ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,222)
  • Wiley-Blackwell
  • Geosciences  (1,222)
Collection
Years
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 903-919 
    ISSN: 0363-9061
    Keywords: hollow cylinders ; diffuse mode bifurcations ; geomaterials ; non-normality ; pressure-sensitivity ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: This paper derives analytically the condition for the onset of diffuse mode bifurcations in thick-walled hollow cylinders with internal radius a, external radius b and length L under axial compression and confining pressure. The thick-walled cylindrical specimens are made of geomaterial characterized by Rudnicki's constitutive model, and the method of solution for the governing equations is the velocity potential approach employed by Chau. Numerical results show that thick-walled cylinders are stronger than thin-walled cylinders against diffuse mode bifurcations, including both buckling, axisymmetric and non-axisymmetric deformations. In contrast to the conclusion for solid cylinders (Chau), no buckling solution is found for γ = mπa / L smaller than about 0·7 under compression for a fixed and finite value of a / b (i.e. no buckling for long and slender hollow cylinders with small a / L and fixed b / a). When 0·7 〈 γ 〈 0·9, buckling is the expected first bifurcation; whereas, when γ 〉 0·9, bulging or barrelling is anticipated. The exact value of γ that excludes buckling and separates the buckling and barrelling phenomena depends on the current values of the constitutive parameters of the solid. Hollow cylinders with higher degree of anisotropy, disobeying normality flow rule, and subjected to confining pressure are more conducive to bifurcations than cylinders made of materials with isotropy, obeying normality, and subjected to no confining pressure. In addition, diffuse mode bifurcations are found possible in the pre-peak regime of the stress-strain curve. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 1001-1020 
    ISSN: 0363-9061
    Keywords: stone-column reinforcement ; homogenisation technique ; elastoplastic analysis ; sub-iteration scheme ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: A numerical model is proposed to analyse elastic as well as elastoplastic behaviour of stone-column reinforced foundations. The stone-columns are assumed to be dispersed within the in situ soil and a homogenization technique is invoked to establish equivalent material properties for in situ soil and stone-column composite. The difficulties encountered in carrying out elastoplastic analyses of composite materials are overcome by adopting a separate yield function for each of the constituent materials and a sub-iteration procedure within an implicit backward Euler stress integration scheme. In the proposed procedure, equilibrium as well as kinematic conditions implied in the homogenization procedure are satisfied for both elastic as well as elastoplastic stress states.The proposed model is implemented in an axi-symmetric finite element code and numerical prediction is made for the behaviour of model circular footings resting on stone-column reinforced foundations. This prediction indicates good agreement with experimental observation. Finally, a new scheme in which the length of stone-column is variable is proposed and its behaviour is examined through a numerical example. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 1-27 
    ISSN: 0363-9061
    Keywords: expansive clay ; hydromechanics ; unsaturated soils ; nuclear waste ; in situ test ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: BACCHUS2 in situ isothermal wetting experiment has been analysed by means of a coupled flow-deformation approach. Backfill material, a mixture of Boom clay powder and high density pellets, has been extensively tested in the laboratory in order to determine its hydraulic and mechanical properties. Parameters of constitutive equations were derived from this experimental data base. Two mechanical constitutive models have been used in the simulation of the ‘in situ’ experiment: a state surface approach and an elastoplastic model. Calculations have shown several features of the hydration process which help to understand the behaviour of expansive clay barriers. Predictions using both models have been compared with each other and with actual measurement records. This has allowed a discussion of the comparative mertis of both approaches and the identification of some critical parameters of backfill behaviour. Overall agreement between calculations and field measurements is encouraging and shows the potential of the methods developed to model the behaviour of engineered clay barriers in the context of nuclear waste disposal. © 1998 by John Wiley & Sons, Ltd.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 29-48 
    ISSN: 0363-9061
    Keywords: hydraulic behaviour ; joint ; mechanics of joint ; joint degradation ; joint elements ; interface mechanics ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Constitutive laws for rock joints should be able to reproduce the fundamental mechanical behaviour of real joints, such as dilation under shear and strain softening due to surface asperity degradation. In this work, we extend the model of Plesha to include hydraulic behaviour. During shearing, the joint can experience dilation, leading to an initial increase in its permeability. Experiments have shown that the rate of increase of the permeability slows down as shearing proceeds, and, at later stages, the permeability could decrease again. The above behaviour is attributed to gouge production. The stress-strain relationship of the joint is formulated by appeal to classical theories of interface plasticity. It is shown that the parameters of the model can be estimated from the Barton-Bandis empirical coefficients; the Joint Roughness Coefficient (JRC) and the Joint Compresive strength (JSC). We further assume that gouge production is also related to the plastic work of the shear stresses, which enables the derivation of a relationship between the permeability of the joint and its mechanical aperture. The model is implemented in a finite element code (FRACON) developed by the authors for the simulation of the coupled thermal-hydraulic-mechanical behaviour of jointed rock masses. Typical laboratory experiments are simulated with the FRACON code in order to illustrate the trends predicted in the proposed model. © 1998 by John Wiley & Sons. Ltd.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 49-71 
    ISSN: 0363-9061
    Keywords: unsaturated soil ; heat transfer ; moisture transfer and stress-strain behaviour ; model and validation ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: This paper focuses attention on the development of a numerical model of the hydro/thermo/mechanical behaviour of unsaturated clay and its consequent verification and validation. The work presented describes on-going collaboration between the Cardiff School of Engineering and Atomic Energy of Canada. The model development, which was carried out at Cardiff, can be described as being based on a mechanistic approach to coupled heat, moisture and air flow. This is then linked to a deformation analysis of the material within a ‘consolidation’ type of model. The whole is solved via the finite element method to yield a computer software code named COMPASS (COde for Modelling PArtly Saturated Soil). Some aspects of verification and validation of the model have been addressed in-house. However, the purpose of current AECL work is to provide an independent, rigorous, structured programme of validation and the paper will also explore the further validation of COMPASS within this context. © 1998 by John Wiley & Sons, Ltd.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 97-132 
    ISSN: 0363-9061
    Keywords: constitutive model ; rate-independent type ; strain response envelope ; granular material ; uniqueness ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: This paper reviews some incrementally non-linear constitutive equations of interpolation type, and proposes a new approach to illustrate the discrepancies between different interpolation models. This approach uses the strain response envelopes, based on experimental data when restricted to triaxial plane, and the Jacobian of the constitutive equations to examine the loss of uniqueness. A new family of interpolation functions is proposed to meet the three requirements: C1-continuity of strain response envelope, correct description of experimental data, and respect of the one-to-one property. © 1998 by John Wiley & Sons, Ltd.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 75-95 
    ISSN: 0363-9061
    Keywords: three-dimensional ; heat ; moisture ; air ; transfer ; unsaturated ; soil ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: A new three-dimensional numerical model of coupled heat, moisture and air transfer in unsaturated soil is presented. In particular, the model accommodates moisture transfer in the form of liquid and vapour flow and heat transfer arising from conduction, convection and latent heat of vaporization. The bulk flow of dry air and the movement of air in a dissolved state are also included. The theoretical basis of the model, the finite element solution of the spatial terms and finite difference solution of the temporal terms are briefly presented. Attention is focused on the verification of the new numerical solution. This is achieved via comparisons with independent solutions of heat, moisture and air transfer in an unsaturated soil. The physical problem considered includes the highly non-linear hydraulic properties of sand. Thermal conductivity is also included as a function of soil moisture content. Excellent correlation of results is shown thus providing confidence in the new model.The new model is also applied to a number of test cases which illustrate the need for the development of a model which can fully include three-dimensional behaviour. In particular, three applications are presented each increasing in complexity. The first application illustrates three-dimensional heat transfer. This particular application is verified against existing commercial finite element software. Subsequent applications serve to illustrate how the coupled processes of heat moisture and air transfer combine to yield three-dimensional problems even within a simple geometric domain. Visualization of three-dimensional results is also addressed. © 1998 by John Wiley & Sons, Ltd.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 229-238 
    ISSN: 0363-9061
    Keywords: inclined shaft ; stress distribution ; field stress ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: In this study, the vertical overburden pressure in the vicinity of an inclined circular underground opening is defined by relation to the geometry of the medium. The stresses around the opening consisting of six components are induced by geostatic field stress. In this regard, the inclined circular opening i.e. shaft changes the original stress condition and an interrupted region develops beneath it. Three zones are defined on a plane which is perpendicular to the axis of shaft. The mathematical expressions of vertical overburden stresses at these three zones are established, respectively. The example given in appendix demonstrates the variation of radial and tangential stresses around the inclined shaft. It is seen that the stress distributions in the third zone, which includes the interrupted region, beneith the shaft display different configurations than that of those obtained by undisturbed field stresses. In the interrupted region the stresses around the shaft linearly grow up due to increasing overburden pressure by radial distance from the periphery of the shaft. At the boundary of interrupted region stresses jump to the original values induced by field stresses. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 133-149 
    ISSN: 0363-9061
    Keywords: thermoporoelasticity ; thermoporoplasticity ; Laplace transform ; Stehfest algorithm ; finite element method ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Solutions are presented for the behaviour of a layered porous space which contains a decaying heat source. Such a problem arises when high-level nuclear waste is placed in deep underground depositories in deep clayey formations of sedimentary basins. The geometry of the problem is one dimensional and the porous space is constituted by two layers: a deep low permeability layer which contains the nuclear waste disposal and a superficial layer. The solution is used to examine the effects of contrasts of permeability, thermal conductivity and specific heat capacities between the two layers on the large-scale behaviour of the porous space. Results are presented, using realistic data, for the pore pressure and temperature evolution at the heat source centre, and for the vertical displacement of the ground level. The superficial layer has no significant effects on pore pressure, temperature and stress evolution near the heat source centre. The vertical displacement of the ground level is mainly due to the thermal dilatation of the pore water, so it decreases with an increasing of permeability of the superficial layer. The solution of the time-dependent problem is carried out by applying Laplace transforms to the field variables, obtaining solutions and then using numerical methods to invert the transformed solutions. Comparisons with numerical simulations taking into account the non-linear and non-reversible behaviour of the rock mass are presented. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 175-196 
    ISSN: 0363-9061
    Keywords: shear crack ; singular integral equation ; excavation ; discontinuities ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: The problem of the equilibrium of a plane with a circular hole and a shear crack is considered to model failure of an excavation (borehole or circular opening) in rocks weakened by discontinuities (planes of weakness). It is assumed that sliding occurs in a part of the plane of weakness when the Mohr-Coulomb friction criterion is satisfied due to the stress redistribution caused by the excavation. The method of singular integral equations is employed to solve the boundary value problem. Geomechanical problems concerning borehole breakout and rockburst caused by fault-opening interaction are discussed. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 153-174 
    ISSN: 0363-9061
    Keywords: finite-element ; sea ice pack ; rheology ; viscous-plastic ; viscous fluid ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: In this paper the effects of four different rheologies on the evolution of a large-scale sea ice pack are determined and compared. Two rheologies are of viscous-plastic form, and two are viscous fluid relations. The initial pack domain is rectangular, and the motion is driven by wind stress and resisted by ocean drag. Two adjacent edges are rigid shore boundaries, and the other two are free boundaries at open water which move during the pack motion, so that the pack domain changes in time. Two different forms of boundary conditions at the rigid shore edges are considered, which also influence the evolution. The governing equations are solved numerically using a finite-element method, and, unlike previous numerical treatments, no artificial viscosity is incorporated to stabilise the algorithm near interfaces between converging and diverging flow. Instability arises when any tensile stress is abruptly cut-off when diverging flow is initiated, and an alternative view is offered. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 197-227 
    ISSN: 0363-9061
    Keywords: elastoplasticity ; constitutive equation ; subloading surface model ; cyclic plasticity ; soil ; rotational hardening ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: The subloading surface model fulfills the mechanical requirements for constitutive equations, i.e. the continuity condition, the smoothness condition and the work rate stiffness relaxation and describes pertinently the Masing effect. The constitutive equation of soils is formulated by introducing the subloading surface model and formulating the evolutional rule of rotational hardening for the description of anisotropy. The applicability of the constitutive equation to the prediction of real soil deformation behaviour is verified by predicting monotonic and cyclic loading behaviour of sands under drained and undrained conditions and comparing them with test data. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 245-261 
    ISSN: 0363-9061
    Keywords: Cosserat continuum model ; equivalent continuum medium ; layered rock mass ; finite element method ; non-associative plasticity ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Layered rock masses can be modelled either as standard, orthotropic continua if the layer bending can be neglected or as Cosserat continua if the influence of layer bending is essential. This paper presents a finite element smeared joint model based on the Cosserat theory. The layers are assumed to be elastic with equal thickness and equal mechanical properties. All the cosserat parameters are expressed through the elastic properties of layers, layer thickness and joint stiffness. Plastic-slip as well as tensile-opening of layer interface (joint) are accounted for in a manner similar to the conventional non-associative plasticity theory.As an application, the behaviour of an excavation in a layered rock mass is examined. The displacement and stress fields given by smeared joint models based on the Cosserat continuum and the conventional anisotropic continuum approaches are compared with those obtained from the discrete joint model. The conventional anisotropic continuum model is found to break-down completely when the effective shear modulus in the direction parallel to layering is low in comparison to the shear modulus of the intact layer, whereas the Cosserat model is found to be capable of accurately reproducing complex load-deflection patterns irrespective of the differences in shear moduli. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 277-301 
    ISSN: 0363-9061
    Keywords: seepage ; flow rate ; drain ; tunnel ; optimization ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: The known formulae of Freeze and Cherry, Polubarinova-Kochina, Vedernikov for flow rate during 2-D seepage into horizontal drains and axisymmetric flow into cavities are examined and generalized. The case of an empty drain under ponded soil surface is studied and existence of drain depth providing minimal seepage rate is presented. The depth is found exhibiting maximal difference in rate between a filled and an empty drain. 3-D flow to an empty semi-spherical cavity on an impervious bottom is analysed and the difference in rate as compared with a completely filled cavity is established. Rate values for slot drains in a two-layer aquifer are ‘inverted’ using the Schulgasser theorem from the Polubarinova-Kochina expressions for corresponding flow rates under a dam. Flow to a point sink modelling a semi-circular drain in a layered aquifer is treated by the Fourier transform method. For unsaturated flow the catchment area of a single drain is established in terms of the quasi-linear model assuming the isobaric boundary condition along the drain contour. Optimal shape design problems for irrigation cavities are addressed in the class of arbitrary contours with seepage rate as a criterion and cavity cross-sectional area as an isoperimetric restriction. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 263-275 
    ISSN: 0363-9061
    Keywords: non-ideal interface ; crack scattering ; domain decomposition ; collocation methods ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: This work presents a numerical algorithm for solving crack scattering in a transversely isotropic medium whose symmetry axis is perpendicular to the crack surface. The crack is modelled as boundary discontinuities in the displacement u and the particle velocity v, of the stresses [κu+ζv], where the brackets denote discontinuities across the interface. The specific stiffness κ introduces frequency-dependence and phase changes in the interface response and the specific viscosity ζ is related to the energy loss.The numerical method is based on a domain decomposition technique that assignes a different mesh to each side of the interface, that includes the crack plane. As stated above, the effects of the crack on wave propagation are modelled through the boundary conditions, that require a special boundary treatment based on characteristic variables. The algorithm solves the particle velocity-stress wave equations and two additional first-order differential equations (two-dimensional case) in the displacement discontinuity. For each mesh, the spatial derivatives normal to the interface are solved by the Chebyshev method, and the spatial derivatives parallel to the interface are computed with the Fourier method. They allow a highly accurate implementation of the boundary conditions and computation of the spatial derivatives, and an optimal discretization of the model space. Moreover, the algorithm allows general material variability. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 303-322 
    ISSN: 0363-9061
    Keywords: pile driving ; open-ended piles ; plugging mechanism ; one-dimensional modelling ; stress wave propagation ; finite element analysis ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: The plugging mechanism of infinitely-long open-ended piles is examined using numerical simulation of the wave propagation inside the soil plug and pile. It is shown that the key parameters for the plugging mechanism are the pile radius, the shape of the impact load, the shear wave velocity of the soil inside the pile, and the friction at the pile-soil interface. Consequently, the tendency of the pile to plug during driving can be assessed prior to the driving process by consideration of these key parameters. Existing one-dimensional models for the shaft response of open-ended piles are discussed and an improved model is presented. The differences between using one-dimensional models and finite element models to simulate the plugging process are examined. The differences are found to vary with the key parameters. Pile-in-pile and lumped-mass one-dimensional models are found to give satisfactory performance for some parameter combinations, while for others an axisymmetric finite element model must be used. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 327-350 
    ISSN: 0363-9061
    Keywords: finite element analysis ; large strain ; remeshing ; integration ; penetration ; bearing capacity ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: A practical method is presented for numerical analysis of problems in solid (in particular soil) mechanics which involve large strains or deformations. The method is similar to what is referred to as ‘arbitrary Lagrangian-Eulerian’, with simple infinitesimal strain incremental analysis combined with regular updating of co-ordinates, remeshing of the domain and interpolation of material and stress parameters. The technique thus differs from the Lagrangian or Eulerian methods more commonly used. Remeshing is accomplished using a fully automatic remeshing technique based on normal offsetting, Delaunay triangulation and Laplacian smoothing. This technique is efficient and robust. It ensures good quality shape and distribution of elements for boundary regions of irregular shape, and is very quick computationally. With remeshing and interpolation, small fluctuations appeared initially in the load-deformation results. In order to minimize these, different increment sizes and remeshing frequencies were explored. Also, various planar linear interpolation techniques were compared, and the unique element method found to work best.Application of the technique is focused on the widespread problem of penetration of surface foundations into soft soil, including deep penetration of foundations where soil flows back over the upper surface of the foundation. Numerical results are presented for a plane strain footing and an axisymmetric jack-up (spudcan) foundation, penetrating deeply into soil which has been modelled as a simple Tresca or Von Mises material, but allowing for increase of the soil strength with depth. The computed results are compared with plasticity solutions for bearing capacity. The numerical method is shown to work extremely well, with potential application to a wide range of soil-structure interaction problems. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 393-416 
    ISSN: 0363-9061
    Keywords: fabric ; porosity ; tensor ; yield ; stress ; strain ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: The porosity of soils is considered to be a directional measure and its distribution is characterized by a functional form. This form has been used to extend the critical state soil mechanics framework to include the effects of structure in soils. A new internal plastic energy dissipation formulation has been proposed to account for fabric arrangement. New expressions for the yield locus, and the plastic stress-strain response of structural soils have been derived. The applicability of the concepts to model the plastic stress-strain behaviour of a number of soils is illustrated. The advantage of the new model is very well identified in modelling the stress-strain behaviour of K0 consolidated and natural clays. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 24 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 351-391 
    ISSN: 0363-9061
    Keywords: cone penetration testing ; sand ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: The cone penetration test (CPT) is widely used, and although initially developed as a stratigraphic logging tool its excellent repeatability and accuracy offers a benchmark quantitative test for sand in particular. A continuing difficulty, however, is that the CPT does not measure any soil property directly, so that parameters of interest must be recovered from solution of an inverse boundary value problem, which is difficult. To date most CPT interpretations in sand have been based on very limited calibration testing carried out in large chambers on a few sands from which mappings are developed. But there are differences in the CPT response from one sand to another leaving the interpretation imprecise (and arguably even speculative) because these differences remain poorly understood. In this paper we use the familiar spherical cavity expansion analogy to the CPT including large strains and a good, critical-state-based, soil model to develop a pattern of behaviour which we then compare to some of the reference chamber test data. We find that one of the issues of dispute in the empirical interpretation methods, the so-called stress-level effect, is caused by neglect of elasticity and that there are several additional parameters of first-order significance to cavity expansion in sands. More generally, we show that the difference in CPT response between various chamber sands in predicted. Our results are cast in dimensionless form and the inversion illustrates that extreme care is required in interpreting CPT data if the in situ sand state is to be determined with precision approaching that suggested as achievable by the repeatability of the CPT data itself. Aspects requiring particular care in interpreting CPT data in sand are discussed. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 33 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 425-447 
    ISSN: 0363-9061
    Keywords: closed-form solution ; transversely isotropic half-space ; Fourier transform ; Hankel transform ; rock anisotropy ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: We rederive and present the complete closed-form solutions of the displacements and stresses subjected to a point load in a transversely isotropic elastic half-space. The half-space is bounded by a horizontal surface, and the plane of transverse isotropy of the medium is parallel to the horizontal surface. The solutions are obtained by superposing the solutions of two infinite spaces, one acting a point load in its interior and the other being free loading. The Fourier and Hankel transforms in a cylindrical co-ordinate system are employed for deriving the analytical solutions. These solutions are identical with the Mindlin and Boussinesq solutions if the half-space is homogeneous, linear elastic, and isotropic. Also, the Lekhnitskii solution for a transversely isotropic half-space subjected to a vertical point load on its horizontal surface is one of these solutions. Furthermore, an illustrative example is given to show the effect of degree of rock anisotropy on the vertical surface displacement and vertical stress that are induced by a single vertical concentrated force acting on the surface. The results indicate that the displacement and stress accounted for rock anisotropy are quite different for the displacement and stress calculated from isotropic solutions. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 477-493 
    ISSN: 0363-9061
    Keywords: foundation ; pile ; raft ; analysis ; case history ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: An approximate numerical method for the analysis of piled raft foundations is presented. The raft is modelled as a thin plate and the piles as interacting non-linear springs. Both the raft and the piles are interacting with the soil which is modelled as an elastic layer. Two sources of non-linearity are accounted for: (i) the unilateral contact at the raft-soil interface and (ii) the non-linear load-settlement relationship of the piles. Both theoretical solutions and experimental results are used to verify that, despite the approximations involved, the proposed method of analysis can provide satisfactory solutions in both linear and non-linear range. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 449-475 
    ISSN: 0363-9061
    Keywords: consolidation ; heat transfer ; poroelasticity ; pore pressure ; coupled fields ; Laplace transform ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: This paper presents a theoretical approach to analyse coupled, linear thermoporoelastic fields in a saturated porous medium under radial and spherical symmetry. The governing equations account for compressibility and thermal expansion of constituents, heat sink due to thermal dilatation of water and thermal expansion of the medium, and thermodynamically coupled heat-water flow. It has been reported in the literature that thermodynamically coupled heat-water flows known as thermo-osmosis and thermal filtration have the potential to significantly alter the flow fields in clay-rich barriers in the near field of a underground waste containment scheme. This study presents a mathematical model and examines the effects of thermo-osmosis and thermal-filtration on coupled consolidation fields in a porous medium with a cavity. Analytical solutions of the governing equations are presented in the Laplace transform space. A numerical inversion scheme is used to obtain the time-domain solutions for a cylindrical cavity in a homogeneous or a non-homogeneous medium. A closed form time-domain solution is presented for a spherical cavity in a homogeneous medium. Selected numerical solutions for homogeneous and non-homogeneous media show a significant increase in pore pressure and displacements due to the presence of thermodynamically coupled flows and a negligible influence on temperature. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 421-423 
    ISSN: 0363-9061
    Keywords: Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: No Abstract
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 495-508 
    ISSN: 0363-9061
    Keywords: consolidation ; cohesive soil ; clay ; axial strain ; true triaxial ; finite difference method ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: This paper presents a simplified approach for the analysis of axial strain induced by three-dimensional consolidation of cohesive soils. The axial strain is divided into a constant volume component and a consolidation component. A relevant undrained stress-strain relationship is required to determine the constant volume component. A theoretical formulation is developed for the evaluation of the consolidation component. Predictions of the axial strain accompanying true triaxial laboratory tests for a variety of stress patterns correlate sufficiently well with the measured data. The proposed method is potentially applicable in conjunction with a finite difference scheme to analyze the time-dependent response of pile groups subjected to static vertical loading. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 549-574 
    ISSN: 0363-9061
    Keywords: carbonatic clays ; thermo-plasticity ; nuclear waste disposal ; thermo-mechanical tests ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Argillaceous masses considered for potential nuclear waste repositories may exhibit significant space variability in their carbonate content. This may affect mechanical clay properties, such as strength or maximum apparent preconsolidation stress known to strongly depend on carbonate content. This paper investigates experimentally the dependence of thermo-hydro-mechanical behaviour of clays on carbonate content. The properties investigated are thermal strains, thermally induced over-consolidation, strength changes, destructuration, and thermally developed water pressure in undrained conditions. The experimental data are analysed in terms of a thermo-elasto-plasticity theory for clays, being an extension of Cam-clay model, modified to include the variability of the carbonatic content. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 515-548 
    ISSN: 0363-9061
    Keywords: coupled analysis ; expansive clay ; granite ; radioactive waste ; thermo-hydro-mechanical analysis ; unsaturated soils ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Coupled thermo-hydro-mechanical (THM) analyses have been used to examine the interacting phenomena associated with the simultaneous heating and hydration of an engineered bentonite barrier placed in a drift excavated in granite. The specific problem studied is an in situ test being carried out in the underground laboratory at Grimsel (Switzerland). After describing the test and the theoretical formulation, the results of a coupled THM analysis using the best parameter estimation currently available are presented and discussed. The effect of various features of analysis are explored by means of additional analyses in which each of those features are varied, one at the time. Finally, sensitivity analyses have been carried out to examine some critical aspects of the in situ test design. Performance of coupled THM analyses has led to a better understanding of the various inter-related phenomena occurring during heating and hydration of the engineered clay barrier. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 23 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 575-595 
    ISSN: 0363-9061
    Keywords: contaminant transport ; variable density flow ; fractures ; leakage ; dispersion ; diffusion ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: A numerical model for simulating flow and transport of contaminants with variable density in fractured porous media is presented. The non-linearities arising from the density variation and the velocty-dependent dispersion terms have been handled by Picard method. It is shown that the contaminant transport in a fractured porous medium is initially dominated by fractures. However, with time increasing, the contaminant concentration in porous blocks increases, due to the leakage of contaminant from the fracture network to the porous blocks. It is also shown that the high density of contaminant has a greater effect on its transport in the fracture network than in the porous blocks. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 603-619 
    ISSN: 0363-9061
    Keywords: earthquakes ; stress-strain response ; downhole arrays ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Recordings from downhole accelerometer arrays offer unique insight into soil behavior and ground response during earthquakes. In this paper we present a scheme for interpolating displacement and acceleration measurements to provide approximations for subsurface shear strain and stress as continuous functions of time. Our suggested interpolating functions are constructed in such a way that the free surface boundary condition will always be satisfied and the interpolated displacement and acceleration remain finite for all depths. We also show how the functions can be adapted to represent layered soil profiles. Depending on the number of instruments in the downhole array, a truncated series of functions can be derived so that each represents a modal shape for the layered soil profile. The resulting approximations for strain and stress are considered more accurate and robust than previous approximations. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 655-669 
    ISSN: 0363-9061
    Keywords: elastic nonhomogeneity ; soil deformation ; soil stresses ; surface loading ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: The response of a compressible continuously non-homogeneous elastic soil to a static vertical point load on its surface is analytically investigated by using classical integral transform techniques and the extended power series method for obtaining the solution in the transform domain. The non-homogeneity is described by means of a depth-function which is non-zero at the surface and bounded at infinity and is capable in modelling both increasing and decreasing soil stiffness with depth. The influence of non-homogeneity on the displacements and stresses at the surface and in the interior is examined over a wide range on the governing parameters. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 621-653 
    ISSN: 0363-9061
    Keywords: state parameter ; stress-state relation ; constitutive modelling ; plasticity ; critical state ; sand and clay ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: The purpose of this paper is to present a simple, unified critical state constitutive model for both clay and sand. The model, called CASM (Clay And Sand Model), is formulated in terms of the state parameter that is defined as the vertical distance between current state (v, p′) and the critical state line in v-ln p′ space. The paper first shows that the standard Cam-clay models (i.e. the original and modified Cam-clay models) can be reformulated in terms of the state parameter. Although the standard Cam-clay models prove to be successful in modelling normally consolidated clays, it is well known that they cannot predict many important features of the behavior of sands and overconsolidated clays. By adopting a general stress ratio-state parameter relation to describe the state boundary surface of soils, it is shown that a simple, unified constitutive model (CASM) can be developed for both clay and sand. It is also demonstrated that the standard Cam-clay yield surfaces can be either recovered or approximated as special cases of the yield locus assumed in CASM.The main feature of the proposed model is that a single set of yield and plastic potential functions has been used to model the behaviour of clay and sand under both drained and undrained loading conditions. In addition, it is shown that the behaviour of overconsolidated clays can also be satisfactorily modelled. Simplicity is a major advantage of the present state parameter model, as only two new material constants need to be introduced when compared with the standard Cam-clay models. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 23 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 695-720 
    ISSN: 0363-9061
    Keywords: wave propagation ; compaction ; pore pressure generation ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: The propagation of a plane load-unload pulse through a compacting sand is analysed and illustrated for both dry sand and liquid saturated sand in undrained conditions. A major feature is the interaction between the initial loading wave and the faster following unloading wave. Free draining and undrained conditions exhibit distinct qualitative and quantitative results, and the pore liquid pressure generation is a significant physical feature. Illustrations show the effects of different applied surface pulse shapes. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 671-687 
    ISSN: 0363-9061
    Keywords: recurrent neural network ; residual soil ; shear behaviour ; simulation ; prediction ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Modelling of shear behaviour of residual soils is difficult in that there is a significant variability in constituents and structures of the soil. A Recurrent Neural Network (RNN) is developed for modelling shear behaviour of the residual soil. The RNN model appears very effective in modelling complex soil shear behaviour, due to its feedback connections from an hidden layer to an input layer. Two architectures of the RNN model are designed for training different sets of experimental data which include strain-controlled undrained tests and stress-controlled drained tests performed on a residual Hawaiian volcanic soil. A dynamic gradient descent learning algorithm is used to train the network. By training only part of the experimental data the network establishes neural connections between stress and strain relations. Although the soil exhibited significant variations in terms of shearing behaviour, the RNN model displays a strong capability in capturing these variabilities. Both softening and hardening characteristics of the soil are well represented by the RNN model. Isotropic and anisotropic consolidation conditions are precisely reflected by the RNN model. In undrained tests, pore water pressure responses at various loading stages are simultaneously simulated. With a RNN model designed for a special drained test, the network is able to capture abrupt changes in axial and volumetric strains during shearing courses. These good agreements between the measured data and the modelling results demonstrate the desired capability of the RNN model in representing a soil behaviour. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 777-790 
    ISSN: 0363-9061
    Keywords: piles ; rafts ; finite elements ; preconditioning ; conjugate gradients ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Analysis of piled raft foundations, taking account of their full three-dimensional complexity, can be accomplished by modern finite element analysis techniques. The characteristics of the (preconditioned conjugate gradient) numerical method applied to this problem are analysed, and then the method isused in a field problem of a raft subjected to very rapidly varying loading patterns. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 721-748 
    ISSN: 0363-9061
    Keywords: cyclic behaviour ; saturated sands ; disturbed state concept ; liquefaction ; post liquefaction ; threshold transitions ; laboratory tests ; validations ; mathematical analysis ; computer implementation ; application ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: A fundamental procedure is proposed for the identification of liquefaction in saturated soils based on the instability in the material's microstructure. The disturbed state concept (DSC) provides a unified constitutive model for the characterization of entire stress-strain behaviour under cyclic loading, and the values of disturbance at threshold states in the deforming microstructure provides the basis for the identification of liquefaction. The procedure is verified with respect to laboratory behaviour of two sands, saturated Ottawa and Reid Bedford. A mathematical analysis of the DSC constitutive matrix is also performed. Procedures for the application of the DSC for simplified analysis and design, and in finite element procedures are presented. It is believed that the proposed model can provide a fundamental yet simplified procedure for liquefaction analysis, and as a result, it is considered to be an improvement over the available empirical and energy-based procedures. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 749-769 
    ISSN: 0363-9061
    Keywords: wellbore stability ; sand erosion ; sand production ; sand prediction ; radial flow ; poroelasticity ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: This paper extends earlier work on sand erosion and presents an attempt to couple sand erosion to mechanical damage of rock around a wellbore. Porosity which evolves in time and space as surface erosion progresses, is chosen as the coupling parameter. Both rock elasticity and strength (cohesion) are assumed to depend on porosity in such a way that the material becomes weaker with increasing porosity. The mathematical model, consists of erosion equations, mixture flow equations and stress equilibrium equations, is solved numerically by Galerkin finite element method. Numerical results suggest that erosion, resulting in sand production, is high close to the free surface. Erosion is accompained by changes in porosity and a significant permeability increase. Erosion in the vicinity of the wellbore induces alterations in the mechanical behaviour of the medium. Weakening of rock stiffness leads to severe alteration of both effective stresses and pore pressure near the cavity. Since cohesion decreases with increasing porosity, one can also identify the time instant at which rock mechanical failure starts. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 791-818 
    ISSN: 0363-9061
    Keywords: Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: An analytical model to simulate the penetration of the piezocone penetrometer in cohesive soils is presented here. The elasto-plastic coupled field equations of the saturated cohesive soils (given by Voyiadjis and Abu-Farsakh) is used in this analysis. The numerical simulation of the piezocone penetration is implemented into a finite element program. The analytical model is used to analyze the miniature piezocone penetration tests (PCPT) conducted at LSU calibration chambers. Simulation of the piezocone penetration is done for two cases. In the first case, the soil-penetrometer interface friction is neglected, while in the second case, the soil-penetrometer interface friction is taken into consideration. The constraint approach is used to model the soil-piezocone interface friction in which the Mohr-Coulomb frictional model is used to define the sliding potential. Analysis is done for three different soil specimens with different stress histories. The results of the numerical simulations are compared with the experimental measurements of the miniature piezocone penetration tests (PCPT) in cohesive soil specimens conducted in LSU calibration chambers. The resulting excess pore pressure distribution and its dissipation using the numerical model are compared with some available prediction methods. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 855-865 
    ISSN: 0363-9061
    Keywords: anchor ; trapdoor ; limit load ; cohesionless ; associative ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: A methodology for determining the plane strain limit load acting on an anchor or trapdoor buried within a purely associative Coulomb soil is presented. True lower bounds derived from a family of limiting stress fields appropriate to shallow horizontal trapdoors and anchors are shown to correlate to within less than 1 percent of upper bounds available in the literature, permitting the true limit load to be almost exactly defined. The solution form alters for deeply buried anchors and trapdoors resulting in poorer correlations. Methods by which the work may be extended to cover the more practical instances of non-associative Coulomb soils are indicated but are beyond the scope of the current paper. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 819-850 
    ISSN: 0363-9061
    Keywords: stochastic ; finite element ; seismic ; response ; random ; variability ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Some of the available stochastic finite element methods are adapted and evaluated for the analyses of response of soils with uncertain properties subjected to earthquake induced random ground motion. In this study, the dynamic response of a soil mass, with finite element discretization, is formulated in the frequency domain. The spectral density function of the response variables are obtained from which the evaluation of the root-mean-squared and the most probable extreme values of the response are made. The material non-linearities are incorporated by using strain compatible moduli and damping of soils using an equivalent linear model for stress-strain behaviour of soils and an iterative solution of the response. The spatial variability of the shear modulus is described through a random field model and the earthquake included motion is treated as a stochastic process. The available formulations of direct Monte-Carlo simulation, first-order perturbation method, a spectral decomposition method with Neumann expansion and a spectral decomposition method with Polynomial Chaos are used to develop stochastic finite element analyses of the seismic response of soils. The numerical results from these approaches are compared with respect to their accuracy and computational efficiency. © 1998 John Wiley & Sons Ltd.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 867-901 
    ISSN: 0363-9061
    Keywords: finite elements ; hydromechanical coupling ; fractured rock masses ; viscoplasticity ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: This work presents a finite element implementation to treat the Hydromechanical Coupling (HM) in fractured rock masses under the framework of the so-called ‘equivalent continuum’ approach. The multilaminar concept, introduced by Zienkiewicz and Pande, is used to simulate the mechanical behaviour of both the intact rock and the families of fractures. In that concept, the non-linearities in the constitutive relations are dealt by means of fictitious viscoplasticity. In the present implementation, the mechanical behaviour of the fractures is modelled by means of Barton-Bandis model. The shear stress/shear displacement/dilatancy relationship is modelled as viscoplastic and the normal stress/normal displacement as non-linear viscoelastic. Flow along fractures is considered to occur as a sequence of permanent states. The permeability tensor of the equivalent continuum is determined from the hydraulic apertures, in accordance of Barton et al. From the numerical point of view, the basic aim of the work is the implementation of an efficient scheme to solve the above described problem. This is done by designing a self-adaptive time step control, transparent to the user, which determines the highest possible time step while assuming the conditions of precision, stability and convergence. The paper presents the numerical details of such scheme together with validation/comparative examples and the results obtained on the analysis of the fractured rock foundation of a hypothetical dam. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 22 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 921-940 
    ISSN: 0363-9061
    Keywords: anisotropic sand ; constitutive model ; non-linear tensorial junctions ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: The paper presents a constitutive model for the three-dimensional deformation-strength behaviour of inherently anisotropic sand. Based on non-linear tensorial functions, the model is developed without recourse to the concepts in plasticity theory such as yield surface and plastic potential. Benefited from the fact that no decomposition of strain into elastic and plastic parts is assumed, a unified treatment of anisotropic behaviour of deformation and strength is achieved. Anisotropy is characterized by a vector normal to the bedding plane. The extension of the constitutive model is furnished by incorporating the vector under consideration of the principle of objectivity and the condition of material symmetry. Distinct features of the model are its elegant formulation and its simple structure involving few material parameters. Model performance and comparison with experiments show that the model is capable of capturing the salient behaviour of anisotropic sand. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 947-968 
    ISSN: 0363-9061
    Keywords: boundary element method ; complex hypersingular integrals ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: The definitions of complex integrals of Cauchy and Hadamard with the singular point coinciding with the end point of the integration curve are proposed. It is shown that the new integrals satisfy most of the properties of the regular ones, including the change of variables. It is also shown that the Cauchy principal value (CPV) and Hadamard finite-part (HFP) integrals can be considered as a sum of the new type integrals. The application to numerical solution by the boundary element method (BEM) and the complex hypersingular integral equation (CHSIE) for the multiregions of interacting elastic bodies and bodies with cracks and holes is discussed. The different ways to place the collocation points are considered. The numerical results for the problems of circular hole and circular elastic inclusion in infinite plate indicated that the appropriate choice of the approximating functions leads to a high accuracy of the calculation. Applications of the new technique to geomechanics problems are discussed. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 969-981 
    ISSN: 0363-9061
    Keywords: heat and moisture flow ; analytical solution ; transient analysis ; spherical heat source ; coupled analysis ; Green's function method ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: The present paper develops an analytical approach to the problem of heat-induced moisture movement in the vicinity of a spherical heat source embedded in an undeformable, moist porous solid of infinite extent. A transient-state distribution of temperature within the infinite medium is assumed to induce the moisture transport process. The numerical results, presented in the paper, illustrate the influence of the moisture transport characteristics on the time-dependent distribution of moisture within the porous medium. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 1021-1033 
    ISSN: 0363-9061
    Keywords: retaining wall ; interface ; finite element ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: A series of finite element analyses have been undertaken to investigate the effects of interface properties on the behaviour of a vertical retaining wall and the deformation of the ground around it. The boundary between a rigid embedded wall and the soil is modelled with zero thickness interface elements. Uniform translation of the wall has been studied. The analyses show the predicted limiting active and passive pressure on the wall are dependent on the maximum wall friction angle and are in reasonable agreement with accepted approximate analytical solutions. The limiting pressure is independent of the stiffness and dilation properties of the interface elements. The dilation properties of the interface have a significant effect on the ground surface deformation around the wall. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 983-1000 
    ISSN: 0363-9061
    Keywords: geomechanics ; indirect boundary element method (BEM) ; three-dimensional (3-D) elastostatics ; iterative methods ; approximate solution ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: The research herein primarily addresses to geomechanical problems of underground constructions in Mining and Civil Engineering. The problems are solved using the Indirect Boundary Element Method (IBEM). Although the geometry of the constructions themselves is usually very complicated, it will become much more complicated if we were to draw the existing joints. The computational problem therefore is how to deal with huge amount of equations and find out efficient methods of their formation and solution keeping in mind restraints of the computer memory and calculation time. Several approaches are used to enhance the performance of the Indirect Boundary Element Method. One of them deals with application of efficient equation solvers. It is shown that Krylov-type methods like CGS and GMRES with simple Jacoby preconditioning appear to be efficient and robust. In addition, adaptive integration on the boundary elements, together with diagonal dominance of equationsmake it possible to accelerate convergence of the iterative procedure. Some of the problems discussed allow a substantial reduction of matrix entries that leads to a very cheap iterative solution keeping reasonable accuracy of the results. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 1-13 
    ISSN: 0363-9061
    Keywords: rock ; indentation ; fracture modelling ; splitting fracture ; damage ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: A two-dimensional fracture model based on micro-fracture mechanics is applied to the Hertzian indentation stress field to simulate subsurface fractures in an axi-symmetrical plane. The simulation of fracture development reveals quantitatively the effects of loading force, mechanical properties of the rocks, and original micro cracks on the formation of subsurface fractures. The distribution patterns of the subsurface fractures are determined by the magnitudes and trajectories of the indentation stresses. Lateral confinement prohibits the fracture development. Simulations of the subsurface fractures in granite and marble are in good agreement with the indentation experiments. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 73-73 
    ISSN: 0363-9061
    Keywords: Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: No Abstract
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 15-42 
    ISSN: 0363-9061
    Keywords: variable permeability and shear modulus ; non-linear wave ; finite element model ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Conventional investigations of waves-seabed interaction problems have been only concerned with the soil response due to two-dimensional linear progressive waves over a uniform seabed. However, the effects of non-linear waves which have been reported in the literature may be significantly different. In this paper, a finite element model is developed to investigate the non-linear wave-induced seabed response with variable permeability and shear modulus in a three-dimensional domain. The finite element formulations are fully presented in this paper. The numerical model is verified with the previous investigations through the reduced form of the present solution. The numerical results indicate that the influence of non-linear wave components cannot always be ignored without substantial error. Furthermore, the wave-induced seabed response is affected significantly by variable permeability in coarser seabeds and variable shear modulus in finer seabeds. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 43-72 
    ISSN: 0363-9061
    Keywords: plasticity ; contaminated clays ; organic contaminants ; chemical consolidation ; chemical swelling ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Isothermal chemo-elasto-plasticity of clays is discussed, to describe strains induced in clay by permeation of it with a low dielectric constant organic contaminant, in the presence of stress. The strain is crucial in controlling permeability changes in chemically affected clay barriers of landfills and impoundments. The theory encompasses chemical softening or yield surface reduction, coefficient of chemical reversible expansion or contraction due to mass concentration increase, as well as chemical sensitivity of bulk plastic modulus. The experiments on chemistry and stress dependent permeability of Sarnia clay performed by Fernandez and Quigley (1985, 1991) are interpreted using this model. The numerical representations of the chemo-plastic softening function and the chemo-elastic strain function, as well as plastic bulk modulus sensitivity to concentration are evaluated for dioxane and ethanol. Specific requirements for the tests for chemo-plastic behavior of clays are discussed. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 74-74 
    ISSN: 0363-9061
    Keywords: Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: No Abstract
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 77-89 
    ISSN: 0363-9061
    Keywords: elasticity ; tunnel ; complex variables ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: An analytical solution is presented of problems for an elastic half-plane with a circular tunnel, which undergoes a certain given deformation. The solution uses complex variables, with a conformal mapping onto a circular ring. The coefficients in the Laurent series expansion of the stress functions are determined by a combination of analytical and numerical computations. As an example the case of a uniform radial displacement of the tunnel boundary is considered in some detail. It appears that a uniform radial displacement is accompanied by a downward displacement of the tunnel as a whole. This phenomenon also means that the distribution of the apparent spring constant is strongly non-uniform. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 121-132 
    ISSN: 0363-9061
    Keywords: thermoporoelasticity ; coupling ; decoupling ; consolidation ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Based on a fully coupled thermoporoelastic formulation, this paper discusses the general conditions where the coupling should be maintained, and where a partial or full decoupling technique may be applied. This exercise is aimed at providing practical solutions for the coupled thermoporoelastic analyses where excessive manipulations and unreasonable simplifications are minimized. The necessity for full coupling and the justification for decoupling are illustrated in a thermoporoelastic application of a one-dimensional consolidation scenario. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 91-120 
    ISSN: 0363-9061
    Keywords: finite elements ; oil migration ; immiscible two-phase flow ; compaction ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: The upstream-weighted finite element method with lumped mass matrix is applied to the modelling of oil migration in compacting sedimentary basins. An implicit formulation is made in Lagrangian co-ordinates of a pressure, saturation and a temperature equation, which is based on immiscible two-phase flow of oil and water. The formulation accounts for the compaction of the sediments, the generation of oil from solid organic material (kerogen), the eventual pore space generated by kerogen breakdown, and the density variations of the fluids which may set up thermal convection. The model is validated by comparison with results from a one-dimensional (1D) fractional flow-based migration model. A 2D case example showing oil expulsion from source rocks, and the filling of a trap is presented. The mass balance of the model is easily checked because all oil in the basin originates from breakdown of kerogen. Compared with other alternatives, the simple upstream-weighted finite element method is suggested as a possible first choice for a numerical method for the modelling of oil migration in compacting sedimentary basins. It easily deals with the complex geometry of a basin, it yields reasonably good results, is simple to implement, and the same implementation applies to all spatial dimensions. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 133-149 
    ISSN: 0363-9061
    Keywords: cylindrical cavity ; Mohr-Coulomb ; Drucker-Prager ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: A large-strain elastoplastic analysis is presented for a cylindrical cavity embedded in an infinite medium under uniform radial pressure. The investigation employs invariant, non-associated deformation-type theories for Mohr-Coulomb (M-C) and Drucker-Prager (D-P) solids, accounting for arbitrary hardening, with the equivalent stress as the independent variable. The M-C model results in a single first-order differential equation, whereas for the D-P solid an algebraic constraint supplements the governing differential equation. Material parameters and response characteristics were determined by calibrating the models with data from triaxial compression tests on Castlegate sandstone and on Jurassic shale. A comparison is presented between predictions obtained from the two models and experimental data from hollow cylinder tests under external loading. A sensitivity of the results to material parameters, like friction and dilation angles, is provided for the case of a cavity subjected to internal pressure in terms of limit pressure predictions. In all cases it has been found that the results of the D-P inner cone model are in close agreement with those obtained from the M-C model. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 153-174 
    ISSN: 0363-9061
    Keywords: constitutive model ; hypoplasticity ; failure ; stability ; granular material ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Recent investigations on the hypoplastic constitutive model for granular materials show that the failure surface can be surpassed by some stress paths. This is contradictory to the conventional definition of failure surface in plasticity, according to which the stress is allowed to move on the failure surface but never across it. In the present paper, the interrelations among the different constitutive models are discussed with special reference to failure and stability. For the hypoplastic constitutive equation, the accessible stress states and the stable stress states are found to be enclosed by a bound surface and a stability surface in the stress space, respectively. Theoretical findings about the bound surface and the stability surface are verified qualitatively by presenting results of triaxial tests on dry sand. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 175-197 
    ISSN: 0363-9061
    Keywords: soil plasticity ; drift correction ; mixed control ; explicit integration ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: When applying an explicit integration algorithm in e.g. soil plasticity, the predicted stress point at the end of an elastoplastic increment of loading might not be situated on the updated current yield surface. This so-called yield surface drift could generally be held under control by using small integration steps. Another possibility, when circumstances might demand larger steps, is to adopt a drift correction method. In this paper, a drift correction method for mixed control in soil plasticity, under drained as well as undrained conditions, is proposed. By simulating triaxial tests in a Constitutive Driver, the capability and efficiency of this correction method, under different choices of implementation, have been analysed. It was concluded that the proposed drift correction method, for quite marginal additional computational cost, was able to correct successfully for yield surface drift giving results in close agreement to those obtained with a very large number of integration steps. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 199-225 
    ISSN: 0363-9061
    Keywords: nuclear waste disposed ; numerical analysis ; finite element method ; thermohydromechanics ; saturated porous media ; temperature effect ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: The theoretical aspects of fully coupled thermohydromechanical behaviour of saturated porous media are presented. The non-linear behaviour of soil skeleton is assumed. A new concept called ‘thermal void ratio state surface’ is introduced to include thermal effects, and the stress state level influence on volume changes. The fluid phase flows according to Darcy's law and energy transport is assumed to follow Fourier's law classically. Variation of water permeability, water and solid unit weight due to thermal effects and pore pressure changes are included. A finite element package is developed based on final matrix form obtained from discretization of integral form of field equations by finite element method and integration in time. A very good agreement between the theoretical predictions and the experimental results was obtained for the several simple problems proposed by other authors. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 241-253 
    ISSN: 0363-9061
    Keywords: rockbolt ; Euler-Bernoulli ; beam-column ; roof-reinforcement ; stability ; pull-out ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: A simple analytical procedure that applies classical beam-column theory for evaluating passive rockbolt roof reinforcement is presented in this paper. The analytical model is derived from first principles and is capable of modelling any number of reinforcing bolts. Each rockbolt is modelled as a linear spring and the model allows for non-uniform bolt spacing. In this study the rock beam is assumed to be isotropic and linearly elastic for the sake of simplicity. However, the analytical model can be extended to include anisotropic rockmass as well as inelastic material behaviour. The solution to the coupled set of governing equations is obtained by using a simple numerical solution procedure. The results from the analytical model indicate that the critical buckling load of a rock beam is strongly influenced by the ambient rock modulus. For salt-rock excavations the rock modulus typically declines with time due to various phenomena, and a diminished modulus could seriously compromise roof stability. The other main conclusion of this study is that rockbolts loose their effectiveness in restraining a roof beam once its critical buckling load is approached. In such a situation, increasing bolt stiffness does not improve its reinforcing action on a roof beam but it enhances the possibility of bolt failure due to anchor pull-out. © 1997 by John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech., vol. 21, 241-253 (1997)
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 229-240 
    ISSN: 0363-9061
    Keywords: hydraulic fracture ; fluid lag ; excess pressure ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Research investigations on three-dimensional (3-D) rectangular hydraulic fracture configurations with varying degrees of fluid lag are reported. This paper demonstrates that a 3-D fracture model coupled with fluid lag (a small region of reduced pressure) at the fracture tip can predict very large excess pressure measurements for hydraulic fracture processes. Predictions of fracture propagation based on critical stress intensity factors are extremely sensitive to the pressure profile at the tip of a propagating fracture. This strong sensitivity to the pressure profile at the tip of a hydraulic fracture is more strongly pronounced in 3-D models versus 2-D models because 3-D fractures are clamped at the top and bottom, and pressures in the 3-D fractures that are far removed from the fracture tip have little effect on the stress intensity factor at the fracture tip. This rationale for the excess pressure mechanism is in marked contrast to the crack tip process damage zone assumptions and attendant high rock fracture toughness value hypotheses advanced in the literature. A comparison with field data is presented to illustrate the proposed fracture fluid pressure sensitivity phenomenon. This paper does not attempt to calculate the length of the fluid lag region in a propagating fracture but instead attempts to show that the pressure profile at the tip of the propagating fracture plays a major role in fracture propagation, and this role is magnified in 3-D models. © 1997 by John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech., vol. 21, 229-240 (1997).
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 255-275 
    ISSN: 0363-9061
    Keywords: intact piles ; dynamic response ; non-destructive impact-response method ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: The objective of this work was to evaluate the theoretical capabilities of the non-destructive impact-response method in estimating the length and cross-sectional area of intact piles. Three-dimensional (3-D) axisymmetric finite element models were developed to simulate the testing. The results obtained were compared to one-dimensional solutions to evaluate the importance of 3-D effects. Extensive parametric studies were then performed on piles without defects. In each parametric study, the results from the direct use of time histories of displacements or velocities, the mobility function and the Fourier transform of the recorded displacements (impact-echo method) were compared in order to assess their relative advantages and disadvantages. The effects of the relative stiffness of the surrounding soil to that of the pile and of the embedment depth were also investigated for all three methods. In a companion paper the use of these procedures to detect defects such as bulbs (increases in the cross-sectional area of the pile) or necks (decreases in area) is studied. © 1997 by John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech., vol. 21, 255-275 (1997)
    Additional Material: 27 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 277-291 
    ISSN: 0363-9061
    Keywords: defects in piles ; dynamic testing ; non-destructive impact-response method ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: The objective of this work was to evaluate the theoretical capabilities of the non-destructive impact-response method in detecting the existence of a single defect in a pile, its location and its length. The cross-section of the pile is assumed to be circular and the defects are assumed to be axisymmetric in geometry. As mentioned in the companion paper, special codes utilizing one-dimensional (1-D) and three-dimensional (3-D) axisymmetric finite element models were developed to simulate the responses of defective piles to an impact load. Extensive parametric studies were then performed. In each study, the results from the direct use of time histories of displacements or velocities and the mechanical admittance (or mobility) function were compared in order to assess their capabilities. The effects of the length and the width of a defect were also investigated using these methods. © 1997 by John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech., vol. 21, 277-291 (1997)
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 313-335 
    ISSN: 0363-9061
    Keywords: thermo-mechanical behaviour ; thermoviscoplasticity ; environmental loading ; thermal hardening ; constitutive model for clays ; coupling in porous media ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: The effect of heat on clay behaviour is characterized by non-linearity and irreversibility. Due to the complex influence of temperature, thermomechanical factors have to be taken into account for the numerical simulation of the behaviour of such materials. A cyclic thermo-viscoplastic model is developed for this purpose. It includes thermal hardening and the evolution of yield surfaces with temperature. From the physical point of view, it is built on the basis of available experimental results for a temperature range in which no phase change occurs. Conceptually, it is the generalization of an isothermal multimechanism cyclic model. A thermoplastic formulation of the model is also derived. The results obtained from numerical simulations compare well with experiments. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 21 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 337-345 
    ISSN: 0363-9061
    Keywords: method of slices ; sands ; stability ; retaining walls ; passive pressure ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: A method of slices satisfying all the conditions of statical equilibrium has been developed to deal with the problem of determination of passive earth pressure over a retaining wall in sand. A method similar to that of Morgenstern and Price, which was used to solve the stability of slopes, has been followed. The earth pressure coefficients with the proposed methodology have been computed for a vertical retaining wall for both positive and negative wall friction angle. Also examined is the variation of the interslice shear force between the retaining wall and the Rankine Passive boundary. Due to complete satisfaction of the equilibrium conditions, the method generates exactly the same earth pressure coefficients as computed by using Terzaghi's overall limit equilibrium approach. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 295-311 
    ISSN: 0363-9061
    Keywords: wave propagation ; discrete element modelling ; granular materials ; fabric ; anisotropy ; microstructure ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Wave propagation in granular materials is numerically studied through discrete element simulation. Two-dimensional (2-D) model material systems composed of large numbers of circular particles were numerically generated. The particles in these model materials were randomly distributed with a biasing algorithm to produce fabric anisotropy so as to create preferred directions within the material. Wave motion is introduced through dynamic loadings to appropriate boundary particles to produce horizontal and vertical plane wave propagation within each model material. Discrete element simulation with a non-linear hysteretic interparticle contact law is used to model the dynamic behaviour of the model granular systems, and this yields information on the wave speed and amplitude attenuation. Through the investigation of several model systems, relationships are established between wave propagational characteristics and granular microstructure or fabric. Specific fabric measures which were used included branch vectors, path microstructures and void characteristics. Distributions of these fabric descriptors were determined, and comparisons and correlations were made with the discrete element wave propagation results. Conclusions of this study indicated that while all three fabric measures provided some degree of correlation with the wave motion behaviours, the void fabric descriptor produced the best correlation for the assemblies under investigation. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 347-358 
    ISSN: 0363-9061
    Keywords: packing ; elliptical ; particle ; assemblies ; simulation ; micromechanics ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: In this paper, a new generator algorithm and a computer program PG2D is introduced for 2D numerical simulation of packing configuration in a granular material composed of elliptical particles of different a/b aspect ratios. Each elliptical particle is approximated by four connected arcs. The centre co-ordinates and radius of each arc and co-ordinates of connecting points can be determined from the formulae derived by entering the major axis length, 2a, and the eccentricity. The domain to be filled with particles can be a polygon of any shape. Given the size of the packing domain, geometrical information and numbers of particles to be generated, the packing location of each particle and the co-ordinates of contact points along with contact normal rose diagram can be generated as outputs.Simulation results show that this new algorithm can provide quite a reasonable packing model in accordance with the initial input required for the analysis of the mechanics of granular material. This generation scheme has the potential to cover packing generation and behaviour analysis of 3D sphere or ellipsoidal shaped granular materials. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 397-407 
    ISSN: 0363-9061
    Keywords: annular foundation ; collapse mode ; contact pressure ; lower bound ; yield hinge circles ; yield loads ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Edge loaded annular foundations have been analysed assuming the soil pressure at the contact to be non-uniform using the lower bound approach of Limit Analysis. Variable fixity at the edges has been allowed and the foundation slab is made to follow the Square yield criterion. Results presented in the form of curves can be readily used to obtain the locations of the yield hinge circles for the given slab and the corresponding collapse load. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 361-378 
    ISSN: 0363-9061
    Keywords: elastic half-space ; homogeneous ; non-homogeneous ; contour integral approach ; surface displacement ; arbitrarily shaped loading area ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: A numerical technique is presented for the analysis of surface displacements of a non-homogeneous elastic half-space subjected to vertical and/or horizontal surface loads uniformly distributed over an arbitrarily shaped area. The non-homogeneity considered is a particular form of power variation of Young's modulus with depth. Since the exponent which determines the degree of non-homogeneity may vary from zero to unity, both the homogeneous half-space and the Gibson soil may be included as limiting cases in a single numerical scheme. In order to account for the arbitrary shape of the loading, the boundary of the loaded area is linearized piecemeal. This enables the modeling of any load pattern according to the desired degree of accuracy. Special attention is focused on the integration scheme, since the singularity associated with the Green's function becomes progressively more pronounced the greater the non-homogeneity parameter gets. The performance of the numerical procedure is studied using analytical solutions for rectangular shaped areas. Further comparisons with well-known solutions based on integral transform techniques for a uniformly distributed load acting on a circular area of the non-homogeneous soil mass show excellent agreement as well. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 379-395 
    ISSN: 0363-9061
    Keywords: elastic half-space ; homogeneous ; non-homogeneous ; integration free approach ; surface displacement ; rectangular shaped loading area ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: An alternative approach for calculating the surface displacements of a non-homogeneous half-space acted upon by a vertical and/or horizontal load, uniformly distributed over a rectangular area, is presented in this part of the paper. The procedure proposed proves to be extremely efficient since the displacements can be found without numerical integration for this special loading pattern. Comparisons with solutions for rectangular loaded areas on Boussinesq- and Gibson-type soil show perfect agreement. In the case of the non-homogeneous half-space the procedure was checked using the method outlined in the first part of this paper revealing that both approaches come up with identical answers. Some results of a parametric study are presented for the surface displacements of a non-homogeneous half-space subject to vertical and horizontal loading. In this study both the material properties of the soil mass, i.e. Young's modulus and Poisson's ratio and the aspect ratio of the loading are varied. These results are presented in the form of influence charts which may readily be used in hand calculations for estimating the displacements of footings on a non-homogeneous soil. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 409-419 
    ISSN: 0363-9061
    Keywords: parallel numerical finite difference model ; heat and moisture transfer ; parallel computing ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: A parallel numerical finite difference model, employing the self-implicit method, for coupled heat and moisture transfer in unsaturated soil is presented. The model is programmed in Occam and executed on a parallel computing network of transputers. An assessment of the model was achieved via the simulation of a laboratory experiment. A very good correlation between experimental and numerical results was obtained. Comparison of results with those obtained from a parallel explicit method is also illustrated showing no significant difference. The computational time employing the new method was, however, found to be half of that obtained using the explicit method. The computational efficiency of the approach was also found to be very high. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 505-506 
    ISSN: 0363-9061
    Keywords: Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: No Abstract
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 477-484 
    ISSN: 0363-9061
    Keywords: anchors ; failure surface ; foundations ; limit analysis ; sand ; slopes ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: By making use of limit analysis, an upper bound solution in a closed form for determining the ultimate pullout capacity of plate anchors buried in sandy slopes has been established. The anchor plate orientation has been considered either horizontal or parallel to the slope, with the pullout force applied perpendicular to the plate. It has been found that the pullout capacity for horizontal anchors, even on slopes, remains the same as that on horizontal ground surface as long as the average embedment ratio is kept constant. Whereas for anchors which are aligned parallel to the slope the collapse load decreases continuously with the increase in the inclination of slope. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 485-494 
    ISSN: 0363-9061
    Keywords: finite element method ; ground water ; phreatic surface ; transient flow ; unconfined seepage ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Peformance of rectangular trench drains penetrating fully in a layer of homogeneous and isotropic soil mass down to an underlying impervious base with time has been assessed using the finite element method. Non-dimensional charts have been developed comprehensively to establish the successive positions of a phreatic surface with the passage of time for any given values of permeability of soil and its specific yield. The effect of spacing to depth ratios of drains on their performance has been examined in detail. The rate of downward movements of the phreatic surface decreases with time as well as with increases in the spacing of drains. The spacing affects considerably the magnitudes of drawdown at distant locations from the drains, whereas close to the drains, its effect becomes insignificant. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 423-441 
    ISSN: 0363-9061
    Keywords: Mohr-Coulomb ; Drucker-Prager ; flow theory ; deformation theory ; loss of ellipticity ; surface instabilities ; bifurcation ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Tensorially invariant constitutive relations are systematically derived for large strain elastoplastic response of geomaterials. The analysis centres on Mohr-Coulomb (MC) and Drucker-Prager (DP) models with arbitrary hardening and non-associated response. Both flow and deformation theories are constructed for each model with emphasis on linear incremental relations between the Eulerian strain rate tensor and the objective Jaumann stress rate tensor.Specifying the results for plane strain compression we find that deformation theory produces a much smaller tangent instantaneous shear modulus than flow theory. It follows that failure of ellipticity and onset of surface instabilities predicted by deformation theory for associated solids occur at much lower levels of strain than the corresponding flow theory results. On the other hand, flow theory predictions admit a considerable sensitivity to the level of non-associativity. In fact, at high levels of non-associativity flow theory predictions for loss of ellipticity can be at strains below those obtained from deformation theory. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 495-504 
    ISSN: 0363-9061
    Keywords: monoclinic ; shear waves ; reflection ; transmission ; dispersion ; amplitude ratio ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: This paper deals with the propagation, reflection and transmission of shear waves in monoclinic media. The dispersion equation for a monoclinic layer overlying a monoclinic half-space has been obtained and curves are plotted. The amplitude ratios for both the reflected and transmitted waves due to reflection of shear waves at the interface of two monoclinic half-spaces have also been computed and the numerical results are presented graphically. The results are compared with the isotropic case. It has been observed that, in monoclinic media, the amplitude ratios for reflected and transmitted wave increases approximately by 25 and 50 per cent respectively, in comparison to the isotropic case. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 443-451 
    ISSN: 0363-9061
    Keywords: seepage ; dam core ; hodograph method ; minimization ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Seepage through a triangular dam core is studied by the hodograph method. Core slope providing minimal seepage rate at prescribed head value and core cross-sectional area is found. A simple flow pattern involving seepage face, constant head, and non-flow boundaries is assumed. Seepage through a cake of low permeable sediments deposited along the bottom of a channel is treated analogously. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 453-475 
    ISSN: 0363-9061
    Keywords: consolidation ; settlement ; large strain ; numerical modelling ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: This paper presents a piecewise-linear finite-difference model for one-dimensional large strain consolidation called CS2. CS2 is developed using a fixed Eulerian co-ordinate system and constitutive relationships which are defined by discrete data points. The model is dimensionless such that solutions are independent of the initial height of the compressible layer and the absolute magnitude of the hydraulic conductivity of the soil. The capability of CS2 is illustrated using four example problems involving small strain, large strain, self-weight, and non-linear constitutive relationships. In each case, the performance of the model is comparable to other available analytical and numerical solutions. Using CS2, correction factors are developed for the conventional Terzaghi theory which account for the effect of vertical strain on computed values by elapsed time and maximum excess pore pressure during consolidation. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 507-532 
    ISSN: 0363-9061
    Keywords: piles ; axial loading ; closed-form solutions ; non-homogeneous ; non-linear ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Analytical methods for the axial responses of piles can be classified under three broad categories of (1) simple but approximate analytical solutions, (2) one-dimensional numerical algorithms, (3) full axisymmetric analyses using boundary or finite element approaches. The first two categories rely on the so-called load transfer approach, with interaction between pile and soil determined by independent springs distributed along the pile shaft and at the pile base. The non-linear spring stiffness is related to the elastic-plastic properties of the actual soil partly by empirically based correlations and partly by theoretical arguments based on simplified models of the pile-soil system. This paper presents new closed-form solutions for the axial response of piles in elastic-plastic, non-homogeneous, media. The solutions fall in the first of the three categories above, and have been verified through extensive parametric studies using more rigorous one-dimensional and continuum analyses. The effect of non-homogeneity and partial slip on the load and displacement profiles along the pile shaft is explored, and comparisons are presented with experimental data. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 533-547 
    ISSN: 0363-9061
    Keywords: cemented sand ; size ; slenderness ; triaxial testing ; stress-strain ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: This paper is accompanied by a study on constitutive modelling issues of cemented sands. The concentration here is on experimental issues related to the triaxial testing of cemented sands. A preliminary investigation is performed aiming to identify potential effects of specimen size and slenderness on the stress-strain-strength characteristics of cemented sands. A comprehensive experimental study follows where clean sand specimens, as well as specimens with 2, 4 and 6 per cent cement content, are tested. The aim of the study is to examine the effects of cement content and confinement on the shear strength, stiffness, softening and dilation characteristics of cemented sand. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 29 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 549-568 
    ISSN: 0363-9061
    Keywords: cemented sand ; constitutive model ; multiphase material ; strength ; dilatancy ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: This is the companion paper to a study the triaxial testing of cemented sands. The focus here is turned to the constitutive modelling of cemented sands. A novel micromechanical approach that considers the multi-phase nature of cemented sands, is presented in which the clean sand, the cementing bond and the pore water pressure are modelled independently. The model is verified using a series of triaxial compression experiments on 2, 4 and 6 per cent cemented specimens, that were the subject of the companion paper. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 569-579 
    ISSN: 0363-9061
    Keywords: layered rock ; heterogeneity ; method of averaging ; variation-difference method ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: The main purpose of this investigation is to study the state of stress of layered rocks forming slopes of deep river valleys. For this purpose averaging technique and a variant of the Variation-Difference Method are used. Because of the averaging method, equivalent homogeneous properties of layered elastic medium are determined. The paper has two parts. The first one is devoted to the analysis of a static stress-strain state of the slopes under gravity. The rock mass in the second part is subjected to dynamic loading caused by an earthquake. As a result of the numerical solution of the raised problems, the stress distribution in slopes and at the base of a deep canyon-like river valley was obtained. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 583-597 
    ISSN: 0363-9061
    Keywords: finite elements ; soil nailing ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: A nailed soil wall curved in plan was modelled in three-dimensions by the finite element method for construction, service and ultimate loading conditions. The behaviour of the nailed soil wall, the soil-nail interaction, the role of the reinforcement, and the overall and internal failure mechanisms were investigated. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 599-618 
    ISSN: 0363-9061
    Keywords: embankments ; finite element method ; ground improvement ; settlements ; soft clay ; vertical drains ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: In 1986, the Malaysian Highway Authority constructed a series of trial embankments on the Muar Plain (soft marine clay) with the aim of evaluating the effectiveness of various ground improvement techniques. This study investigates the effect of two such ground improvement schemes: (a) preloading of foundation with surface geogrids and synthetic vertical drains and (b) sand compaction piles. The paper is focused on the finite element analysis of settlements and lateral displacements of the soft foundation. In scheme (a), the numerical predictions are compared with the field measurements. In scheme (b), only the numerical analysis is presented and discussed in the absence of reliable measurements due to the malfunctioning of the electronic extensometer and inclinometer system during embankment construction. The current analysis employs critical state soil mechanics, and the deformations are predicted on the basis of the fully coupled (Biot) consolidation model. The vertical drain pattern is converted to equivalent drain walls to enable plane strain modelling, and the geogrids are simulated by linear interface slip elements. The effect of sand compaction piles is investigated considering both ideal drains and non-ideal drains, as well as varying the pile stiffness. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 619-633 
    ISSN: 0363-9061
    Keywords: unsteady flow ; fractured porous media ; boundary elements ; finite elements ; hybrid code ; validation of numerical solution ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: A mixed finite element-boundary element solution for the analysis of two-dimensional flow in porous media composed of rock blocks and discrete fractures is described. The rock blocks are modelled implicitly by using boundary elements whereas finite elements are adopted to model the discrete fractures. The computational procedure has been implemented in a hybrid code which has been validated first by comparing the numerical results with the closed-form solution for flow in a porous aquifer intercepted by a vertical fracture only. Then, a more complex problem has been solved where a pervious, homogeneous and isotropic matrix containing a net of fractures is considered. The results obtained are shown to describe satisfactorily the main features of the flow problem under study. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 653-662 
    ISSN: 0363-9061
    Keywords: moving boundary ; parabolic equation ; finite difference ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: A method for the numerical simulation of diffusive transport with moving boundaries is developed and tested. The variable domain is mapped onto a fixed region, which introduces a term of convective form to the transformed governing equation. The resulting convection/diffusion equation is solved by a finite-difference method. An ‘Immersed Interface’ Method (IIM) is introduced in order to retain second-order accuracy near discontinuities in material properties, where the solution is not smooth. The method performs well in benchmark calculations against an analytical solution. The IIM scheme is capable of treating a strong discontinuity in the gradient, and it is readily extended to two or three dimensions. The methods are illustrated through a calculation for the temperature profile in a growing continental ice sheet, in which the thermal properties are discontinuous at the rock/ice interface. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 635-652 
    ISSN: 0363-9061
    Keywords: anisotropic elastic medium ; complete plane-strain problem ; influence function ; stress discontinuity element ; displacement discontinuity element ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Influence functions, that permit us to determine stresses and displacements at an arbitrary point in an infinite, homogeneous, linear elastic, anisotropic medium due to different three-dimensional (3-D) stress or displacement discontinuities distributed on infinite, flat, band-type elements, are presented. Any straight-line segment on the band, which is perpendicular to its infinite side, has the same distribution of the discontinuities. Along with the functions, their Taylor series approximations are also provided. The last can be useful to analyse stresses and displacements at points distant from the elements. The functions allow us to avoid procedures of numerical integration in the Indirect Boundary Element Method and/or the Displacement Discontinuity Method computer codes that are able to solve complete plane-strain problems with 3-D boundary conditions for an elastic, anisotropic medium. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 665-686 
    ISSN: 0363-9061
    Keywords: Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: The relationship between the microstructure and the volume change behaviour of fine-grained soft soils is analysed by using a model derived from the experimental observation of the microstructure of soft clays, and the Boundary Element Method (BEM). The soil is modelled as a bidimensional porous matrix containing circular pores. The matrix is linear elastic and obeys a Tresca failure criterion, and the pore size distribution follows a Gaussian normal law. The pores are randomly located, with a minimum distance between them. Volume decrease during compression is due to the collapse of the pores. The collapse of a pore is activated once the stress state at the pore boundary calculated by the BEM is reaching the Tresca failure criterion, thus leading to a non-linear analysis process. An isotropic incremental loading test as well as a loading-unloading test are presented and discussed, showing that the model is able to reproduce properly the experimental volume change behaviour of soft clays and other porous geomaterials like chalk. Numerical results show that a macroscopic hardening elastoplastic behaviour could be obtained from a model elaborated from microstructure observation. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 687-719 
    ISSN: 0363-9061
    Keywords: deformation analysis ; Shallow Strain Path Method (SSPM) ; penetration of clay ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: A new method of analysis is described for estimating the deformations and strains caused by shallow undrained penetration of piles and caissons in clay. The formulation combines previous analyses for steady, deep penetration, with methods used to compute soil deformations due to near-surface ground loss, and is referred to as the Shallow Strain Path Method (SSPM). Complete analytical solutions for the velocity and strain rates are given for a planar wall, an axisymmetric, closed-ended pile and unplugged, open-ended pile geometries. In these examples, the analyses consider a single source penetrating through the soil at a constant rate, generating a family of penetrometers with rounded tips, referred to as simple wall, pile and tube geometries. Soil deformations and strains are obtained by integrating the velocity and strain rates along the particle paths.The transition from shallow to deep penetration is analysed in detail. Shallow penetration causes heave at the ground surface, while settlements occur only in a thin veneer of material adjacent to the shaft and in a bulb-shaped region around the tip. The size of this region increases with the embedment depth. Deformations inside an open-ended pile/caisson are affected significantly by details of the simple tube wall geometry. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 741-752 
    ISSN: 0363-9061
    Keywords: vertical deformation analysis ; pile group ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: A variational approach for the analysis of vertical deformation of pile groups is presented. The method assumes that the deformation of piles can be represented by a finite series. The method applies the principle of minimum potential energy to determine the deformation of piles. Using this method, an analytical solution for pile groups in soil modelled by the theoretical load-transfer curves can be obtained rigorously. Analysis of field tests indicates that the method can predict the performance of pile groups reasonably well.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 721-737 
    ISSN: 0363-9061
    Keywords: elastoplastic problem ; non-associated flow rule ; boundary element method ; characteristics method ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Estimation of elastoplastic deformation around an underground opening induced by the excavation of it, especially displacement and strain field in plastic region, is presented in this paper, as well as the formulation for calculating the displacement and strain in the plastic region around the underground opening by the coupled Boundary Element Method - Characteristics Method (BEM-CM). In this method, the non-associated flow rule is adopted to calculate the displacement and strain field in the plastic region, which is determined by the integration of the displacement along characteristics lines under the boundary condition of the elastic displacement on an elastoplastic interface analysed. It is shown that this method is one of the accurate and effective methods for estimating not only the shape and extent of the plastic region but also the state of the displacement and strain in the plastic region around the underground opening, comparing the theoretical solution with numerical results by this method for a circular opening under hydrostatic initial stress condition. Furthermore, this method is applied to rectangular and horse-shoe shaped openings and the characteristics of the strain field in the plastic region are discussed. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 753-787 
    ISSN: 0363-9061
    Keywords: finite element ; soil structure interaction ; soil reinforcement ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: This paper describes a design application of non-linear deformation analysis to a complex soil-structure-foundation interaction problem through use of a finite element analysis. The problem consists of a proposed renovation to an existing soil-founded U-frame lock structure consisting of construction of a densely reinforced soil berm adjacent to an existing lock wall. Major questions facing the designer involve reduction of the earth pressure on the lock wall, layout of the reinforcing in the soil berm, and collateral effects of berm construction on the U-frame lock structure. A non-linear deformation analysis played a central role in addressing all of these questions. Berm construction and four operational load cases were used to understand the performance of the reinforced berm and to discern interactions among the lock, the backfill, the foundation strata of the U-frame lock, the reinforced berm, and the foundation strata of the reinforced berm. Insight gained from the soil-structure-foundation interaction analyses led to an alteration to the proposed reinforcement layout to enhance the performance of the reinforced soil berm.
    Additional Material: 22 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 789-816 
    ISSN: 0363-9061
    Keywords: fractured reservoir ; coupled model ; finite elements ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Based on the theory of double-porosity, a novel mathematical model for multiphase fluid flow in a deforming fractured reservoir is developed. The present formulation, consisting of both the equilibrium and continuity equations, accounts for the significant influence of coupling between fluid flow and solid deformation, usually ignored in the reservoir simulation literature. A Galerkin-based finite element method is applied to discretize the governing equations both in the space and time domain. Throughout the derived set of equations the solid displacements as well as the fluid pressure values are considered as the primary unknowns and may be used to determine other reservoir parameters such as stresses, saturations, etc. The final set of equations represents a highly non-linear system as the elements of the coefficient matrices are updated during each iteration in terms of the independent variables. The model is employed to solve a field scale example where the results are compared to those of ten other uncoupled models. The results illustrate a significantly different behaviour for the case of a reservoir where the impact of coupling is also considered. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 817-824 
    ISSN: 0363-9061
    Keywords: free surface problem ; finite element mesh ; earth dam model ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Employing the simple iterative technique of adjusting the element positions using computed potentials to locate the free surface can lead to finite elements with large aspect ratios as the free surface drops towards the base of the mesh. In particular, free surface modelling of earth dams with base drains suffer from this problem. The paper suggests a number of steps which can be taken to alleviate mesh distortion problems and improve the numerical stability of the iterative finite element analysis. This leads to a mesh deformation algorithm which adjusts element widths in a simple fashion depending on the free surface height as the iterations proceed. The algorithm is specialized to the sloped earth dam problem, but may find application to other geometries. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 825-843 
    ISSN: 0363-9061
    Keywords: fracture modelling ; granular materials ; numerical modelling ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: This paper describes the computer algorithms used in a numerical simulation of the compression of an aggregate of crushable grains. It has been used in a model for the evolution of a granular medium under one-dimensional compression, in which the probability of fracture for individual particles is a function of applied stress, particle-size and co-ordination number. The information relating to the particles is represented in a compact way on the computer which allows the number of particles produced to become sufficiently large for satisfactory comparisons to be made with experimental data and which allows information, such as the positions and sizes of the particles, to be easily extracted. An algorithm based on the representation is used to locate neighbouring particles in a way which does not deteriorate unacceptably in terms of speed as the number of particles increases. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 845-861 
    ISSN: 0363-9061
    Keywords: buckling ; end-bearing piles ; Winkler elastic foundation ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: The stability of end-bearing piles that are supported laterally along their entire length by an elastic Winkler foundation is investigated for the case when the coefficient of horizontal subgrade reaction varies linearly with depth. A pattern of clustering of buckling modes is shown to occur and the approximate modelling of the elastic foundation by averaging the stiffness of the subgrade is discussed. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 21 (1997), S. 863-881 
    ISSN: 0363-9061
    Keywords: progressive asymptotic approach ; natural convection ; porous media ; bifurcation ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: In this paper, a progressive asymptotic approach procedure is presented for solving the steady-state Horton-Rogers-Lapwood problem in a fluid-saturated porous medium. The Horton-Rogers-Lapwood problem possesses a bifurcation and, therefore, makes the direct use of conventional finite element methods difficult. Even if the Rayleigh number is high enough to drive the occurrence of natural convection in a fluid-saturated porous medium, the conventional methods will often produce a trivial non-convective solution. This difficulty can be overcome using the progressive asymptotic approach procedure associated with the finite element method. The method considers a series of modified Horton-Rogers-Lapwood problems in which gravity is assumed to tilt a small angle away from vertical. The main idea behind the progressive asymptotic approach procedure is that through solving a sequence of such modified problems with decreasing tilt, an accurate non-zero velocity solution to the Horton-Rogers-Lapwood problem can be obtained. This solution provides a very good initial prediction for the solution to the original Horton-Rogers-Lapwood problem so that the non-zero velocity solution can be successfully obtained when the tilted angle is set to zero. Comparison of numerical solutions with analytical ones to a benchmark problem of any rectangular geometry has demonstrated the usefulness of the present progressive asymptotic approach procedure. Finally, the procedure has been used to investigate the effect of basin shapes on natural convection of pore-fluid in a porous medium. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 20 (1996) 
    ISSN: 0363-9061
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 20 (1996), S. 57-72 
    ISSN: 0363-9061
    Keywords: piled raft systems ; raft-pile-soil interaction ; finite layer methods ; foundations ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: This paper presents a method of analysis for piled raft systems constructed in layered soils. The method presented takes account of the interactions of the raft, piles and soil without the cost of a full three-dimensional rigorous analysis. This is done by the use of finite layer methods for the analysis of the soil and finite element methods for the raft. Examples are provided in the paper for piled rafts constructed on layered soils, and results are presented for bending moments in the raft and loads in the piles.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 20 (1996), S. 1-33 
    ISSN: 0363-9061
    Keywords: interface constitutive model ; deformation behaviour ; spherical asperity interaction ; dual asperity interaction ; shear and dilatancy of joints ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: An interface constitutive model is presented accounting for slip and sliding effects and also for dilatancy phenomena. The microslip effects are described by considering spherical asperity interaction with variation of contact area and generation of progressive or reverse slip zones. The incremental constitutive equations are derived with proper memory rules accounting for generation and annihilation of particular slip zones during the process of variable loading. It is further assumed that sliding of spherical contacts occurs along large asperities whose slope varies due to the wear process. The predicted shear and dilatancy curves are shown to provide close quantitative simulation of available experimental data. The strain ratchetting effect for non-symmetric cyclic loading was exhibited using the asperity wear model. The model presented could be applied to simulate rock joints, masonry, or concrete cracked interfaces, under monotonic and cyclic loading.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 20 (1996), S. 35-56 
    ISSN: 0363-9061
    Keywords: waste containment systems ; slope failure ; strain-softening ; landfill ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: The potential for progressive failure in waste containment systems is an important design consideration. Many common interfaces between components in containment systems exhibit strain-softening behaviour; however, slopes are presently designed using limit equilibrium methods that do not account for these effects. An analytical model is developed to investigate the potential for progressive failure due to strain softening. Results are presented in a non-dimensional form relating the potential for strain softening to the slope geometry, the waste properties and the properties of the containment system interface. The potential for progressive failure increases as (i) the waste stiffness decreases relative to the initial stiffness of the interface resistance, (ii) the length of the slip surface increases and (iii) the rate of strain softening with displacement increases. Analysis of a case study slope failure indicates that the analytical approach produces results that are consistent with field observations and comparable to results from a more sophisticated, numerical analysis. Although simple, this analytical approach serves as a useful design guide to identify cases where it is unsafe to use the peak shear strength in a limit equilibrium analysis.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 20 (1996), S. 73-75 
    ISSN: 0363-9061
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 20 (1996), S. 79-99 
    ISSN: 0363-9061
    Keywords: Land displacement ; groundwater pumping ; Galerkin finite element model ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Equations of equilibrium (force balance) and flow in multidimensions were coupled in this paper to describe land displacements due to pressure decline in aquifers. A Galerkin finite element model based on these equations was developed. The saturated/unsaturated behaviour and the isotropic/anisotropic properties of permeability and elasticity were considered when the model was formulated. This model was verified by comparing its simulation results with those of known analytical solutions for simplified cases. The simulation of displacements due to pressure decline in unsaturated media was also performed. Those results demonstrated that the choice of boundary ranges for an aquifer with infinite domain may significantly affect the estimated horizontal and vertical displacements. To obtain a good estimation of land displacements, the boundary ranges should be carefully chosen. The displacements occurring in unconfined aquifers are caused by the drop of the water table and the change in body force in the dewatering zone. Simulation results also indicated that the change in body force should be considered once an unconfined aquifer has been pumped. Otherwise, the horizontal and vertical displacements in unconfined aquifers would be overestimated and underestimated, respectively. The behaviour of land displacements due to pumping was shown to be affected by changes in the total stresses in aquifers.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...