ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-03
    Description: A global ocean three-dimensional variational data assimilation system was developed with the aim of assimilating along-track sea level anomaly observations, along with in situ observations from bathythermographs and conventional sea stations. All the available altimetric data within the period October 1992–January 2006 were used in this study. The sea level corrections were covariated with vertical profiles of temperature and salinity according to the bivariate definition of the background-error vertical covariances. Sea level anomaly observational error variance was carefully defined as a sum of instrumental, representativeness, observation operator, and mean dynamic topography error variances. The mean dynamic topography was computed from the model long-term mean sea surface height and adjusted through an optimal interpolation scheme to account for observation minus first-guess biases. Results show that the assimilation of sea level anomaly observations improves the model sea surface height skill scores as well as the subsurface temperature and salinity fields. Furthermore, the estimate of the tropical and subtropical surface circulation is clearly improved after assimilating altimetric data. Nonnegligible impacts of the mean dynamic topography used have also been found: compared to a gravimeter-based mean dynamic topography the use of the mean dynamic topography discussed in this paper improves both the consistency with sea level anomaly observations and the verification skill scores of temperature and salinity in the tropical regions. Furthermore, the use of a mean dynamic topography computed from the model long-term sea surface height mean without observation adjustments results in worsened verification skill scores and highlights the benefits of the current approach for deriving the mean dynamic topography.
    Description: European Commission WP4 Fondazione Cassa di Risparmio di Bologna Cnes
    Description: Published
    Description: 738-754
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: 4.6. Oceanografia operativa per la valutazione dei rischi in aree marine
    Description: 5.4. Banche dati di geomagnetismo, aeronomia, clima e ambiente
    Description: JCR Journal
    Description: partially_open
    Keywords: Data assimilation ; Satellite observations ; Ocean models ; Sea level ; In situ observations ; Variational analysis ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 394-407, doi:10.1175/jpo3018.1.
    Description: The ability of paleoceanographic tracers to constrain rates of transport is examined using an inverse method to combine idealized observations with a geostrophic model. Considered are the spatial distribution, accuracy, and types of tracers required to constrain changes in meridional transport within an idealized single-hemisphere basin. Measurements of density and radioactive tracers each act to constrain rates of transport. Conservative tracers, while not of themselves able to inform regarding rates of transport, improve constraints when coupled with density or radioactive observations. It is found that the tracer data would require an accuracy one order of magnitude better than is presently available for paleo-observations to conclusively rule out factor-of-2 changes in meridional transport, even when assumed available over the entire model domain. When data are available only at the margins and bottom of the model, radiocarbon is unable to constrain transport while density remains effective only when a reference velocity level is assumed. The difficulty in constraining the circulation in this idealized model indicates that placing firm bounds on past meridional transport rates will prove challenging.
    Description: The first author is supported by the NOAA Postdoctoral Program in Climate and Global Change and GG by the National Ocean Partnership Program (ECCO). Author OM acknowledges support from the National Science Foundation.
    Keywords: Tracers ; Transport ; Paleoclimatology ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 889–910, doi:10.1175/2010JPO4496.1.
    Description: This paper examines interaction between a barotropic point vortex and a steplike topography with a bay-shaped shelf. The interaction is governed by two mechanisms: propagation of topographic Rossby waves and advection by the forcing vortex. Topographic waves are supported by the potential vorticity (PV) jump across the topography and propagate along the step only in one direction, having higher PV on the right. Near one side boundary of the bay, which is in the wave propagation direction and has a narrow shelf, waves are blocked by the boundary, inducing strong out-of-bay transport in the form of detached crests. The wave–boundary interaction as well as out-of-bay transport is strengthened as the minimum shelf width is decreased. The two control mechanisms are related differently in anticyclone- and cyclone-induced interactions. In anticyclone-induced interactions, the PV front deformations are moved in opposite directions by the point vortex and topographic waves; a topographic cyclone forms out of the balance between the two opposing mechanisms and is advected by the forcing vortex into the deep ocean. In cyclone-induced interactions, the PV front deformations are moved in the same direction by the two mechanisms; a topographic cyclone forms out of the wave–boundary interaction but is confined to the coast. Therefore, anticyclonic vortices are more capable of driving water off the topography. The anticyclone-induced transport is enhanced for smaller vortex–step distance or smaller topography when the vortex advection is relatively strong compared to the wave propagation mechanism.
    Description: Y. Zhang acknowledges the support of theMIT-WHOI Joint Programin Physical Oceanography, NSF OCE-9901654 and OCE-0451086. J. Pedlosky acknowledges the support of NSF OCE- 9901654 and OCE-0451086.
    Keywords: Transport ; Eddies ; Barotropic flow ; Topographic effects ; Vortices ; Currents ; Potential vorticity ; Rossby waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 24 (2011): 4844–4858, doi:10.1175/2011JCLI4130.1.
    Description: The factors that determine the heat transport and overturning circulation in marginal seas subject to wind forcing and heat loss to the atmosphere are explored using a combination of a high-resolution ocean circulation model and a simple conceptual model. The study is motivated by the exchange between the subpolar North Atlantic Ocean and the Nordic Seas, a region that is of central importance to the oceanic thermohaline circulation. It is shown that mesoscale eddies formed in the marginal sea play a major role in determining the mean meridional heat transport and meridional overturning circulation across the sill. The balance between the oceanic eddy heat flux and atmospheric cooling, as characterized by a nondimensional number, is shown to be the primary factor in determining the properties of the exchange. Results from a series of eddy-resolving primitive equation model calculations for the meridional heat transport, overturning circulation, density of convective waters, and density of exported waters compare well with predictions from the conceptual model over a wide range of parameter space. Scaling and model results indicate that wind effects are small and the mean exchange is primarily buoyancy forced. These results imply that one must accurately resolve or parameterize eddy fluxes in order to properly represent the mean exchange between the North Atlantic and the Nordic Seas, and thus between the Nordic Seas and the atmosphere, in climate models.
    Description: This study was supported by the National Science Foundation under Grants OCE-0726339 and OCE-0850416.
    Keywords: Eddies ; Forcing ; Meridional overturning circulation ; Transport ; North Atlantic Ocean ; Seas/gulfs/bays
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 25 (2012): 5153–5172, doi:10.1175/JCLI-D-11-00463.1.
    Description: Atlantic meridional overturning circulation (AMOC) variability is documented in the Community Climate System Model, version 4 (CCSM4) preindustrial control simulation that uses nominal 1° horizontal resolution in all its components. AMOC shows a broad spectrum of low-frequency variability covering the 50–200-yr range, contrasting sharply with the multidecadal variability seen in the T85 × 1 resolution CCSM3 present-day control simulation. Furthermore, the amplitude of variability is much reduced in CCSM4 compared to that of CCSM3. Similarities as well as differences in AMOC variability mechanisms between CCSM3 and CCSM4 are discussed. As in CCSM3, the CCSM4 AMOC variability is primarily driven by the positive density anomalies at the Labrador Sea (LS) deep-water formation site, peaking 2 yr prior to an AMOC maximum. All processes, including parameterized mesoscale and submesoscale eddies, play a role in the creation of salinity anomalies that dominate these density anomalies. High Nordic Sea densities do not necessarily lead to increased overflow transports because the overflow physics is governed by source and interior region density differences. Increased overflow transports do not lead to a higher AMOC either but instead appear to be a precursor to lower AMOC transports through enhanced stratification in LS. This has important implications for decadal prediction studies. The North Atlantic Oscillation (NAO) is significantly correlated with the positive boundary layer depth and density anomalies prior to an AMOC maximum. This suggests a role for NAO through setting the surface flux anomalies in LS and affecting the subpolar gyre circulation strength.
    Description: The CCSM project is supported by NSF and the Office of Science (BER) of the U.S. Department of Energy. SGY and YOK were supported by the NOAA Climate Program Office under Climate Variability and Predictability Program Grants NA09OAR4310163 and NA10OAR4310202, respectively.
    Description: 2013-02-01
    Keywords: Meridional overturning circulation ; Coupled models ; Ocean models ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 283–300, doi:10.1175/JPO-D-11-0240.1.
    Description: Motivated by the recent interest in ocean energetics, the widespread use of horizontal eddy viscosity in models, and the promise of high horizontal resolution data from the planned wide-swath satellite altimeter, this paper explores the impacts of horizontal eddy viscosity and horizontal grid resolution on geostrophic turbulence, with a particular focus on spectral kinetic energy fluxes Π(K) computed in the isotropic wavenumber (K) domain. The paper utilizes idealized two-layer quasigeostrophic (QG) models, realistic high-resolution ocean general circulation models, and present-generation gridded satellite altimeter data. Adding horizontal eddy viscosity to the QG model results in a forward cascade at smaller scales, in apparent agreement with results from present-generation altimetry. Eddy viscosity is taken to roughly represent coupling of mesoscale eddies to internal waves or to submesoscale eddies. Filtering the output of either the QG or realistic models before computing Π(K) also greatly increases the forward cascade. Such filtering mimics the smoothing inherent in the construction of present-generation gridded altimeter data. It is therefore difficult to say whether the forward cascades seen in present-generation altimeter data are due to real physics (represented here by eddy viscosity) or to insufficient horizontal resolution. The inverse cascade at larger scales remains in the models even after filtering, suggesting that its existence in the models and in altimeter data is robust. However, the magnitude of the inverse cascade is affected by filtering, suggesting that the wide-swath altimeter will allow a more accurate determination of the inverse cascade at larger scales as well as providing important constraints on smaller-scale dynamics.
    Description: BKA received support from Office of Naval Research Grant N00014-11-1-0487, National Science Foundation (NSF) Grants OCE-0924481 and OCE- 09607820, and University of Michigan startup funds. KLP acknowledges support from Woods Hole Oceanographic Institution bridge support funds. RBS acknowledges support from NSF grants OCE-0960834 and OCE-0851457, a contract with the National Oceanography Centre, Southampton, and a NASA subcontract to Boston University. JFS and JGR were supported by the projects ‘‘Global and remote littoral forcing in global ocean models’’ and ‘‘Agesotrophic vorticity dynamics of the ocean,’’ respectively, both sponsored by the Office of Naval Research under program element 601153N.
    Description: 2013-08-01
    Keywords: Eddies ; Nonlinear dynamics ; Ocean dynamics ; Satellite observations ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 2234–2253, doi:10.1175/JPO-D-12-033.1.
    Description: Meridional velocity, mass, and heat transport in the equatorial oceans are difficult to estimate because of the nonapplicability of the geostrophic balance. For this purpose a steady-state model is utilized in the equatorial Indian Ocean using NCEP wind stress and temperature and salinity data from the World Ocean Atlas 2005 (WOA05) and Argo. The results show a Somali Current flowing to the south during the winter monsoon carrying −11.5 ± 1.3 Sv (1 Sv ≡ 106 m3 s−1) and −12.3 ± 0.3 Sv from WOA05 and Argo, respectively. In the summer monsoon the Somali Current reverses to the north transporting 16.8 ± 1.2 Sv and 19.8 ± 0.6 Sv in the WOA05 and Argo results. Transitional periods are considered together and in consequence, there is not a clear Somali Current present in this period. Model results fit with in situ measurements made around the region, although Argo data results are quite more realistic than WOA05 data results.
    Description: This study has been partly funded by the MOC Project (CTM 2008- 06438) and the Spanish contribution to the Argo network (AC2009 ACI2009-0998), financed by the Spanish Government and Feder.
    Description: 2013-06-01
    Keywords: Indian Ocean ; Subtropics ; Currents ; Ocean circulation ; Transport ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 2127-2140, doi:10.1175/JPO-D-18-0035.1.
    Description: Shipboard hydrographic and velocity measurements collected in summer 2014 are used to study the evolution of the freshwater coastal current in southern Greenland as it encounters Cape Farewell. The velocity structure reveals that the coastal current maintains its identity as it flows around the cape and bifurcates such that most of the flow is diverted to the outer west Greenland shelf, while a small portion remains on the inner shelf. Taking into account this inner branch, the volume transport of the coastal current is conserved, but the freshwater transport decreases on the west side of Cape Farewell. A significant amount of freshwater appears to be transported off the shelf where the outer branch flows adjacent to the shelfbreak circulation. It is argued that the offshore transposition of the coastal current is caused by the flow following the isobaths as they bend offshore because of the widening of the shelf on the west side of Cape Farewell. An analysis of the potential vorticity shows that the subsequent seaward flux of freshwater can be enhanced by instabilities of the current. This set of circumstances provides a pathway for the freshest water originating from the Arctic, as well as runoff from the Greenland ice sheet, to be fluxed into the interior Labrador Sea where it could influence convection in the basin.
    Description: Funding for this project was provided by the National Science Foundation under Grant OCE-1259618.
    Description: 2019-03-11
    Keywords: Boundary currents ; Coastal flows ; Instability ; Ocean circulation ; Potential vorticity ; Transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 880–895, doi:10.1175/2007JPO3750.1.
    Description: The oceanic response to overflows is explored using a two-layer isopycnal model. Overflows enter the open ocean as dense gravity currents that flow along and down the continental slope. While descending the slope, overflows typically double their volume transport by entraining upper oceanic water. The upper oceanic layer must balance this loss of mass, and the resulting convergent flow produces significant vortex stretching. Overflows thus represent an intense and localized mass and vorticity forcing for the upper ocean. In this study, simulations show that the upper ocean responds to the overflow-induced forcing by establishing topographic β plumes that are aligned more or less along isobaths and that have a transport that is typically a few times larger than that of the overflows. For the topographic β plume driven by the Mediterranean overflow, the occurrence of eddies near Cape St. Vincent, Portugal, allows the topographic β plume to flow across isobaths. The modeled topographic β-plume circulation forms two transatlantic zonal jets that are analogous to the Azores Current and the Azores Countercurrent. In other cases (e.g., the Denmark Strait overflow), the same kind of circulation remains trapped along the western boundary and hence would not be readily detected.
    Description: SK’s support during the time of his Ph.D. research in the MIT/WHOI Joint Program was provided by the National Science Foundation through Grant OCE04-24741. JP and JY have also received support from the Climate Process Team on Gravity Current Entrainment, NSF Grant OCE-0611530.
    Keywords: North Atlantic Ocean ; Mediterranean region ; Ocean models ; Mass fluxes/transport ; Diapycnal mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 2341-2357, doi:10.1175/2008JPO3986.1.
    Description: Onshore volume transport (Stokes drift) due to surface gravity waves propagating toward the beach can result in a compensating Eulerian offshore flow in the surf zone referred to as undertow. Observed offshore flows indicate that wave-driven undertow extends well offshore of the surf zone, over the inner shelves of Martha’s Vineyard, Massachusetts, and North Carolina. Theoretical estimates of the wave-driven offshore transport from linear wave theory and observed wave characteristics account for 50% or more of the observed offshore transport variance in water depths between 5 and 12 m, and reproduce the observed dependence on wave height and water depth. During weak winds, wave-driven cross-shelf velocity profiles over the inner shelf have maximum offshore flow (1–6 cm s−1) and vertical shear near the surface and weak flow and shear in the lower half of the water column. The observed offshore flow profiles do not resemble the parabolic profiles with maximum flow at middepth observed within the surf zone. Instead, the vertical structure is similar to the Stokes drift velocity profile but with the opposite direction. This vertical structure is consistent with a dynamical balance between the Coriolis force associated with the offshore flow and an along-shelf “Hasselmann wave stress” due to the influence of the earth’s rotation on surface gravity waves. The close agreement between the observed and modeled profiles provides compelling evidence for the importance of the Hasselmann wave stress in forcing oceanic flows. Summer profiles are more vertically sheared than either winter profiles or model profiles, for reasons that remain unclear.
    Description: This research was funded by the Ocean Sciences Division of the National Science Foundation under Grants OCE-0241292 and OCE-0548961.
    Keywords: Continental shelf ; Transport ; Shear structure/flows ; Coastal flows ; Gravity waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1203–1221, doi:10.1175/2007JPO3768.1.
    Description: Analyses of current time series longer than 200 days from 33 sites over the Middle Atlantic Bight continental shelf reveal a consistent mean circulation pattern. The mean depth-averaged flow is equatorward, alongshelf, and increases with increasing water depth from 3 cm s−1 at the 15-m isobath to 10 cm s−1 at the 100-m isobath. The mean cross-shelf circulation exhibits a consistent cross-shelf and vertical structure. The near-surface flow is typically offshore (positive, range −3 to 6 cm s−1). The interior flow is onshore and remarkably constant (−0.2 to −1.4 cm s−1). The near-bottom flow increases linearly with increasing water depth from −1 cm s−1 (onshore) in shallow water to 4 cm s−1 (offshore) at the 250-m isobath over the slope, with the direction reversal near the 50-m isobath. A steady, two-dimensional model (no along-isobath variations in the flow) reproduces the main features of the observed circulation pattern. The depth-averaged alongshelf flow is primarily driven by an alongshelf pressure gradient (sea surface slope of 3.7 × 10−8 increasing to the north) and an opposing mean wind stress that also drives the near-surface offshore flow. The alongshelf pressure gradient accounts for both the increase in the alongshelf flow with water depth and the geostrophic balance onshore flow in the interior. The increase in the near-bottom offshore flow with water depth is due to the change in the relative magnitude of the contributions from the geostrophic onshore flow that dominates in shallow water and the offshore flow driven by the bottom stress that dominates in deeper water.
    Description: This research was funded by Ocean Sciences Division of the National Science Foundation under Grants OCE-820773, OCE-841292, and OCE-848961.
    Keywords: Ocean models ; Ocean circulation ; Continental shelf ; Currents ; In situ observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1644-1668, doi:10.1175/2007JPO3829.1.
    Description: The mean structure and time-dependent behavior of the shelfbreak jet along the southern Beaufort Sea, and its ability to transport properties into the basin interior via eddies are explored using high-resolution mooring data and an idealized numerical model. The analysis focuses on springtime, when weakly stratified winter-transformed Pacific water is being advected out of the Chukchi Sea. When winds are weak, the observed jet is bottom trapped with a low potential vorticity core and has maximum mean velocities of O(25 cm s−1) and an eastward transport of 0.42 Sv (1 Sv ≡ 106 m3 s−1). Despite the absence of winds, the current is highly time dependent, with relative vorticity and twisting vorticity often important components of the Ertel potential vorticity. An idealized primitive equation model forced by dense, weakly stratified waters flowing off a shelf produces a mean middepth boundary current similar in structure to that observed at the mooring site. The model boundary current is also highly variable, and produces numerous strong, small anticyclonic eddies that transport the shelf water into the basin interior. Analysis of the energy conversion terms in both the mooring data and the numerical model indicates that the eddies are formed via baroclinic instability of the boundary current. The structure of the eddies in the basin interior compares well with observations from drifting ice platforms. The results suggest that eddies shed from the shelfbreak jet contribute significantly to the offshore flux of heat, salt, and other properties, and are likely important for the ventilation of the halocline in the western Arctic Ocean. Interaction with an anticyclonic basin-scale circulation, meant to represent the Beaufort gyre, enhances the offshore transport of shelf water and results in a loss of mass transport from the shelfbreak jet.
    Description: This study was supported by the National Science Foundation Office of Polar Programs under Grants 0421904 and 035268 (MS), and by the Office of Naval Research Grant N00014-02-1-0317 (RP and PF). Analysis by AJP was supported by the Office of Naval Research under Grant N00014-97-1-0135 and by the National Science Foundation under Grant OPP-9815303.
    Keywords: Arctic ; Eddies ; Transport ; Currents ; Jets
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 1103-1121, doi:10.1175/jpo3041.1.
    Description: The role of mesoscale oceanic eddies is analyzed in a quasigeostrophic coupled ocean–atmosphere model operating at a large Reynolds number. The model dynamics are characterized by decadal variability that involves nonlinear adjustment of the ocean to coherent north–south shifts of the atmosphere. The oceanic eddy effects are diagnosed by the dynamical decomposition method adapted for nonstationary external forcing. The main effects of the eddies are an enhancement of the oceanic eastward jet separating the subpolar and subtropical gyres and a weakening of the gyres. The flow-enhancing effect is due to nonlinear rectification driven by fluctuations of the eddy forcing. This is a nonlocal process involving generation of the eddies by the flow instabilities in the western boundary current and the upstream part of the eastward jet. The eddies are advected by the mean current to the east, where they backscatter into the rectified enhancement of the eastward jet. The gyre-weakening effect, which is due to the time-mean buoyancy component of the eddy forcing, is a result of the baroclinic instability of the westward return currents. The diagnosed eddy forcing is parameterized in a non-eddy-resolving ocean model, as a nonstationary random process, in which the corresponding parameters are derived from the control coupled simulation. The key parameter of the random process—its variance—is related to the large-scale flow baroclinicity index. It is shown that the coupled model with the non-eddy-resolving ocean component and the parameterized eddies correctly simulates climatology and low-frequency variability of the control eddy-resolving coupled solution.
    Description: Funding for this work came from NSF Grants OCE 02-221066 and OCE 03-44094. Additional funding for PB was provided by the U.K. Royal Society Fellowship and by WHOI Grants 27100056 and 52990035.
    Keywords: Ocean dynamics ; Ocean models ; Eddies ; Jets ; Coupled models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography. 37 (2007): 2509-2533, doi:10.1175/JPO3123.1.
    Description: Twelve years of historical hydrographic data, spanning the period 1990–2001, are analyzed to examine the along-stream evolution of the western North Atlantic Ocean shelfbreak front and current, following its path between the west coast of Greenland and the Middle Atlantic Bight. Over 700 synoptic sections are used to construct a mean three-dimensional description of the summer shelfbreak front and to quantify the along-stream evolution in properties, including frontal strength and grounding position. Results show that there are actually two fronts in the northern part of the domain—a shallow front located near the shelf break and a deeper front centered in the core of Irminger Water over the upper slope. The properties of the deeper Irminger front erode gradually to the south, and the front disappears entirely near the Grand Banks of Newfoundland. The shallow shelfbreak front is identifiable throughout the domain, and its properties exhibit large variations from north to south, with the largest changes occurring near the Tail of the Grand Banks. Despite these structural changes, and large variations in topography, the foot of the shelfbreak front remains within 20 km of the shelf break. The hydrographic sections are also used to examine the evolution of the baroclinic velocity field and its associated volume transport. The baroclinic velocity structure consists of a single velocity core that is stronger and penetrates deeper where the Irminger front is present. The baroclinic volume transport decreases by equal amounts at the southern end of the Labrador Shelf and at the Tail of the Grand Banks. Overall, the results suggest that the Grand Banks is a geographically critical location in the North Atlantic shelfbreak system.
    Description: This work was supported by the National Science Foundation under Grants OCE00- 95261 (PF) and OCE-0450658 (RP).
    Keywords: Continental shelf ; Currents ; Atlantic Ocean ; Fronts ; Transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 1177-1191, doi:10.1175/jpo3054.1.
    Description: The stability of baroclinic Rossby waves in large ocean basins is examined, and the quasigeostrophic (QG) results of LaCasce and Pedlosky are generalized. First, stability equations are derived for perturbations on large-scale waves, using the two-layer shallow-water system. These equations resemble the QG stability equations, except that they retain the variation of the internal deformation radius with latitude. The equations are solved numerically for different initial conditions through eigenmode calculations and time stepping. The fastest-growing eigenmodes are intensified at high latitudes, and the slower-growing modes are intensified at lower latitudes. All of the modes have meridional scales and growth times that are comparable to the deformation radius in the latitude range where the eigenmode is intensified. This is what one would expect if one had applied QG theory in latitude bands. The evolution of large-scale waves was then simulated using the Regional Ocean Modeling System primitive equation model. The results are consistent with the theoretical predictions, with deformation-scale perturbations growing at rates inversely proportional to the local deformation radius. The waves succumb to the perturbations at the mid- to high latitudes, but are able to cross the basin at low latitudes before doing so. Also, the barotropic waves produced by the instability propagate faster than the baroclinic long-wave speed, which may explain the discrepancy in speeds noted by Chelton and Schlax.
    Description: PEI was supported by a postdoctoral grant from the Norwegian Research Council, JHL was supported under the Norwegian NOCLIM II program, and JP was partly supported by NSF OCE 0451086.
    Keywords: Rossby waves ; Ocean models ; Barotropic flows ; Baroclinic flows
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 36 (2006): 2185-2198, doi:10.1175/JPO2967.1.
    Description: The time-dependent response of an ocean basin to the imposition of cooling (or heating) is examined in the context of a quasigeostrophic, two-layer model on the beta plane. The focus is on the structure and magnitude of the vertical motion and its response to both a switch-on forcing and a periodic forcing. The model employed is a time-dependent version of an earlier model used to discuss the intensification of sinking in the region of the western boundary current. The height of the interface of the two-layer model serves as an analog of temperature, and the vertical velocity at the interface consists of a cross-isopycnal velocity modeled in terms of a relaxation to a prescribed interface height, an adiabatic representation of eddy thickness fluxes parameterized as lateral diffusion of thickness, and the local vertical motion of the interface itself. The presence of time dependence adds additional dynamical features to the problem, in particular the emergence of low-frequency, weakly damped Rossby basin modes. If the buoyancy forcing is zonally uniform the basin responds to a switch-on of the forcing by coming into steady-state equilibrium after the passage of a single baroclinic Rossby wave. If the forcing is nonuniform in the zonal direction, a sequence of Rossby basin modes is excited and their decay is required before the basin achieves a steady state. For reasonable parameter values the boundary layers, in which both horizontal and vertical circulations are closed, are quasi-steady and respond to the instantaneous state of the interior. As in the steady problem the flow is sensitive to small nonquasigeostrophic mass fluxes across the perimeter of the basin. These fluxes generally excite basin modes as well. The basin modes will also be weakly excited if the beta-plane approximation is relaxed. The response to periodic forcing is also examined, and the sensitivity of the response to the structure of the forcing is similar to the switch-on problem.
    Description: This research was supported in part by NSF Grant OCE-9901654,
    Keywords: Vertical motion ; Ocean dynamics ; Buoyancy ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 25 (2012): 343–349, doi:10.1175/JCLI-D-11-00059.1.
    Description: The Equatorial Undercurrent (EUC) is a major component of the tropical Pacific Ocean circulation. EUC velocity in most global climate models is sluggish relative to observations. Insufficient ocean resolution slows the EUC in the eastern Pacific where nonlinear terms should dominate the zonal momentum balance. A slow EUC in the east creates a bottleneck for the EUC to the west. However, this bottleneck does not impair other major components of the tropical circulation, including upwelling and poleward transport. In most models, upwelling velocity and poleward transport divergence fall within directly estimated uncertainties. Both of these transports play a critical role in a theory for how the tropical Pacific may change under increased radiative forcing, that is, the ocean dynamical thermostat mechanism. These findings suggest that, in the mean, global climate models may not underrepresent the role of equatorial ocean circulation, nor perhaps bias the balance between competing mechanisms for how the tropical Pacific might change in the future. Implications for model improvement under higher resolution are also discussed.
    Description: KBK gratefully acknowledges the J. Lamar Worzel Assistant Scientist Fund. GCJ is supported by NOAA’s Office of Oceanic and Atmospheric Research. RM gratefully acknowledges the generous support and hospitality of the Divecha Centre for Climate Change and CAOS at IISc, Bangalore, and partial support by NASA PO grants.
    Description: 2012-07-01
    Keywords: Tropics ; Ocean circulation ; Ocean dynamics ; Climate models ; Coupled models ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 1083–1098, doi:10.1175/JPO-D-11-015.1.
    Description: Here, the response of a coastally trapped buoyant plume to downwelling-favorable wind forcing is explored using a simplified two-dimensional numerical model and a prognostic theory for the resulting width, depth, and density anomaly and along-shelf transport of the plume. Consistent with the numerical simulations, the analytical model shows that the wind causes mixing of the plume water and that the forced cross-shelf circulation can also generate significant deepening and surface narrowing, as well as increased along-shelf transport. The response is due to a combination of the purely advective process that leads to the steepening of the isopycnals and the entrainment of ambient water into the plume. The advective component depends on the initial plume geometry: plumes that have a large fraction of their total width in contact with the bottom (“bottom trapped”) suffer relatively small depth and width changes compared to plumes that have a large fraction of their total width detached from the bottom (“surface trapped”). Key theoretical parameters are Wγ/Wα, the ratio of the width of the plume detached from the bottom to the width of the plume in contact with it, and the ratio of the wind-generated mixed layer δe to the initial plume depth hp, which determines the amount of water initially entrained into the plume. The model results also show that the cross-shelf circulation can be strongly influenced by the wind-driven response in combination with the geostrophic shear of the plume. The continuous entrainment into the plume, as well as transient events, is also discussed.
    Description: This work has been supported by FONDECYT Grant 1070501. S. Lentz received support by theNational Science Foundation GrantOCE-0751554. C. Moffat had additional support from the National Science Foundation Office of Polar Programs through U.S. Southern Ocean GLOBEC Grants OPP 99-10092 and 06- 23223.
    Description: 2013-01-01
    Keywords: Baroclinic flows ; Boundary currents ; Coastal flows ; Upwelling/downwelling ; Wind ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 25 (2012): 3549–3565, doi:10.1175/JCLI-D-11-00320.1.
    Description: The recently released NCEP Climate Forecast System Reanalysis (CFSR) is used to examine the response to ENSO in the northeast tropical Pacific Ocean (NETP) during 1979–2009. The normally cool Pacific sea surface temperatures (SSTs) associated with wind jets through the gaps in the Central American mountains at Tehuantepec, Papagayo, and Panama are substantially warmer (colder) than the surrounding ocean during El Niño (La Niña) events. Ocean dynamics generate the ENSO-related SST anomalies in the gap wind regions as the surface fluxes damp the SSTs anomalies, while the Ekman heat transport is generally in quadrature with the anomalies. The ENSO-driven warming is associated with large-scale deepening of the thermocline; with the cold thermocline water at greater depths during El Niño in the NETP, it is less likely to be vertically mixed to the surface, particularly in the gap wind regions where the thermocline is normally very close to the surface. The thermocline deepening is enhanced to the south of the Costa Rica Dome in the Papagayo region, which contributes to the local ENSO-driven SST anomalies. The NETP thermocline changes are due to coastal Kelvin waves that initiate westward-propagating Rossby waves, and possibly ocean eddies, rather than by local Ekman pumping. These findings were confirmed with regional ocean model experiments: only integrations that included interannually varying ocean boundary conditions were able to simulate the thermocline deepening and localized warming in the NETP during El Niño events; the simulation with variable surface fluxes, but boundary conditions that repeated the seasonal cycle, did not.
    Description: This research was supported by grants from the NOAA office of Global Programs and the NSF Climate and Global Dynamics Division.
    Description: 2012-11-15
    Keywords: North Pacific Ocean ; Atmosphere-ocean interaction ; ENSO ; Thermocline circulation ; Waves, oceanic ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 905–919, doi:10.1175/JPO-D-12-0150.1.
    Description: Interactions between vortices and a shelfbreak current are investigated, with particular attention to the exchange of waters between the continental shelf and slope. The nonlinear, three-dimensional interaction between an anticyclonic vortex and the shelfbreak current is studied in the laboratory while varying the ratio ε of the maximum azimuthal velocity in the vortex to the maximum alongshelf velocity in the shelfbreak current. Strong interactions between the shelfbreak current and the vortex are observed when ε 〉 1; weak interactions are found when ε 〈 1. When the anticyclonic vortex comes in contact with the shelfbreak front during a strong interaction, a streamer of shelf water is drawn offshore and wraps anticyclonically around the vortex. Measurements of the offshore transport and identification of the particle trajectories in the shelfbreak current drawn offshore from the vortex allow quantification of the fraction of the shelfbreak current that is deflected onto the slope; this fraction increases for increasing values of ε. Experimental results in the laboratory are strikingly similar to results obtained from observations in the Middle Atlantic Bight (MAB); after proper scaling, measurements of offshore transport and offshore displacement of shelf water for vortices in the MAB that span a range of values of ε agree well with laboratory predictions.
    Description: Laboratory work was supported by the National Science Foundation through Grant OCE- 0081756. Glider observations in March–April 2006 were supported by the National Science Foundation through Grant OCE-0220769. Glider observations in July– October 2007 were supported by a grant from Raytheon. RET was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Cooperative Institute for the North Atlantic Region. The REMUS observations were funded by the Office of Naval Research. GGG was supported by the National Science Foundation through Grant OCE-1129125 for analysis and writing.
    Description: 2013-11-01
    Keywords: Continental shelf/slope ; Eddies ; Fronts ; Transport ; Laboratory/physical models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 606–612, doi:10.1175/JPO-D-14-0221.1.
    Description: Mesoscale intrathermocline lenses are observed throughout the World Ocean and are commonly attributed to water mass anomalies advected from a distant origin. An alternative mechanism of local generation is offered herein, in which eddy–wind interaction can create lens-shaped disturbances in the thermocline. Numerical simulations illustrate how eddy–wind-driven upwelling in anticyclones can yield a convex lens reminiscent of a mode water eddy, whereas eddy–wind-driven downwelling in cyclones produces a concave lens that thins the mode water layer (a cyclonic “thinny”). Such transformations should be observable with long-term time series in the interiors of mesoscale eddies.
    Description: Support of this research by the National Science Foundation and National Aeronautics and Space Administration is gratefully acknowledged.
    Description: 2015-08-01
    Keywords: Circulation/ Dynamics ; Eddies ; Ekman pumping/transport ; Mesoscale processes ; Models and modeling ; Ocean models ; Primitive equations model
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 3011-3029, doi:10.1175/JPO-D-15-0248.1.
    Description: Seasonal variability of the tropical Atlantic circulation is dominated by the annual cycle, but semiannual variability is also pronounced, despite weak forcing at that period. This study uses multiyear, full-depth velocity measurements from the central equatorial Atlantic to analyze the vertical structure of annual and semiannual variations of zonal velocity. A baroclinic modal decomposition finds that the annual cycle is dominated by the fourth mode and the semiannual cycle is dominated by the second mode. Similar local behavior is found in a high-resolution general circulation model. This simulation reveals that the annual and semiannual cycles of the respective dominant baroclinic modes are associated with characteristic basinwide structures. Using an idealized, linear, reduced-gravity model to simulate the dynamics of individual baroclinic modes, it is shown that the observed circulation variability can be explained by resonant equatorial basin modes. Corollary simulations of the reduced-gravity model with varying basin geometry (i.e., square basin vs realistic coastlines) or forcing (i.e., spatially uniform vs spatially variable wind) show a structural robustness of the simulated basin modes. A main focus of this study is the seasonal variability of the Equatorial Undercurrent (EUC) as identified in recent observational studies. Main characteristics of the observed EUC including seasonal variability of transport, core depth, and maximum core velocity can be explained by the linear superposition of the dominant equatorial basin modes as obtained from the reduced-gravity model.
    Description: This study was supported by the Deutsche Forschungsgemeinschaft as part of the Sonderforschungsbereich 754 (SFB754) ‘‘Climate–Biogeochemistry Interactions in the Tropical Ocean’’ and through several research cruises with R/V Meteor, R/V Maria S. Merian, andR/VL’Atalante by the German Federal Ministry of Education and Research as part of the cooperative projects RACE (03F0605B) and SACUS (03G0837A) and by European Union 7th Framework Programme (FP7 2007–13) under Grant Agreement 603521 PREFACE project.
    Keywords: Atlantic Ocean ; Ocean circulation ; In situ oceanic observations ; Ocean models ; Seasonal cycle ; Tropical variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 883-904, doi:10.1175/JPO-D-17-0084.1.
    Description: The dynamics controlling the along-valley (cross shelf) flow in idealized shallow shelf valleys with small to moderate Burger number are investigated, and analytical scales of the along-valley flows are derived. This paper follows Part I, which shows that along-shelf winds in the opposite direction to coastal-trapped wave propagation (upwelling regime) force a strong up-valley flow caused by the formation of a lee wave. In contrast, along-shelf winds in the other direction (downwelling regime) do not generate a lee wave and consequently force a relatively weak net down-valley flow. The valley flows in both regimes are cyclostrophic with 0(1) Rossby number. A major difference between the two regimes is the along-shelf length scales of the along-valley flows L. In the upwelling regime Ls, depends on the valley width W, and the wavelength lambda(1w) of the coastal-trapped lee wave arrested by the along-shelf flow U-s. In the downwelling regime L depends on the inertial length scale U-s|'f and W-c. The along-valley velocity scale in the upwelling regime, given by V-u approximate to root pi H-c/H-s integral W-c lambda(1w)/2 pi L-x (1+L-x(2)/L-c(2))(-1) e(-(pi Wc)/(lambda 1w),) is based on potential vorticity (PV) conservation and lee-wave dynamics (Hs and H, are the shelf and valley depth scales, respectively, and fis the Coriolis parameter). The velocity scale in the downwelling regime, given by |v(d)| approximate to (H-s/H-s)[1 + (L-x(2)/L-x(2))](-1) fL, is based on PV conservation. The velocity scales are validated by the numerical sensitivity simulations and can be useful for observational studies of along -valley transports. The work provides a framework for investigating cross -shelf transport induced by irregular shelf bathymetry and calls for future studies of this type under realistic environmental conditions and over a broader parameter space.
    Description: Both WGZ and SJL were supported by the National Science Foundation (NSF) through Grant OCE 1154575.WGZis also supported by the NSF Grant OCE 1634965 and SJL by NSF Grant OCE 1558874.
    Description: 2018-10-16
    Keywords: Ocean circulation ; Topographic effects ; Upwelling/downwelling ; Waves, oceanic ; Wind stress ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography. 37 (2007): 2363-2386, doi:10.1175/jpo3118.1.
    Description: Intrinsic low-frequency variability is studied in the idealized, quasigeostrophic, midlatitude, wind-driven ocean gyres operating at large Reynolds number. A robust decadal variability mode driven by the transient mesoscale eddies is found and analyzed. The variability is a turbulent phenomenon, which is driven by the competition between the eddy rectification process and the potential vorticity anomalies induced by changes of the intergyre transport
    Description: Funding for Pavel Berloff was provided by NSF Grants OCE-0091836 and OCE- 0344094, by the U.K. Royal Society Fellowship, and by the Newton Trust Award, A. M. Hogg was supported by an Australian Research Council Postdoctoral Fellowship (DP0449851) during this work, and William K. Dewar was supported by NSF Grants OCE-0424227 and OCE-0550139.
    Keywords: Turbulence ; Gyres ; Transport ; Potential vorticity ; Mesoscale processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography. 37 (2007): 2251-2266, doi:10.1175/jpo3116.1.
    Description: This paper examines the role of potential vorticity (PV) balance in source- and sink-driven flows between two basins. As shown in previous studies, PV advection into a basin, say a positive PV advection, requires a negative frictional torque to maintain a steady PV balance. This sense of torque may be provided by a cyclonic boundary current within the basin. The PV advection through a channel is due almost entirely to advection of planetary PV, f/H, where f is the Coriolis parameter and H is the column thickness. Therefore a localized change of depth, and thus H in the channel, directly affects the PV transport and will result in a basinwide change of the circulation pattern. For example, if the channel depth is made shallower while holding the transport fixed, the PV advection is then increased and the result may be a strong recirculation within the basin, as much as two orders of magnitude greater than the transport through the channel. When the basins are connected by two channels at different latitudes or with different sill depths, the throughflow is found to be divided between the two channels in a way that satisfies the integral constraint for flow around an island. The partition of the flow between two channels appears to be such as to minimize the net frictional torque. In still another set of experiments, the large-scale pressure difference (layer thickness) between the basins is specified and held fixed, while the throughflow is allowed to vary in response to changes in the frictional torque. The interbasin transport is strongly influenced by the length of the boundary or the magnitude of the viscosity in the sense that a greater PV frictional torque allows a greater PV transport and vice versa. This result is counterintuitive, if it is assumed that the throughflow is determined by viscous drag within the channel but is a straightforward consequence of the basin-scale PV balance. Thus, the important frictional effect in these experiments is on the basin-scale flow and not on the channel scale.
    Description: This study is supported by NSF Grants OCE-0611530 and OCE-0351055. Price was supported in part by the U.S. Office of Naval Research through Grant 13010900.
    Keywords: Potential vorticity ; Coriolis effect ; Boundary currents ; Advection ; Friction ; Transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 855–868, doi:10.1175/JPO-D-10-05010.1.
    Description: Data from the Hudson River estuary demonstrate that the tidal variations in vertical salinity stratification are not consistent with the patterns associated with along-channel tidal straining. These observations result from three additional processes not accounted for in the traditional tidal straining model: 1) along-channel and 2) lateral advection of horizontal gradients in the vertical salinity gradient and 3) tidal asymmetries in the strength of vertical mixing. As a result, cross-sectionally averaged values of the vertical salinity gradient are shown to increase during the flood tide and decrease during the ebb. Only over a limited portion of the cross section does the observed stratification increase during the ebb and decrease during the flood. These observations highlight the three-dimensional nature of estuarine flows and demonstrate that lateral circulation provides an alternate mechanism that allows for the exchange of materials between surface and bottom waters, even when direct turbulent mixing through the pycnocline is prohibited by strong stratification.
    Description: The funding for this research was obtained from NSF Grant OCE-08-25226.
    Description: 2012-11-01
    Keywords: Mixing ; Ocean circulation ; Shear structure/flows ; Transport ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1764-1779, doi:10.1175/2008JPO3921.1.
    Description: Middepth, time-mean circulation in the western North Pacific Ocean (28°–45°N, 140°–165°E) is investigated using drift information from the profiling floats deployed in the Kuroshio Extension System Study (KESS) and the International Argo programs. A well-defined, cyclonic recirculation gyre (RG) is found to exist north of the Kuroshio Extension jet, confined zonally between the Japan Trench (145°E) and the Shatsky Rise (156°E), and bordered to the north by the subarctic boundary along 40°N. This northern RG, which is simulated favorably in the eddy-resolving OGCM for the Earth Simulator (OFES) hindcast run model, has a maximum volume transport at 26.4 Sv across 159°E and its presence persists on the interannual and longer time scales. An examination of the time-mean x-momentum balance from the OFES hindcast run output reveals that horizontal convergence of Reynolds stresses works to accelerate both the eastward-flowing Kuroshio Extension jet and a westward mean flow north of the meandering jet. The fact that the northern RG is eddy driven is further confirmed by examining the turbulent Sverdrup balance, in which convergent eddy potential vorticity fluxes are found to induce the cyclonic RG across the background potential vorticity gradient field. For the strength of the simulated northern RG, the authors find the eddy dissipation effect to be important as well.
    Description: This study was supported by NSF through Grant OCE-0220680 (UH) and OCE-0220161 (WHOI).
    Keywords: Gyres ; Ocean circulation ; Profilers ; Jets ; Transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 2639-2661, doi:10.1175/2008JPO3946.1.
    Description: A theory for the exchange between a rotating, buoyancy-forced marginal sea and an ocean is developed and tested numerically. Cooling over the marginal sea leads to sinking and sets up a two-layer exchange flow, with a warm surface layer entering from the ocean and a cool layer exiting at depth. The connecting strait is sufficiently narrow and shallow to cause the exchange flow to be hydraulically controlled. The incoming surface layer forms a baroclinically unstable boundary current that circles the marginal sea in a cyclonic sense and feeds heat to the interior by way of eddies. Consistent with the overall heat and volume balances for the marginal sea, there is a continuous family of hydraulically controlled states with critical flow at the most constricted section of the strait. Included in this family is a limiting “maximal-exchange” solution with two sections of hydraulic control in the strait and with fixed layer depths at the most constricted section. The state of exchange for a given forcing is predicted using a theory that assumes energy conservation over a certain path connecting the strait to the marginal sea or, in some cases, the ocean. Depending on the configuration of the exchange, long-wave information may be blocked from entering the strait from the marginal sea, from the open ocean, or both. The scenario that holds determines what is predicted and what needs to be input. Numerical tests of the prediction for the temperature difference and the state of exchange are carried out for straits with a pure contraction in width and for a constant width strait with a topographic sill. The comparison is reasonable in most cases, though the numerical model is not able to reproduce cases of multiple states predicted by the theory for certain forcing values. The analytical model is an alternative to the Price and Yang and Siddall et al. models of a marginal sea outflow.
    Description: This work was supported by the National Science Foundation under Grants OCE-0525729 and OCE-0423975.
    Keywords: Ocean circulation ; Coastlines ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 23 (2010): 4841–4855, doi:10.1175/2010JCLI3273.1.
    Description: A 1-Myr-long time-dependent solution of a zonally averaged ocean–atmosphere model subject to Milankovitch forcing is examined to gain insight into long-term changes in the planetary-scale meridional moisture flux in the atmosphere. The model components are a one-dimensional (latitudinal) atmospheric energy balance model with an active hydrological cycle and an ocean circulation model representing four basins (Atlantic, Indian, Pacific, and Southern Oceans). This study finds that the inclusion of an active hydrological cycle does not significantly modify the responses of annual-mean air and ocean temperatures to Milankovitch forcing found in previous integrations with a fixed hydrological cycle. Likewise, the meridional overturning circulation of the North Atlantic Ocean is not significantly affected by hydrological changes. Rather, it mainly responds to precessionally driven variations of ocean temperature in subsurface layers (between 70- and 500-m depth) of this basin. On the other hand, annual and zonal means of evaporation rate and meridional flux of moisture in the atmosphere respond notably to obliquity-driven changes in the meridional gradient of annual-mean insolation. Thus, when obliquity is decreased (increased), the meridional moisture flux in the atmosphere is intensified (weakened). This hydrological response is consistent with deuterium excess records from polar ice cores, which are characterized by dominant obliquity cycles.
    Description: A. A. thanks the Global Environmental and Climate Change Centre of McGill University for a Network Grant that made possible an enriching twoweek stay at WHOI during June 2007. O. M. acknowledges support from theU.S.National Science Foundation. Support from a Canadian NSERC Discovery Grant awarded to L.A.M. is gratefully acknowledged.
    Keywords: Forcing ; Moisture ; Fluxes ; Ocean models ; Coupled models ; Southern Ocean ; Pacific Ocean ; Atlantic Ocean ; Indian Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 3162-3175, doi:10.1175/2009JPO4239.1.
    Description: This study analyzes anisotropic properties of the material transport by eddies and eddy-driven zonal jets in a general circulation model of the North Atlantic through the analysis of Lagrangian particle trajectories. Spreading rates—defined here as half the rate of change in the particle dispersion—in the zonal direction systematically exceed the meridional rates by an order of magnitude. Area-averaged values for the upper-ocean zonal and meridional spreading rates are approximately 8100 and 1400 m2 s−1, respectively, and in the deep ocean they are 2400 and 200 m2 s−1. The results demonstrate that this anisotropy is mainly due to the action of the transient eddies and not to the shear dispersion associated with the time-mean jets. This property is consistent with the fact that eddies in this study have zonally elongated shapes. With the exception of the upper-ocean subpolar gyre, eddies also cause the superdiffusive zonal spreading, significant variations in the spreading rate in the vertical and meridional directions, and the difference between the westward and eastward spreading.
    Description: Funding for IK was provided by NSF Grants OCE 0346178, 0749722, and 0842834. Funding for PB was provided by NSF Grants OCE 0344094 and OCE 0725796 and by the research grant from the Newton Trust of the University of Cambridge. For JP the acknowledgement is to NSF OCE-0451086.
    Keywords: Eddies ; Transport ; Currents ; North Atlantic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 675-690, doi:10.1175/2008JPO3975.1.
    Description: Motivated by observations of surface drifters in the Adriatic Sea, transport in a three-gyre system is studied with the aid of dynamical systems techniques. Particular attention is paid to the issue of intergyre transport. The velocity field is assumed to be two-dimensional and incompressible and composed of a steady three-gyre background flow on which a time-dependent perturbation is superimposed. Two systems of this type are considered: 1) an observationally motivated, analytically prescribed model consisting of a steady background on which a multiperiodic time-dependent perturbation is superimposed, and 2) an observationally based model of the Adriatic Sea consisting of the mean surface circulation derived from surface drifter trajectories on which a time-dependent altimetry-based perturbation velocity field is superimposed. It is shown that for a small perturbation to the steady three-gyre background, two of the gyres exchange no fluid with the third gyre. When the perturbation strength exceeds a certain threshold, transport between all three gyres occurs. This behavior is described theoretically, illustrated using the analytic model and shown to be consistent with the observationally based model of the Adriatic. The relevance of the work presented to more complicated multiple-gyre problems is discussed.
    Description: This work was supported by the National Science Foundation Grants CMG0417425 and CMG0825547.
    Keywords: Transport ; Gyres ; Mediterranean region ; Ocean circulation ; Lagrangian circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 2679–2695, doi:10.1175/2010JPO4395.1.
    Description: Observations of stratification and currents between June 2007 and March 2009 reveal a strong overflow between 400- and 570-m depth from the Panay Strait into the Sulu Sea. The overflow water is derived from approximately 400 m deep in the South China Sea. Temporal mean velocity is greater than 0.75 m s−1 at 50 m above the 570-m Panay Sill. Empirical orthogonal function analysis of a mooring time series shows that the flow is dominated by the bottom overflow current with little seasonal variance. The overflow does not descend below 1250 m in the Sulu Sea but rather settles above high-salinity deep water derived from the Sulawesi Sea. The mean observed overflow transport at the sill is 0.32 × 106 m3 s−1. The observed transport was used to calculate a bulk diapycnal diffusivity of 4.4 × 10−4 m2 s−1 within the Sulu Sea slab (575–1250 m) ventilated from Panay Strait. Analysis of Froude number variation across the sill shows that the flow is hydraulically controlled. A suitable hydraulic control model shows overflow transport equivalent to the observed overflow. Thorpe-scale estimates show turbulent dissipation rates up to 5 × 10−7 W kg−1 just downstream of the supercritical to subcritical flow transition, suggesting a hydraulic jump downstream of the sill.
    Description: This work was supported by the Office of Naval Research Grant N00014-09-1-0582 to Lamont-Doherty Earth Observatory of Columbia University; Grants ONR-13759000 and N00014-09-1-0582 to the Woods Hole Oceanographic Institution; Grant ONR-N00014-06-1-0690 to Scripps Institute of Oceanography; and a National Defense Science and Engineering Graduate Fellowship.
    Keywords: Transport ; Dynamics ; Topographic effects ; Currents ; Empirical orthogonal functions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 911–925, doi:10.1175/2011JPO4498.1.
    Description: Motivated by discrepancies between Eulerian transport estimates and the behavior of Lagrangian surface drifters, near-surface transport pathways and processes in the North Atlantic are studied using a combination of data, altimetric surface heights, statistical analysis of trajectories, and dynamical systems techniques. Particular attention is paid to the issue of the subtropical-to-subpolar intergyre fluid exchange. The velocity field used in this study is composed of a steady drifter-derived background flow, upon which a time-dependent altimeter-based perturbation is superimposed. This analysis suggests that most of the fluid entering the subpolar gyre from the subtropical gyre within two years comes from a narrow region lying inshore of the Gulf Stream core, whereas fluid on the offshore side of the Gulf Stream is largely prevented from doing so by the Gulf Stream core, which acts as a strong transport barrier, in agreement with past studies. The transport barrier near the Gulf Stream core is robust and persistent from 1992 until 2008. The qualitative behavior is found to be largely independent of the Ekman drift.
    Description: This work was supported by the National Science Foundation Grants CMG-82469600 and CMG-82579600 and by the Office of Naval Research Grant ONR-13108700.
    Keywords: Atlantic Ocean ; Transport ; Gyres ; Lagrangian circulation/transport ; Tracers ; Currents ; Meridional overturning circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 26 (2013): 9291–9312, doi:10.1175/JCLI-D-12-00566.1.
    Description: The authors compare Community Earth System Model results to marine observations for the 1990s and examine climate change impacts on biogeochemistry at the end of the twenty-first century under two future scenarios (Representative Concentration Pathways RCP4.5 and RCP8.5). Late-twentieth-century seasonally varying mixed layer depths are generally within 10 m of observations, with a Southern Ocean shallow bias. Surface nutrient and chlorophyll concentrations exhibit positive biases at low latitudes and negative biases at high latitudes. The volume of the oxygen minimum zones is overestimated. The impacts of climate change on biogeochemistry have similar spatial patterns under RCP4.5 and RCP8.5, but perturbation magnitudes are larger under RCP8.5. Increasing stratification leads to weaker nutrient entrainment and decreased primary and export production (〉30% over large areas). The global-scale decreases in primary and export production scale linearly with the increases in mean sea surface temperature. There are production increases in the high nitrate, low chlorophyll (HNLC) regions, driven by lateral iron inputs from adjacent areas. The increased HNLC export partially compensates for the reductions in non-HNLC waters (~25% offset). Stabilizing greenhouse gas emissions and climate by the end of this century (as in RCP4.5) will minimize the changes to nutrient cycling and primary production in the oceans. In contrast, continued increasing emission of CO2 (as in RCP8.5) will lead to reduced productivity and significant modifications to ocean circulation and biogeochemistry by the end of this century, with more drastic changes beyond the year 2100 as the climate continues to rapidly warm.
    Description: The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy. S.C.D. acknowledges support of Collaborative Research: Improved Regional and Decadal Predictions of the Carbon Cycle (NSF AGS-1048827). This work was supported by NSF grants (ARC-0902045 and AGS-1021776 to Moore and AGS- 1048890 to Moore, Lindsay, and Doney).
    Description: 2014-06-01
    Keywords: Climate prediction ; Forecast verification/skill ; Climate models ; Ecological models ; Model evaluation/performance ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 8059-8079, doi:10.1175/JCLI-D-17-0769.1.
    Description: We use the method of least squares with Lagrange multipliers to fit an ocean general circulation model to the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO) estimate of near sea surface temperature (NSST) at the Last Glacial Maximum (LGM; circa 23–19 thousand years ago). Compared to a modern simulation, the resulting global, last-glacial ocean state estimate, which fits the MARGO data within uncertainties in a free-running coupled ocean–sea ice simulation, has global-mean NSSTs that are 2°C lower and greater sea ice extent in all seasons in both the Northern and Southern Hemispheres. Increased brine rejection by sea ice formation in the Southern Ocean contributes to a stronger abyssal stratification set principally by salinity, qualitatively consistent with pore fluid measurements. The upper cell of the glacial Atlantic overturning circulation is deeper and stronger. Dye release experiments show similar distributions of Southern Ocean source waters in the glacial and modern western Atlantic, suggesting that LGM NSST data do not require a major reorganization of abyssal water masses. Outstanding challenges in reconstructing LGM ocean conditions include reducing effects from model biases and finding computationally efficient ways to incorporate abyssal tracers in global circulation inversions. Progress will be aided by the development of coupled ocean–atmosphere–ice inverse models, by improving high-latitude model processes that connect the upper and abyssal oceans, and by the collection of additional paleoclimate observations.
    Description: DEA was supported by a NSF Graduate Research Fellowship and NSF Grant OCE-1060735. OM acknowledges support from the NSF. GF was supported by NASA Award 1553749 and Simons Foundation Award 549931.
    Keywords: Ocean ; Abyssal circulation ; Sea surface temperature ; Paleoclimate ; Inverse methods ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 23 (2010): 6221–6233, doi:10.1175/2010JCLI3402.1.
    Description: Enhanced decadal variability in sea surface temperature (SST) centered on the Kuroshio Extension (KE) has been found in the Community Climate System Model version 3 (CCSM3) as well as in other coupled climate models. This decadal peak has higher energy than is found in nature, almost twice as large in some cases. While previous analyses have concentrated on the mechanisms for such decadal variability in coupled models, an analysis of the causes of excessive SST response to changes in wind stress has been missing. Here, a detailed comparison of the relationships between interannual changes in SST and sea surface height (SSH) as a proxy for geostrophic surface currents in the region in both CCSM3 and observations, and how these relationships depend on the mean ocean circulation, temperature, and salinity, is made. We use observationally based climatological temperature and salinity fields as well as satellite-based SSH and SST fields for comparison. The primary cause for the excessive SST variability is the coincidence of the mean KE with the region of largest SST gradients in the model. In observations, these two regions are separated by almost 500 km. In addition, the too shallow surface oceanic mixed layer in March north of the KE in the subarctic Pacific contributes to the biases. These biases are not unique to CCSM3 and suggest that mean biases in current, temperature, and salinity structures in separated western boundary current regions can exert a large influence on the size of modeled decadal SST variability.
    Description: Support for L.T. was provided by the NASA sponsored Ocean Surface Topography Science Team, under Contract 1267196 with the University of Washington, administered by the Jet Propulsion Laboratory. Support for Y.-O. K. comes from the NOAA Office of Global Programs (grant to C. Deser and Y.-O. Kwon) and the WHOI Heyman fellowship.
    Keywords: Bias ; Coupled models ; Decadal variability ; Ocean models ; Sea surface temperature ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1841–1861, doi:10.1175/JPO-D-12-0231.1.
    Description: In this idealized numerical modeling study, the composition of residual sediment fluxes in energetic (e.g., weakly or periodically stratified) tidal estuaries is investigated by means of one-dimensional water column models, with some focus on the sediment availability. Scaling of the underlying dynamic equations shows dependence of the results on the Simpson number (relative strength of horizontal density gradient) and the Rouse number (relative settling velocity) as well as impacts of the Unsteadiness number (relative tidal frequency). Here, the parameter space given by the Simpson and Rouse numbers is mainly investigated. A simple analytical model based on the assumption of stationarity shows that for small Simpson and Rouse numbers sediment flux is down estuary and vice versa for large Simpson and Rouse numbers. A fully dynamic water column model coupled to a second-moment turbulence closure model allows to decompose the sediment flux profiles into contributions from the transport flux (product of subtidal velocity and sediment concentration profiles) and the fluctuation flux profiles (tidal covariance between current velocity and sediment concentration). Three different types of bottom sediment pools are distinguished to vary the sediment availability, by defining a time scale for complete sediment erosion. For short erosion times scales, the transport sediment flux may dominate, but for larger erosion time scales the fluctuation sediment flux largely dominates the tidal sediment flux. When quarter-diurnal components are added to the tidal forcing, up-estuary sediment fluxes are strongly increased for stronger and shorter flood tides and vice versa. The theoretical results are compared to field observations in a tidally energetic inlet.
    Description: Project funding was provided by the German Research Foundation (DFG) in the framework of the Project ECOWS (Role of Estuarine Circulation for Transport of Suspended Particulate Matter in the Wadden Sea, BU 1199/11) and by the German Federal Ministry of Research and Education in the framework of the Project PACE [The future of the Wadden Sea sediment fluxes: still keeping pace with sea level rise? (FKZ 03F0634A)].
    Description: 2014-03-01
    Keywords: Channel flows ; Coastal flows ; Mixing ; Transport ; Turbulence ; Single column models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 439-459, doi:10.1175/JPO-D-15-0086.1.
    Description: The summertime California Current System (CCS) is characterized by energetic mesoscale eddies, whose sea surface temperature (SST) and surface current can significantly modify the wind stress and Ekman pumping. Relative importance of the eddy–wind interactions via SST and surface current in the CCS is examined using a high-resolution (7 km) regional coupled model with a novel coupling approach to isolate the small-scale air–sea coupling by SST and surface current. Results show that when the eddy-induced surface current is allowed to modify the wind stress, the spatially averaged surface eddy kinetic energy (EKE) is reduced by 42%, and this is primarily due to enhanced surface eddy drag and reduced wind energy transfer. In contrast, the eddy-induced SST–wind coupling has no significant impact on the EKE. Furthermore, eddy-induced SST and surface current modify the Ekman pumping via their crosswind SST gradient and surface vorticity gradient, respectively. The resultant magnitudes of the Ekman pumping velocity are comparable, but the implied feedback effects on the eddy statistics are different. The surface current-induced Ekman pumping mainly attenuates the amplitude of cyclonic and anticyclonic eddies, acting to reduce the eddy activity, while the SST-induced Ekman pumping primarily affects the propagation. Time mean–rectified change in SST is determined by the altered offshore temperature advection by the mean and eddy currents, but the magnitude of the mean SST change is greater with the eddy-induced current effect. The demonstrated remarkably strong dynamical response in the CCS system to the eddy-induced current–wind coupling indicates that eddy-induced current should play an important role in the regional coupled ocean–atmosphere system.
    Description: We thank NSF for support under GrantsOCE-0960770,OCE-1419235, andOCE-1419306. HS is grateful for the WHOI internal support from the Andrew W. Mellon Foundation Awards for Innovative Research and the additional support from the ONR We thank NSF for support under GrantsOCE-0960770,OCE-1419235, andOCE-1419306. HS is grateful for the WHOI internal support from the Andrew W. Mellon Foundation Awards for Innovative Research and the additional support from the ONR
    Description: 2016-05-30
    Keywords: Atm/Ocean Structure/ Phenomena ; Atmosphere-ocean interaction ; Ekman pumping ; Models and modeling ; Ocean models ; Regional models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(4), (2020): 887-905, doi:10.1175/JPO-D-19-0110.1.
    Description: The Equatorial Undercurrent (EUC) encounters the Galápagos Archipelago on the equator as it flows eastward across the Pacific. The impact of the Galápagos Archipelago on the EUC in the eastern equatorial Pacific remains largely unknown. In this study, the path of the EUC as it reaches the Galápagos Archipelago is measured directly using high-resolution observations obtained by autonomous underwater gliders. Gliders were deployed along three lines that define a closed region with the Galápagos Archipelago as the eastern boundary and 93°W from 2°S to 2°N as the western boundary. Twelve transects were simultaneously occupied along the three lines during 52 days in April–May 2016. Analysis of individual glider transects and average sections along each line show that the EUC splits around the Galápagos Archipelago. Velocity normal to the transects is used to estimate net horizontal volume transport into the volume. Downward integration of the net horizontal transport profile provides an estimate of the time- and areal-averaged vertical velocity profile over the 52-day time period. Local maxima in vertical velocity occur at depths of 25 and 280 m with magnitudes of (1.7 ± 0.6) × 10−5 m s−1 and (8.0 ± 1.6) × 10−5 m s−1, respectively. Volume transport as a function of salinity indicates that water crossing 93°W south (north) of 0.4°S tends to flow around the south (north) side of the Galápagos Archipelago. Comparisons are made between previous observational and modeling studies with differences attributed to effects of the strong 2015/16 El Niño event, the annual cycle of local winds, and varying longitudes between studies of the equatorial Pacific.
    Description: This work was supported by National Science Foundation (Grants OCE-1232971 and OCE-1233282) and the NASA Earth and Space Science Fellowship Program (Grant 80NSSC17K0443).
    Keywords: Tropics ; Boundary currents ; Topographic effects ; Transport ; Upwelling/downwelling ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(10), (2020): 2849-2871, https://doi.org/10.1175/JPO-D-20-0086.1.
    Description: The structure, transport, and seasonal variability of the West Greenland boundary current system near Cape Farewell are investigated using a high-resolution mooring array deployed from 2014 to 2018. The boundary current system is comprised of three components: the West Greenland Coastal Current, which advects cold and fresh Upper Polar Water (UPW); the West Greenland Current, which transports warm and salty Irminger Water (IW) along the upper slope and UPW at the surface; and the Deep Western Boundary Current, which advects dense overflow waters. Labrador Sea Water (LSW) is prevalent at the seaward side of the array within an offshore recirculation gyre and at the base of the West Greenland Current. The 4-yr mean transport of the full boundary current system is 31.1 ± 7.4 Sv (1 Sv ≡ 106 m3 s−1), with no clear seasonal signal. However, the individual water mass components exhibit seasonal cycles in hydrographic properties and transport. LSW penetrates the boundary current locally, through entrainment/mixing from the adjacent recirculation gyre, and also enters the current upstream in the Irminger Sea. IW is modified through air–sea interaction during winter along the length of its trajectory around the Irminger Sea, which converts some of the water to LSW. This, together with the seasonal increase in LSW entering the current, results in an anticorrelation in transport between these two water masses. The seasonality in UPW transport can be explained by remote wind forcing and subsequent adjustment via coastal trapped waves. Our results provide the first quantitatively robust observational description of the boundary current in the eastern Labrador Sea.
    Description: A.P., R.S.P., F.B., D.J.T., and A.L.R. were funded by Grants OCE-1259618 and OCE-1756361 from the National Science Foundation. I.L.B, F.S., and J.H. were supported by U.S. National Science Foundation Grants OCE-1258823 and OCE-1756272. Mooring data from MA2 was funded by the European Union 7th Framework Programme (FP7 2007-2013) under Grant 308299 (NACLIM) and the Horizon 2020 research and innovation program under Grant 727852 (Blue-Action). J.K. and M.O. acknowledge EU Horizon 2020 funding Grants 727852 (Blue-action) and 862626 (EuroSea) and from the German Ministry of Research and Education (RACE Program). G.W.K.M. acknowledges funding from the Natural Sciences and Engineering Research Council.
    Keywords: Boundary currents ; Convection ; Deep convection ; Transport ; In situ oceanic observations ; Seasonal cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(4), (2020): 1045-1064, doi:10.1175/JPO-D-19-0137.1.
    Description: Three simulations of the circulation in the Gulf of Mexico (the “Gulf”) using different numerical general circulation models are compared with results of recent large-scale observational campaigns conducted throughout the deep (〉1500 m) Gulf. Analyses of these observations have provided new understanding of large-scale mean circulation features and variability throughout the deep Gulf. Important features include cyclonic flow along the continental slope, deep cyclonic circulation in the western Gulf, a counterrotating pair of cells under the Loop Current region, and a cyclonic cell to the south of this pair. These dominant circulation features are represented in each of the ocean model simulations, although with some obvious differences. A striking difference between all the models and the observations is that the simulated deep eddy kinetic energy under the Loop Current region is generally less than one-half of that computed from observations. A multidecadal integration of one of these numerical simulations is used to evaluate the uncertainty of estimates of velocity statistics in the deep Gulf computed from limited-length (4 years) observational or model records. This analysis shows that the main deep circulation features identified from the observational studies appear to be robust and are not substantially impacted by variability on time scales longer than the observational records. Differences in strengths and structures of the circulation features are identified, however, and quantified through standard error analysis of the statistical estimates using the model solutions.
    Description: This work was supported by the Gulf Research Program of the National Academy of Sciences under Awards 2000006422 and 2000009966. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Gulf Research Program or the National Academy of Sciences. The authors acknowledge the GLORYS project for providing the ocean reanalysis data used in the ROMS simulation. GLORYS is jointly conducted by MERCATOR OCEAN, CORIOLIS, and CNRS/INSU. Installation, recovery, data acquisition, and processing of the CANEK group current-meter moorings were possible because of CICESE-PetróleosMexicanos Grant PEP-CICESE 428229851 and the dedicated work of the crew of the B/O Justo Sierra and scientists of the CANEK group. The authors thank Dr. Aljaz Maslo, CICESE, for assistance with analysis of model data. The Bureau of Ocean Energy Management (BOEM), U.S. Dept. of the Interior, provided funding for the Lagrangian Study of the Deep Circulation in the Gulf of Mexico and the Observations and Dynamics of the Loop Current study. HYCOM simulation data are available from the HYCOM data server (https://www.hycom.org/data/goml0pt04/expt-02pt2), MITgcm data are available from the ECCO data server (http://ecco.ucsd.edu/gom_results2.html), and the ROMS simulation data are available from GRIIDC (NA.x837.000:0001).
    Keywords: Ocean circulation ; Abyssal circulation ; Bottom currents/bottom water ; Eddies ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(11),(2020): 3331–3351, https://doi.org/10.1175/JPO-D-20-0035.1.
    Description: This study examines the generation of warm spiral structures (referred to as spiral streamers here) over Gulf Stream warm-core rings. Satellite sea surface temperature imagery shows spiral streamers forming after warmer water from the Gulf Stream or newly formed warm-core rings impinges onto old warm-core rings and then intrudes into the old rings. Field measurements in April 2018 capture the vertical structure of a warm spiral streamer as a shallow lens of low-density water winding over an old ring. Observations also show subduction on both sides of the spiral streamer, which carries surface waters downward. Idealized numerical model simulations initialized with observed water-mass densities reproduce spiral streamers over warm-core rings and reveal that their formation is a nonlinear submesoscale process forced by mesoscale dynamics. The negative density anomaly of the intruding water causes a density front at the interface between the intruding water and surface ring water, which, through thermal wind balance, drives a local anticyclonic flow. The pressure gradient and momentum advection of the local interfacial flow push the intruding water toward the ring center. The large-scale anticyclonic flow of the ring and the radial motion of the intruding water together form the spiral streamer. The observed subduction on both sides of the spiral streamer is part of the secondary cross-streamer circulation resulting from frontogenesis on the stretching streamer edges. The surface divergence of the secondary circulation pushes the side edges of the streamer away from each other, widens the warm spiral on the surface, and thus enhances its surface signal.
    Description: Authors W. G. Zhang and D. J. McGillicuddy are both supported by the National Science Foundation through Grant OCE 1657803.
    Keywords: Buoyancy ; Eddies ; Frontogenesis/frontolysis ; Mesoscale processes ; Transport ; Vertical motion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(7), (2021): 2087–2102, https://doi.org/10.1175/JPO-D-20-0255.1.
    Description: The boundary current system in the Labrador Sea plays an integral role in modulating convection in the interior basin. Four years of mooring data from the eastern Labrador Sea reveal persistent mesoscale variability in the West Greenland boundary current. Between 2014 and 2018, 197 middepth intensified cyclones were identified that passed the array near the 2000-m isobath. In this study, we quantify these features and show that they are the downstream manifestation of Denmark Strait Overflow Water (DSOW) cyclones. A composite cyclone is constructed revealing an average radius of 9 km, maximum azimuthal speed of 24 cm s−1, and a core propagation velocity of 27 cm s−1. The core propagation velocity is significantly smaller than upstream near Denmark Strait, allowing them to trap more water. The cyclones transport a 200-m-thick lens of dense water at the bottom of the water column and increase the transport of DSOW in the West Greenland boundary current by 17% relative to the background flow. Only a portion of the features generated at Denmark Strait make it to the Labrador Sea, implying that the remainder are shed into the interior Irminger Sea, are retroflected at Cape Farewell, or dissipate. A synoptic shipboard survey east of Cape Farewell, conducted in summer 2020, captured two of these features that shed further light on their structure and timing. This is the first time DSOW cyclones have been observed in the Labrador Sea—a discovery that could have important implications for interior stratification.
    Description: A. P. and R. S. P. were funded by National Science Foundation Grants OCE-1259618 and OCE-1756361. I. L. B. and F. S. were funded by National Science Foundation Grants OCE-1258823 and OCE-1756272. N. P. H. was supported by the Natural Environment Research Council U.K. OSNAP program (NE/K010875/1 and NE/K010700/1). M. A. S. was supported by NSF Grants OCE-1558742 and OPP-1822334.
    Description: 2021-12-08
    Keywords: Boundary currents ; Eddies ; Transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 602–615, doi:10.1175/JPO-D-12-055.1.
    Description: The ocean interior stratification and meridional overturning circulation are largely sustained by diapycnal mixing. The breaking of internal tides is a major source of diapycnal mixing. Many recent climate models parameterize internal-tide breaking using the scheme of St. Laurent et al. While this parameterization dynamically accounts for internal-tide generation, the vertical distribution of the resultant mixing is ad hoc, prescribing energy dissipation to decay exponentially above the ocean bottom with a fixed-length scale. Recently, Polzin formulated a dynamically based parameterization, in which the vertical profile of dissipation decays algebraically with a varying decay scale, accounting for variable stratification using Wentzel–Kramers–Brillouin (WKB) stretching. This study compares two simulations using the St. Laurent and Polzin formulations in the Climate Model, version 2G (CM2G), ocean–ice–atmosphere coupled model, with the same formulation for internal-tide energy input. Focusing mainly on the Pacific Ocean, where the deep low-frequency variability is relatively small, the authors show that the ocean state shows modest but robust and significant sensitivity to the vertical profile of internal-tide-driven mixing. Therefore, not only the energy input to the internal tides matters, but also where in the vertical it is dissipated.
    Description: This work is a component of the Internal- Wave Driven Mixing Climate Process Team funded by the National Science Foundation Grant OCE-0968721 and the National Oceanic and Atmospheric Administration, U.S. Department of Commerce, Award NA08OAR4320752.
    Description: 2013-09-01
    Keywords: Diapycnal mixing ; Internal waves ; Subgrid-scale processes ; Ocean models ; Parameterization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 24 (2011): 2429–2449, doi:10.1175/2010JCLI3997.1.
    Description: Continuous estimates of the oceanic meridional heat transport in the Atlantic are derived from the Rapid Climate Change–Meridional Overturning Circulation (MOC) and Heatflux Array (RAPID–MOCHA) observing system deployed along 26.5°N, for the period from April 2004 to October 2007. The basinwide meridional heat transport (MHT) is derived by combining temperature transports (relative to a common reference) from 1) the Gulf Stream in the Straits of Florida; 2) the western boundary region offshore of Abaco, Bahamas; 3) the Ekman layer [derived from Quick Scatterometer (QuikSCAT) wind stresses]; and 4) the interior ocean monitored by “endpoint” dynamic height moorings. The interior eddy heat transport arising from spatial covariance of the velocity and temperature fields is estimated independently from repeat hydrographic and expendable bathythermograph (XBT) sections and can also be approximated by the array. The results for the 3.5 yr of data thus far available show a mean MHT of 1.33 ± 0.40 PW for 10-day-averaged estimates, on which time scale a basinwide mass balance can be reasonably assumed. The associated MOC strength and variability is 18.5 ± 4.9 Sv (1 Sv ≡ 106 m3 s−1). The continuous heat transport estimates range from a minimum of 0.2 to a maximum of 2.5 PW, with approximately half of the variance caused by Ekman transport changes and half caused by changes in the geostrophic circulation. The data suggest a seasonal cycle of the MHT with a maximum in summer (July–September) and minimum in late winter (March–April), with an annual range of 0.6 PW. A breakdown of the MHT into “overturning” and “gyre” components shows that the overturning component carries 88% of the total heat transport. The overall uncertainty of the annual mean MHT for the 3.5-yr record is 0.14 PW or about 10% of the mean value.
    Description: This research was supported by the U.S. National Science Foundation under Awards OCE0241438 and OCE0728108, by the U.K. RAPID Programme (RAPID Grant NER/T/S/2002/00481), and by the U.S. National Oceanic and Atmospheric Administration, as part of its Western Boundary Time Series Program.
    Keywords: Atlantic Ocean ; Meridonial overturning circulation ; Sea surface temperature ; Transport ; Anomalies
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-06-10
    Description: Author Posting. © American Meteorological Society , 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Zambon, J. B., He, R., Warner, J. C., & Hegermiller, C. A. Impact of SST and surface waves on Hurricane Florence (2018): a coupled modeling investigation. Weather and Forecasting, 36(5), (2021): 1713–1734, https://doi.org/10.1175/WAF-D-20-0171.1.
    Description: Hurricane Florence (2018) devastated the coastal communities of the Carolinas through heavy rainfall that resulted in massive flooding. Florence was characterized by an abrupt reduction in intensity (Saffir–Simpson category 4 to category 1) just prior to landfall and synoptic-scale interactions that stalled the storm over the Carolinas for several days. We conducted a series of numerical modeling experiments in coupled and uncoupled configurations to examine the impact of sea surface temperature (SST) and ocean waves on storm characteristics. In addition to experiments using a fully coupled atmosphere–ocean–wave model, we introduced the capability of the atmospheric model to modulate wind stress and surface fluxes by ocean waves through data from an uncoupled wave model. We examined these experiments by comparing track, intensity, strength, SST, storm structure, wave height, surface roughness, heat fluxes, and precipitation in order to determine the impacts of resolving ocean conditions with varying degrees of coupling. We found differences in the storm’s intensity and strength, with the best correlation coefficient of intensity (r = 0.89) and strength (r = 0.95) coming from the fully coupled simulations. Further analysis into surface roughness parameterizations added to the atmospheric model revealed differences in the spatial distribution and magnitude of the largest roughness lengths. Adding ocean and wave features to the model further modified the fluxes due to more realistic cooling beneath the storm, which in turn modified the precipitation field. Our experiments highlight significant differences in how air–sea processes impact hurricane modeling. The storm characteristics of track, intensity, strength, and precipitation at landfall are crucial to predictability and forecasting of future landfalling hurricanes.
    Description: This work has been supported by the U.S. Geological Survey Coastal/Marine Hazards and Resources Program, and by Congressional appropriations through the Additional Supplemental Appropriations for Disaster Relief Act of 2019 (H.R. 2157). The authors also wish to acknowledge research support through NSF Grant OCE-1559178 and NOAA Grant NA16NOS0120028. We also wish to thank Chris Sherwood from the U.S. Geological Survey for his help in deriving wave length from WAVEWATCH III data.
    Keywords: Hurricanes/typhoons ; Hindcasts ; Numerical weather prediction/forecasting ; Coupled models ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-06-03
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 34(22), (2021): 8971–8987, https://doi.org/10.1175/JCLI-D-20-0610.1.
    Description: The impact of increasing Greenland freshwater discharge on the subpolar North Atlantic (SPNA) remains unknown as there are uncertainties associated with the time scales of the Greenland freshwater anomaly (GFWA) in the SPNA. Results from numerical simulations tracking GFWA and an analytical approach are employed to estimate the response time, suggesting that a decadal time scale (13 years) is required for the SPNA to adjust for increasing GFWA. Analytical solutions obtained for a long-lasting increase of freshwater discharge show a non-steady-state response of the SPNA with increasing content of the GFWA. In contrast, solutions for a short-lived pulse of freshwater demonstrate different responses of the SPNA with a rapid increase of freshwater in the domain followed by an exponential decay after the pulse has passed. The derived theoretical relation between time scales shows that residence time scales are time dependent for a non-steady-state case and asymptote the response time scale with time. The residence time of the GFWA deduced from Lagrangian experiments is close to and smaller than the response time, in agreement with the theory. The Lagrangian analysis shows dependence of the residence time on the entrance route of the GFWA and on the depth. The fraction of the GFWA exported through Davis Strait has limited impact on the interior basins, whereas the fraction entering the SPNA from the southwest Greenland shelf spreads into the interior regions. In both cases, the residence time of the GFWA increases with depth demonstrating long persistence of the freshwater anomaly in the subsurface layers.
    Description: D. S. Dukhovskoy and E. P. Chassignet were funded by the DOE (Award DE-SC0014378) and HYCOM NOPP (Award N00014-19-1-2674). The HYCOM-CICE simulations were supported by a grant of computer time from the DoD High-Performance Computing Modernization Program at NRL SSC. G. Platov was funded by the RSF N19-17-00154. P. G. Myers was funded by an NSERC Discovery Grant (Grant RGPIN 04357). A. Proshutinsky was funded by FAMOS project (NSF Grant NSF 14-584).
    Keywords: North Atlantic Ocean ; Lagrangian circulation/transport ; Ocean circulation ; Differential equations ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(6), (2019): 1577-1592, doi:10.1175/JPO-D-18-0124.1.
    Description: The main source feeding the abyssal circulation of the North Pacific is the deep, northward flow of 5–6 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) through the Samoan Passage. A recent field campaign has shown that this flow is hydraulically controlled and that it experiences hydraulic jumps accompanied by strong mixing and dissipation concentrated near several deep sills. By our estimates, the diapycnal density flux associated with this mixing is considerably larger than the diapycnal flux across a typical isopycnal surface extending over the abyssal North Pacific. According to historical hydrographic observations, a second source of abyssal water for the North Pacific is 2.3–2.8 Sv of the dense flow that is diverted around the Manihiki Plateau to the east, bypassing the Samoan Passage. This bypass flow is not confined to a channel and is therefore less likely to experience the strong mixing that is associated with hydraulic transitions. The partitioning of flux between the two branches of the deep flow could therefore be relevant to the distribution of Pacific abyssal mixing. To gain insight into the factors that control the partitioning between these two branches, we develop an abyssal and equator-proximal extension of the “island rule.” Novel features include provisions for the presence of hydraulic jumps as well as identification of an appropriate integration circuit for an abyssal layer to the east of the island. Evaluation of the corresponding circulation integral leads to a prediction of 0.4–2.4 Sv of bypass flow. The circulation integral clearly identifies dissipation and frictional drag effects within the Samoan Passage as crucial elements in partitioning the flow.
    Description: This work was supported by the National Science Foundation under Grants OCE-1029268, OCE-1029483, OCE-1657264, OCE-1657870, OCE-1658027, and OCE-1657795. We thank the captain, crew, and engineers at APL/UW for their hard work and skill.
    Description: 2020-06-11
    Keywords: Abyssal circulation ; Bottom currents ; Boundary currents ; Channel flows ; Mixing ; Transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Semper, S., Vage, K., Pickart, R. S., Valdimarsson, H., Torres, D. J., & Jonsson, S. The emergence of the North Icelandic Jet and its evolution from northeast Iceland to Denmark Strait. Journal of Physical Oceanography, 49(10), (2019): 2499-2521, doi:10.1175/JPO-D-19-0088.1.
    Description: The North Icelandic Jet (NIJ) is an important source of dense water to the overflow plume passing through Denmark Strait. The properties, structure, and transport of the NIJ are investigated for the first time along its entire pathway following the continental slope north of Iceland, using 13 hydrographic/velocity surveys of high spatial resolution conducted between 2004 and 2018. The comprehensive dataset reveals that the current originates northeast of Iceland and increases in volume transport by roughly 0.4 Sv (1 Sv ≡ 106 m3 s−1) per 100 km until 300 km upstream of Denmark Strait, at which point the highest transport is reached. The bulk of the NIJ transport is confined to a small area in Θ–S space centered near −0.29° ± 0.16°C in Conservative Temperature and 35.075 ± 0.006 g kg−1 in Absolute Salinity. While the hydrographic properties of this transport mode are not significantly modified along the NIJ’s pathway, the transport estimates vary considerably between and within the surveys. Neither a clear seasonal signal nor a consistent link to atmospheric forcing was found, but barotropic and/or baroclinic instability is likely active in the current. The NIJ displays a double-core structure in roughly 50% of the occupations, with the two cores centered at the 600- and 800-m isobaths, respectively. The transport of overflow water 300 km upstream of Denmark Strait exceeds 1.8 ± 0.3 Sv, which is substantially larger than estimates from a year-long mooring array and hydrographic/velocity surveys closer to the strait, where the NIJ merges with the separated East Greenland Current. This implies a more substantial contribution of the NIJ to the Denmark Strait overflow plume than previously envisaged.
    Description: Six different research vessels were involved in the collection of the data used in this study: RRS James Clark Ross, R/V Knorr, R/V Bjarni Sæmundsson, R/V Håkon Mosby, NRV Alliance, and R/V Kristine Bonnevie. We thank the captain and crew of each of these vessels for their hard work as well as the many watch standers who have sailed on the cruises and helped collect the measurements. We also thank Frank Bahr for processing the VMADCP data collected on NRV Alliance and Magnús Danielsen for the processing of the hydrographic data collected on R/V Bjarni Sæmundsson. We acknowledge Leah Trafford McRaven for assistance with Fig. 1 and two anonymous reviewers for their helpful comments, which improved the manuscript. Funding for the project was provided by the Bergen Research Foundation Grant BFS2016REK01 (K. Våge and S. Semper), the Norwegian Research Council under Grant Agreement 231647 (K. Våge), and the U.S. National Science Foundation Grants OCE-1259618 and OCE-1756361 (R. S. Pickart and D. J. Torres), as well as OCE-1558742 (R. S. Pickart). The dataset is available on PANGAEA under https://doi.pangaea.de/10.1594/PANGAEA.903535.
    Keywords: Ocean ; Continental shelf/slope ; Ocean circulation ; Transport ; Intermediate waters ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(8), (2020): 2251-2270, doi:10.1175/JPO-D-19-0303.1.
    Description: The Gulf Stream affects global climate by transporting water and heat poleward. The current’s volume transport increases markedly along the U.S. East Coast. An extensive observing program using autonomous underwater gliders provides finescale, subsurface observations of hydrography and velocity spanning more than 15° of latitude along the path of the Gulf Stream, thereby filling a 1500-km-long gap between long-term transport measurements in the Florida Strait and downstream of Cape Hatteras. Here, the glider-based observations are combined with shipboard measurements along Line W near 68°W to provide a detailed picture of the along-stream transport increase. To account for the influences of Gulf Stream curvature and adjacent circulation (e.g., corotating eddies) on transport estimates, upper- and lower-bound transports are constructed for each cross–Gulf Stream transect. The upper-bound estimate for time-averaged volume transport above 1000 m is 32.9 ± 1.2 Sv (1 Sv ≡ 106 m3 s−1) in the Florida Strait, 57.3 ± 1.9 Sv at Cape Hatteras, and 75.6 ± 4.7 Sv at Line W. Corresponding lower-bound estimates are 32.3 ± 1.1 Sv in the Florida Strait, 54.5 ± 1.7 Sv at Cape Hatteras, and 69.9 ± 4.2 Sv at Line W. Using the temperature and salinity observations from gliders and Line W, waters are divided into seven classes to investigate the properties of waters that are transported by and entrained into the Gulf Stream. Most of the increase in overall Gulf Stream volume transport above 1000 m stems from the entrainment of subthermocline waters, including upper Labrador Sea Water and Eighteen Degree Water.
    Description: We gratefully acknowledge funding from the Office of Naval Research (N000141713040), the National Science Foundation (OCE-0220769, OCE-1633911, OCE-1923362), NOAA’s Global Ocean Monitoring and Observing Program (NA14OAR4320158, NA19OAR4320074), WHOI’s Oceans and Climate Change Institute, Eastman Chemical Company, and the W. Van Alan Clark, Jr. Chair for Excellence in Oceanography at WHOI (awarded to Breck Owens).
    Keywords: Continental shelf/slope ; North Atlantic Ocean ; Boundary currents ; Transport ; In situ oceanic observations ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2479-2498, doi:10.1175/JPO-D-16-0167.1.
    Description: The generation of trapped and radiating internal tides around Izu‐Oshima Island located off Sagami Bay, Japan, is investigated using the three-dimensional Stanford Unstructured Nonhydrostatic Terrain-following Adaptive Navier–Stokes Simulator (SUNTANS) that is validated with observations of isotherm displacements in shallow water. The model is forced by barotropic tides, which generate strong baroclinic internal tides in the study region. Model results showed that when diurnal K1 barotropic tides dominate, resonance of a trapped internal Kelvin wave leads to large-amplitude internal tides in shallow waters on the coast. This resonance produces diurnal motions that are much stronger than the semidiurnal motions. The weaker, freely propagating, semidiurnal internal tides are generated on the western side of the island, where the M2 internal tide beam angle matches the topographic slope. The internal wave energy flux due to the diurnal internal tides is much higher than that of the semidiurnal tides in the study region. Although the diurnal internal tide energy is trapped, this study shows that steepening of the Kelvin waves produces high-frequency internal tides that radiate from the island, thus acting as a mechanism to extract energy from the diurnal motions.
    Description: This study was supported by JST CREST Grant Number JPRMJCR12A6.
    Description: 2018-04-12
    Keywords: Pacific Ocean ; Internal waves ; Kelvin waves ; In situ oceanic observations ; Baroclinic models ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2999-3013, doi:10.1175/JPO-D-17-0129.1.
    Description: Initial results are presented from a yearlong, high-resolution (~2 km) numerical simulation covering the east Greenland shelf and the Iceland and Irminger Seas. The model hydrography and circulation in the vicinity of Denmark Strait show good agreement with available observational datasets. This study focuses on the variability of the Denmark Strait overflow (DSO) by detecting and characterizing boluses and pulses, which are the two dominant mesoscale features in the strait. The authors estimate that the yearly mean southward volume flux of the DSO is about 30% greater in the presence of boluses and pulses. On average, boluses (pulses) are 57.1 (27.5) h long, occur every 3.2 (5.5) days, and are more frequent during the summer (winter). Boluses (pulses) increase (decrease) the overflow cross-sectional area, and temperatures around the overflow interface are colder (warmer) by about 2.6°C (1.8°C). The lateral extent of the boluses is much greater than that of the pulses. In both cases the along-strait equatorward flow of dense water is enhanced but more so for pulses. The sea surface height (SSH) rises by 4–10 cm during boluses and by up to 5 cm during pulses. The SSH anomaly contours form a bowl (dome) during boluses (pulses), and the two features cross the strait with a slightly different orientation. The cross streamflow changes direction; boluses (pulses) are associated with veering (backing) of the horizontal current. The model indicates that boluses and pulses play a major role in controlling the variability of the DSO transport into the Irminger Sea.
    Description: This work was supported by the NSF Grants OCE-1433448, OCE-1633124, and OCE- 1259618 and the Institute for Data Intensive Engineering and Science (IDIES) seed grant funding.
    Description: 2018-06-13
    Keywords: North Atlantic Ocean ; Mesoscale processes ; Ocean models ; Regional models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2927-2947, doi:10.1175/JPO-D-17-0083.1.
    Description: Motivated by observations in Hudson shelf valley showing stronger onshore than offshore flows, this study investigates wind-driven flows in idealized shallow shelf valleys. This first part of a two-part sequence focuses on the mechanism of the asymmetrical flow response in a valley to along-shelf winds of opposite directions. Model simulations show that (i) when the wind is in the opposite direction to coastal-trapped wave (CTW) phase propagation, the shelf flow turns onshore in the valley and generates strong up-valley transport and a standing meander on the upstream side (in the sense of CTW phase propagation) of the valley, and (ii) when the wind is in the same direction as CTW phase propagation, the flow forms a symmetric onshore detour pattern over the valley with negligible down-valley transport. Comparison of the modeled upstream meanders in the first scenario with CTW characteristics confirms that the up-valley flow results from CTWs being arrested by the wind-driven shelf flow establishing lee waves. The valley bathymetry generates an initial excessive onshore pressure gradient force that drives the up-valley flow and induces CTW lee waves that sustain the up-valley flow. When the wind-driven shelf flow aligns with CTW phase propagation, the initial disturbance generated in the valley propagates away, allowing the valley flow to adjust to roughly follow isobaths. Because of the similarity in the physical setup, this mechanism of arrested CTWs generating stronger onshore than offshore flow is expected to be applicable to the flow response in slope canyons to along-isobath background flows of opposite directions.
    Description: WGZ and SJL were supported by the National Science Foundation through GrantOCE1154575.WGZ is also supported by the NSF Grant OCE 1634965 and SJL by NSF Grant OCE 1558874.
    Description: 2018-06-08
    Keywords: Ocean circulation ; Topographic effects ; Transport ; Vertical motion ; Waves, oceanic ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(6), (2019): 1639-1649, doi: 10.1175/JPO-D-18-0154.1.
    Description: Using a recently developed asymptotic theory of internal solitary wave propagation over a sloping bottom in a rotating ocean, some new qualitative and quantitative features of this process are analyzed for internal waves in a two-layer ocean. The interplay between different singularities—terminal damping due to radiation and disappearing quadratic nonlinearity, and reaching an “internal beach” (e.g., zero lower-layer depth)—is discussed. Examples of the adiabatic evolution of a single solitary wave over a uniformly sloping bottom under realistic conditions are considered in more detail and compared with numerical solutions of the variable-coefficient, rotation-modified Korteweg–de Vries (rKdV) equation.
    Description: LAO is thankful to Yu. Stepanyants for broad discussions of mutual benefit. KRH was supported by Grant N00014-18-1-2542 from the Office of Naval Research.
    Description: 2020-06-13
    Keywords: Internal waves ; Differential equations ; Nonlinear models ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(7), (2020): 1839-1852, https://doi.org/10.1175/JPO-D-19-0209.1.
    Description: The Lagrangian characteristics of the surface flow field arising when an idealized, anticyclonic, mesoscale, isolated deep-ocean eddy collides with continental slope and shelf topography are explored. In addition to fluid parcel trajectories, we consider the trajectories of biological organisms that are able to navigate and swim, and for which shallow water is a destination. Of particular interest is the movement of organisms initially located in the offshore eddy, the manner in which the eddy influences the ability of the organisms to reach the shelf break, and the spatial and temporal distributions of organisms that do so. For nonswimmers or very slow swimmers, the organisms arrive at the shelf break in distinct pulses, with different pulses occurring at different locations along the shelf break. This phenomenon is closely related to the episodic formation of trailing vortices that are formed after the eddy collides with the continental slope, turns, and travels parallel to the coast. Analysis based on finite-time Lyapunov exponents reveals initial locations of all successful trajectories reaching the shoreline, and provides maps of the transport pathways showing that much of the cross-shelf-break transport occurs in the lee of the eddy as it moves parallel to the shore. The same analysis shows that the onshore transport is interrupted after a trailing vortex detaches. As the swimming speeds are increased, the organisms are influenced less by the eddy and tend to show up en mass and in a single pulse.
    Description: IR and LP were supported by National Science Foundation (NSF) Grant OCE-1558806. DC was supported by NSF U.S. National Science Foundation’s Physical Oceanography program through Grants OCE-1059632 and OCE-1433953 as well as the Academic Programs Office, Woods Hole Oceanographic Institution. We acknowledge high-performance computing support from Yellowstone (http://n2t.net/ark:/85065/d7wd3xhc) provided by NCAR’s Computational and Information Systems Laboratory, sponsored by the National Science Foundation.
    Keywords: Ocean ; Eddies ; Nonlinear dynamics ; Transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 34(5), (2021): 1767-1788, https://doi.org/10.1175/JCLI-D-19-1020.1.
    Description: Marine heatwaves along the coast of Western Australia, referred to as Ningaloo Niño, have had dramatic impacts on the ecosystem in the recent decade. A number of local and remote forcing mechanisms have been put forward; however, little is known about the depth structure of such temperature extremes. Utilizing an eddy-active global ocean general circulation model, Ningaloo Niño and the corresponding cold Ningaloo Niña events are investigated between 1958 and 2016, with a focus on their depth structure. The relative roles of buoyancy and wind forcing are inferred from sensitivity experiments. Composites reveal a strong symmetry between cold and warm events in their vertical structure and associated large-scale spatial patterns. Temperature anomalies are largest at the surface, where buoyancy forcing is dominant, and extend down to 300-m depth (or deeper), with wind forcing being the main driver. Large-scale subsurface anomalies arise from a vertical modulation of the thermocline, extending from the western Pacific into the tropical eastern Indian Ocean. The strongest Ningaloo Niños in 2000 and 2011 are unprecedented compound events, where long-lasting high temperatures are accompanied by extreme freshening, which emerges in association with La Niñas, that is more common and persistent during the negative phase of the interdecadal Pacific oscillation. It is shown that Ningaloo Niños during La Niña phases have a distinctively deeper reach and are associated with a strengthening of the Leeuwin Current, while events during El Niño are limited to the surface layer temperatures, likely driven by local atmosphere–ocean feedbacks, without a clear imprint on salinity and velocity.
    Description: The following support is gratefully acknowledged: the Feodor-Lynen Fellowship by the Alexander von Humboldt Foundation and the WHOI Postdoctoral Scholar program (to SR), the Office of Naval Research under project number N-00014-19-12646 (to GG), the James E. and Barbara V. Moltz Fellowship for Climate-Related Research (to CCU), and IndoArchipel from the Deutsche Forschungsgemeinschaft (DFG) as part of the Special Priority Program (SPP)-1889 “Regional Sea Level Change and Society” (SeaLevel) (for PW).
    Keywords: Ocean ; Australia ; Indian Ocean ; Extreme events ; General circulation models ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 1756-1775, doi:10.1175/2009JPO4085.1.
    Description: A parameterization of vertical diffusivity in ocean general circulation models has been implemented in the ocean model component of the Community Climate System Model (CCSM). The parameterization represents the dynamics of the mixing in the abyssal ocean arising from the breaking of internal waves generated by the tides forcing stratified flow over rough topography. This parameterization is explored over a range of parameters and compared to the more traditional ad hoc specification of the vertical diffusivity. Diapycnal mixing in the ocean is thought to be one of the primary controls on the meridional overturning circulation and the poleward heat transport by the ocean. When compared to the traditional approach with uniform mixing, the new mixing parameterization has a noticeable impact on the meridional overturning circulation; while the upper limb of the meridional overturning circulation appears to be only weakly impacted by the transition to the new parameterization, the deep meridional overturning circulation is significantly strengthened by the change. The poleward ocean heat transport does not appear to be strongly affected by the mixing in the abyssal ocean for reasonable parameter ranges. The transport of the Antarctic Circumpolar Current through the Drake Passage is related to the amount of mixing in the deep ocean. The new parameterization is found to be energetically consistent with the known constraints on the ocean energy budget.
    Description: This work was supported by the National Science Foundation under Grants ATM 02-00929 and OCE 02-41061.
    Keywords: General circulation models ; Parameterization ; Abyssal circulation ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 25 (2012): 1361–1389, doi:10.1175/JCLI-D-11-00091.1.
    Description: The ocean component of the Community Climate System Model version 4 (CCSM4) is described, and its solutions from the twentieth-century (20C) simulations are documented in comparison with observations and those of CCSM3. The improvements to the ocean model physical processes include new parameterizations to represent previously missing physics and modifications of existing parameterizations to incorporate recent new developments. In comparison with CCSM3, the new solutions show some significant improvements that can be attributed to these model changes. These include a better equatorial current structure, a sharper thermocline, and elimination of the cold bias of the equatorial cold tongue all in the Pacific Ocean; reduced sea surface temperature (SST) and salinity biases along the North Atlantic Current path; and much smaller potential temperature and salinity biases in the near-surface Pacific Ocean. Other improvements include a global-mean SST that is more consistent with the present-day observations due to a different spinup procedure from that used in CCSM3. Despite these improvements, many of the biases present in CCSM3 still exist in CCSM4. A major concern continues to be the substantial heat content loss in the ocean during the preindustrial control simulation from which the 20C cases start. This heat loss largely reflects the top of the atmospheric model heat loss rate in the coupled system, and it essentially determines the abyssal ocean potential temperature biases in the 20C simulations. There is also a deep salty bias in all basins. As a result of this latter bias in the deep North Atlantic, the parameterized overflow waters cannot penetrate much deeper than in CCSM3.
    Description: NCAR is sponsored by the National Science Foundation. The CCSM is also sponsored by the Department of Energy. SGY was supported by the NOAA Climate Program Office under Climate Variability and Predictability Program Grant NA09OAR4310163.
    Description: 2012-09-01
    Keywords: Ocean circulation ; Climate models ; General circulation models ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 31 (2014): 1410–1421, doi:10.1175/JTECH-D-13-00230.1.
    Description: Aerial images are used to quantify the concentration of fluorescent Rhodamine water tracing (WT) dye in turbid and optically deep water. Tracer releases near the shoreline of an ocean beach and near a tidal inlet were observed with a two-band multispectral camera and a pushbroom hyperspectral imager, respectively. The aerial observations are compared with near-surface in situ measurements. The ratio of upwelling radiance near the Rhodamine WT excitation and emission peaks varies linearly with the in situ dye concentrations for concentrations 〈20 ppb (r2 = 0.70 and r2 = 0.85–0.88 at the beach and inlet, respectively). The linear relationship allows for relative tracer concentration estimates without in situ calibration. The O(1 m) image pixels resolve complex flow structures on the inner shelf that transport and mix tracer.
    Description: We thank ONR and NSF for funding this work.
    Description: 2014-12-01
    Keywords: Coastal flows ; Mixing ; Transport ; Aircraft observations ; Remote sensing ; Tracers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 33 (2016): 1225-1235, doi:10.1175/JTECH-D-15-0115.1.
    Description: Accurate estimation of the transport probabilities among regions in the ocean provides valuable information for understanding plankton transport, the spread of pollutants, and the movement of water masses. Individual-based particle-tracking models simulate a large ensemble of Lagrangian particles and are a common method to estimate these transport probabilities. Simulating a large ensemble of Lagrangian particles is computationally expensive, and appropriately allocating resources can reduce the cost of this method. Two universal questions in the design of studies that use Lagrangian particle tracking are how many particles to release and how to distribute particle releases. A method is presented for tailoring the number and the release location of particles to most effectively achieve the objectives of a study. The method detailed here is a sequential analysis procedure that seeks to minimize the number of particles that are required to satisfy a predefined metric of result quality. The study assesses the result quality as the precision of the estimates for the elements of a transport matrix and also describes how the method may be extended for use with other metrics. Applying this methodology to both a theoretical system and a particle transport model of the Gulf of Maine results in more precise estimates of the transport probabilities with fewer particles than from uniformly or randomly distributing particle releases. The application of this method can help reduce the cost of and increase the robustness of results from studies that use Lagrangian particles.
    Description: This research was supported by the Department of Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG) program and the National Science Foundation through Grant OCE-1459133 and Grant OCE-1031256.
    Description: 2016-12-02
    Keywords: Circulation/ Dynamics ; Lagrangian circulation/transport ; Models and modeling ; Model evaluation/performance ; Ocean models ; Tracers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(11),(2020): 3219–3234, https://doi.org/10.1175/JPO-D-19-0277.1.
    Description: Preexisting, oceanic barrier layers have been shown to limit turbulent mixing and suppress mixed layer cooling during the forced stage of a tropical cyclone (TC). Furthermore, an understanding of barrier layer evolution during TC passage is mostly unexplored. High precipitation rates within TCs provide a large freshwater flux to the surface that alters upper-ocean stratification and can act as a potential mechanism to strengthen the barrier layer. Ocean glider observations from the Bermuda Institute of Ocean Sciences (BIOS) indicate that a strong barrier layer developed during the approach and passage of Hurricane Gonzalo (2014), primarily as a result of freshening within the upper 30 m of the ocean. Therefore, an ocean model case study of Hurricane Gonzalo has been designed to investigate how precipitation affects upper-ocean stratification and sea surface temperature (SST) cooling during TC passage. Ocean model hindcasts of Hurricane Gonzalo characterize the upper-ocean response to TC precipitation forcing. Three different vertical mixing parameterizations are tested to determine their sensitivity to precipitation forcing. For all turbulent mixing schemes, TC precipitation produces near-surface freshening of about 0.3 psu, which is consistent with previous studies and in situ ocean observations. The influence of precipitation-induced changes to the SST response is more complicated, but generally modifies SSTs by ±0.3°C. Precipitation forcing creates a dynamical coupling between upper-ocean stratification and current shear that is largely responsible for the heterogeneous response in modeled SSTs.
    Description: This work was supported by the National Aeronautics and Space Administration (NASA; Grant NNX15AD45G) and the National Oceanic and Atmospheric Administration (NOAA; Grant NA11OAR4320199).
    Keywords: Air-sea interaction ; Hurricanes/typhoons ; Salinity ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(1), (2020): 255-268, doi:10.1175/JPO-D-19-0166.1.
    Description: Regional connectivity is important to the global climate salinity response, particularly because salinity anomalies do not have a damping feedback with atmospheric freshwater fluxes and may therefore be advected over long distances by ocean circulation, resulting in nonlocal influences. Climate model intercomparison experiments such as CMIP5 exhibit large uncertainty in some aspects of the salinity response, hypothesized here to be a result of ocean dynamics. We use two types of Lagrangian particle tracking experiments to investigate pathways of exchange for salinity anomalies. The first uses forward trajectories to estimate average transport time scales between water cycle regimes. The second uses reverse trajectories and a freshwater accumulation method to quantitatively identify remote influences in the salinity response. Additionally, we compare velocity fields with both resolved and parameterized eddies to understand the impact of eddy stirring on intergyre exchange. These experiments show that surface anomalies are readily exchanged within the ocean gyres by the mean circulation, but intergyre exchange is slower and largely eddy driven. These dynamics are used to analyze the North Atlantic salinity response to climate warming and water cycle intensification, where the system is broadly forced with fresh surface anomalies in the subpolar gyre and salty surface anomalies in the subtropical gyres. Under these competing forcings, strong intergyre eddy fluxes carry anomalously salty subtropical water into the subpolar gyre which balances out much of the local freshwater input.
    Description: We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. We also thank the creators of the SODA and ECCO reanalysis products. This work was supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program Award 80NSSC17K0372, and by National Science Foundation Award OCE-1433132. The SODA outputs used here can be accessed at http://www.atmos.umd.edu/~ocean/, and the ECCO outputs at https://ecco.jpl.nasa.gov/. Data from the CMIP5 ensemble is available at https://esgf-node.llnl.gov/projects/esgf-llnl/. The particle tracking code used for these experiments can be found at https://github.com/slevang/particle-tracking.
    Description: 2020-07-20
    Keywords: North Atlantic Ocean ; Eddies ; Hydrologic cycle ; Lagrangian circulation/transport ; Transport ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...