti/*physiology ; Symbiosis ; Transcription Factors/chemistry/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-10-29
    Description: Pentatricopeptide repeat (PPR) proteins represent a large family of sequence-specific RNA-binding proteins that are involved in multiple aspects of RNA metabolism. PPR proteins, which are found in exceptionally large numbers in the mitochondria and chloroplasts of terrestrial plants, recognize single-stranded RNA (ssRNA) in a modular fashion. The maize chloroplast protein PPR10 binds to two similar RNA sequences from the ATPI-ATPH and PSAJ-RPL33 intergenic regions, referred to as ATPH and PSAJ, respectively. By protecting the target RNA elements from 5' or 3' exonucleases, PPR10 defines the corresponding 5' and 3' messenger RNA termini. Despite rigorous functional characterizations, the structural basis of sequence-specific ssRNA recognition by PPR proteins remains to be elucidated. Here we report the crystal structures of PPR10 in RNA-free and RNA-bound states at resolutions of 2.85 and 2.45 A, respectively. In the absence of RNA binding, the nineteen repeats of PPR10 are assembled into a right-handed superhelical spiral. PPR10 forms an antiparallel, intertwined homodimer and exhibits considerable conformational changes upon binding to its target ssRNA, an 18-nucleotide PSAJ element. Six nucleotides of PSAJ are specifically recognized by six corresponding PPR10 repeats following the predicted code. The molecular basis for the specific and modular recognition of RNA bases A, G and U is revealed. The structural elucidation of RNA recognition by PPR proteins provides an important framework for potential biotechnological applications of PPR proteins in RNA-related research areas.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yin, Ping -- Li, Quanxiu -- Yan, Chuangye -- Liu, Ying -- Liu, Junjie -- Yu, Feng -- Wang, Zheng -- Long, Jiafu -- He, Jianhua -- Wang, Hong-Wei -- Wang, Jiawei -- Zhu, Jian-Kang -- Shi, Yigong -- Yan, Nieng -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Dec 5;504(7478):168-71. doi: 10.1038/nature12651. Epub 2013 Oct 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China [3].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24162847" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; *Models, Molecular ; Plant Proteins/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; RNA/chemistry/*metabolism ; Zea mays/*chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-02-26
    Description: Gram-negative bacteria, such as Escherichia coli, expel toxic chemicals through tripartite efflux pumps that span both the inner and outer membrane. The three parts are an inner membrane, substrate-binding transporter; a membrane fusion protein; and an outer-membrane-anchored channel. The fusion protein connects the transporter to the channel within the periplasmic space. A crystallographic model of this tripartite efflux complex has been unavailable because co-crystallization of the various components of the system has proven to be extremely difficult. We previously described the crystal structures of both the inner membrane transporter CusA and the membrane fusion protein CusB of the CusCBA efflux system of E. coli. Here we report the co-crystal structure of the CusBA efflux complex, showing that the transporter (or pump) CusA, which is present as a trimer, interacts with six CusB protomers and that the periplasmic domain of CusA is involved in these interactions. The six CusB molecules seem to form a continuous channel. The affinity of the CusA and CusB interaction was found to be in the micromolar range. Finally, we have predicted a three-dimensional structure for the trimeric CusC outer membrane channel and developed a model of the tripartite efflux assemblage. This CusC(3)-CusB(6)-CusA(3) model shows a 750-kilodalton efflux complex that spans the entire bacterial cell envelope and exports Cu I and Ag I ions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078058/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078058/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Su, Chih-Chia -- Long, Feng -- Zimmermann, Michael T -- Rajashankar, Kanagalaghatta R -- Jernigan, Robert L -- Yu, Edward W -- R01 GM072014/GM/NIGMS NIH HHS/ -- R01 GM074027/GM/NIGMS NIH HHS/ -- R01 GM074027-05/GM/NIGMS NIH HHS/ -- R01 GM086431/GM/NIGMS NIH HHS/ -- R01 GM086431-01A2/GM/NIGMS NIH HHS/ -- R01GM072014/GM/NIGMS NIH HHS/ -- R01GM074027/GM/NIGMS NIH HHS/ -- R01GM081680/GM/NIGMS NIH HHS/ -- R01GM086431/GM/NIGMS NIH HHS/ -- RR-15301/RR/NCRR NIH HHS/ -- England -- Nature. 2011 Feb 24;470(7335):558-62. doi: 10.1038/nature09743.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21350490" target="_blank"〉PubMed〈/a〉
    Keywords: Copper/metabolism ; Crystallization ; Crystallography, X-Ray ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/metabolism ; Membrane Transport Proteins/*chemistry/metabolism ; Metals, Heavy/*metabolism ; Models, Molecular ; Multiprotein Complexes/*chemistry/metabolism ; Protein Binding ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Silver/metabolism ; Static Electricity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-07-01
    Description: Mathematical models predict that the future of the multidrug-resistant tuberculosis epidemic will depend on the fitness cost of drug resistance. We show that in laboratory-derived mutants of Mycobacterium tuberculosis, rifampin resistance is universally associated with a competitive fitness cost and that this cost is determined by the specific resistance mutation and strain genetic background. In contrast, we demonstrate that prolonged patient treatment can result in multidrug-resistant strains with no fitness defect and that strains with low- or no-cost resistance mutations are also the most frequent among clinical isolates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gagneux, Sebastien -- Long, Clara Davis -- Small, Peter M -- Van, Tran -- Schoolnik, Gary K -- Bohannan, Brendan J M -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2006 Jun 30;312(5782):1944-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA 94305, USA. sgagneux@systemsbiology.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16809538" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Antibiotics, Antitubercular/*pharmacology/therapeutic use ; Bacterial Proteins/genetics ; DNA-Directed RNA Polymerases/genetics ; *Drug Resistance, Multiple, Bacterial ; Humans ; Models, Biological ; Mutation ; Mutation, Missense ; Mycobacterium tuberculosis/*drug effects/genetics/*growth & development ; Rifampin/*pharmacology/therapeutic use ; Tuberculosis, Multidrug-Resistant/drug therapy/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...