The impact of abyssal mixing parameterizations in an ocean general circulation model

Thumbnail Image
Date
2009-07
Authors
Jayne, Steven R.
Linked Authors
Alternative Title
Date Created
Location
DOI
10.1175/2009JPO4085.1
Related Materials
Replaces
Replaced By
Keywords
General circulation models
Parameterization
Abyssal circulation
Ocean models
Abstract
A parameterization of vertical diffusivity in ocean general circulation models has been implemented in the ocean model component of the Community Climate System Model (CCSM). The parameterization represents the dynamics of the mixing in the abyssal ocean arising from the breaking of internal waves generated by the tides forcing stratified flow over rough topography. This parameterization is explored over a range of parameters and compared to the more traditional ad hoc specification of the vertical diffusivity. Diapycnal mixing in the ocean is thought to be one of the primary controls on the meridional overturning circulation and the poleward heat transport by the ocean. When compared to the traditional approach with uniform mixing, the new mixing parameterization has a noticeable impact on the meridional overturning circulation; while the upper limb of the meridional overturning circulation appears to be only weakly impacted by the transition to the new parameterization, the deep meridional overturning circulation is significantly strengthened by the change. The poleward ocean heat transport does not appear to be strongly affected by the mixing in the abyssal ocean for reasonable parameter ranges. The transport of the Antarctic Circumpolar Current through the Drake Passage is related to the amount of mixing in the deep ocean. The new parameterization is found to be energetically consistent with the known constraints on the ocean energy budget.
Description
Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 1756-1775, doi:10.1175/2009JPO4085.1.
Embargo Date
Citation
Journal of Physical Oceanography 39 (2009): 1756-1775
Cruises
Cruise ID
Cruise DOI
Vessel Name