ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Meteorology and Climatology  (1,625)
  • Geophysics  (1,332)
  • 2000-2004  (2,957)
  • 1
    Publication Date: 2004-10-05
    Description: This manuscript describes a method to class@ cirrus cloud ice particle shape using lidar depolarization measurements as a basis for segregating different particle shape regimes. Measurements from the ER-2 Cloud Physics Lidar (CPL) system during CRYSTAL-FACE provide the basis for this work. While the CPL onboard the ER-2 aircraft was providing remote sensing measurements of cirrus clouds, the Cloud Particle Imager (CPI) onboard the WB-57 aircraft was flying inside those same clouds to sample particle sizes. The results of classifying particle shapes using the CPL data are compared to the in situ measurements made using the CPI , and there is found to be good agreement between the particle shape inferred from the CPL data and that actually measured by the CPI. If proven practical, application of this technique to spaceborne observations could lead to large-scale classification of cirrus cloud particle shapes.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-10-05
    Description: During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic matter, and dust found for the ACE Asia aerosol are comparable to values estimated for ACE 1, Aerosols99, and INDOEX. Unique to the ACE Asia aerosol was the large mass fractions of dust, the dominance of dust in controlling the aerosol optical properties, and the interaction of dust with soot aerosol.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-07-23
    Description: The terminology East Asian summer monsoon is used to refer to the heavy rainfall in southeast China including the Yangtze River Valley starting in May and ending in August (e.g., Chen and Chang 1980, Tao and Chen 1987, Ding 1992, Chang et al. 2000a.) This rainfall region is associated with the Mei-Yu front, which extends to Japan and its neighborhood and is called Baiu there. The Mei-Yu front becomes prominent in May and has a slow northward movement. From May to July the elongated rain belt moves from the southeast coast of China to the Yangtze River Valley. The rain belt extends north-east-ward to south of Japan in May and later covers Korea also. The purpose of this note is to point out that the terminology of East Asian summer monsoon is a misnomer to refer to the portion of this rainbelt residing over East Asia, in the sense that it is not a monsoon.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-29
    Description: NASA's 4th Convection and Moisture Experiment (CAMEX-4) focused on Atlantic hurricanes during the 2001 hurricane season and it involved both NASA and NOAA participation. The NASA ER-2 and DC-8 aircraft were instrumented with unique remote sensing instruments to help increase the overall understanding of hurricanes. This paper is concerned about one of the storms studied, Tropical Storm Chantal, that was a weak storm which failed to intense into a hurricane. One of the practical questions of high importance is why some tropical sto~ins intensify into hurricanes, and others remain weak or die altogether. The magnitude of the difference between the horizontal winds at lower levels and upper altitudes in a tropical storm, i.e., the wind shear, is one important quantity that can affect the intensification of a tropical storm. Strong shear as was present during Tropical Storm Chantal s lifetime and it was detrimental to its intensification. The paper presents an analysis of unique aircraft observations collected from Chantal including an on-board radar, radiometers, dropsondes, and flight level measurements. These measurements have enabled us to examine the internal structure of the winds and thermal structure of Chantal. Most of the previous studies have involved intense hurricanes that overcame the effects of shear and this work has provided new insights into what prevents a weaker storm from intensifying. The storm had extremely intense thunderstorms and rainfall, yet its main circulation was confined to low levels of the atmosphere. Chantal's thermal structure was not configured properly for the storm to intensify. It is most typical that huricanes have a warm core structure where warm temperatures in upper levels of a storm s circulation help intensify surface winds and lower its central pressure. Chantal had two weaker warm layers instead of a well-defined warm core. These layers have been related to the horizontal and vertical winds and precipitation structure and have helped us learn more about why this storm didn't develop.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-29
    Description: Understanding the exchange of gases between the stratosphere and the troposphere is important for determining how pollutants enter the stratosphere and how they leave. This study does a global analysis of that the exchange of mass between the stratosphere and the troposphere. While the exchange of mass is not the same as the exchange of constituents, you can t get the constituent exchange right if you have the mass exchange wrong. Thus this kind of calculation is an important test for models which also compute trace gas transport. In this study I computed the mass exchange for two assimilated data sets and a GCM. The models all agree that amount of mass descending from the stratosphere to the troposphere in the Northern Hemisphere extra tropics is approx. 10(exp 10) kg/s averaged over a year. The value for the Southern Hemisphere by about a factor of two. ( 10(exp 10) kg of air is the amount of air in 100 km x 100 km area with a depth of 100 m - roughly the size of the D.C. metro area to a depth of 300 feet.) Most people have the idea that most of the mass enters the stratosphere through the tropics. But this study shows that almost 5 times more mass enters the stratosphere through the extra-tropics. This mass, however, is quickly recycled out again. Thus the lower most stratosphere is a mixture of upper stratospheric air and tropospheric air. This is an important result for understanding the chemistry of the lower stratosphere.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-29
    Description: Bangui anomaly is the name given to one of the Earth s largest crustal magnetic anomalies and the largest over the African continent. It covers two-thirds of the Central African Republic and therefore the name derives from the capitol city-Bangui that is also near the center of this feature. From surface magnetic survey data Godivier and Le Donche (1962) were the first to describe this anomaly. Subsequently high-altitude world magnetic surveying by the U.S. Naval Oceanographic Office (Project Magnet) recorded a greater than 1000 nT dipolar, peak-to-trough anomaly with the major portion being negative (figure 1). Satellite observations (Cosmos 49) were first reported in 1964, these revealed a 40nT anomaly at 350 km altitude. Subsequently the higher altitude (417-499km) POGO (Polar Orbiting Geomagnetic Observatory) satellite data recorded peak-to-trough anomalies of 20 nT these data were added to Cosmos 49 measurements by Regan et al. (1975) for a regional satellite altitude map. In October 1979, with the launch of Magsat, a satellite designed to measure crustal magnetic anomalies, a more uniform satellite altitude magnetic map was obtained. These data, computed at 375 km altitude recorded a -22 nT anomaly (figure 2). This elliptically shaped anomaly is approximately 760 by 1000 km and is centered at 6%, 18%. The Bangui anomaly is composed of three segments; there are two positive anomalies lobes north and south of a large central negative field. This displays the classic pattern of a magnetic anomalous body being magnetized by induction in a zero inclination field. This is not surprising since the magnetic equator passes near the center of this body.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-31
    Description: The knowledge of the atmospherics phenomenon is an important part in the communication system. The principal factor that contributes to the attenuation in a Ka band communication system is the rain attenuation. We have four years of tropical region observations. The data in the tropical region was taken in Humacao, Puerto Rico. Previous data had been collected at various climate regions such as desserts, template area and sub-tropical regions. Figure 1 shows the ITU-R rain zone map for North America. Rain rates are important to the rain attenuation prediction models. The models that predict attenuation generally are of two different kinds. The first one is the regression models. By using a data set these models provide an idea of the observed attenuation and rain rates distribution in the present, past and future. The second kinds of models are physical models which use the probability density functions (PDF).
    Keywords: Meteorology and Climatology
    Type: Interm Summary Reports
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-31
    Description: Ancient geologic and hydrologic phenomena on Mars observed through the magnetic data provide windows to the ancient past through the younger Argyre and Hellas impacts, the northern plains basement and the rock materials that mantle the basement, and the Tharsis and Elysium magmatic complexes (recently referred to as superplumes). These signatures, coupled with highly degraded macrostructures (tectonic features that energetic planet during its embryonic development (0.5 Ga or so of activity) with an active dynamo and magnetosphere. One such window into the ancient past occurs northwest of the Hellas impact basin in Arabia Tern. Arabia Terra is one of the few water-rich equatorial regions of Mars, as indicated I through impact crater and elemental information. This region records many unique characteristics, including predominately Noachian materials, a highland-lowland boundary region that is distinct from other boundary regions, the presence of very few macrostructures when compared to the rest of the cratered highlands, the largest region of fretted terrain on Mars, outflow channels such as Mamers Valles that do not have obvious origins, and distinct albedo, thermal inertia, gravity, magnetic, and elemental signatures.
    Keywords: Geophysics
    Type: Workshop on Hemispheres Apart: The Origin and Modification of The Martian Crustal Dichotomy; 13-14; LPI-Contrib-1213
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-29
    Description: In the polar region of the upper mesosphere, horizontal wind oscillations have been observed with periods around 10 hours. Waves with such a period are generated in our Numerical Spectral Model (NSM), and they are identified as planetary-scale inertio gravity waves (IGW). These IGWs have periods between 9 and 11 hours and appear above 60 km in the zonal mean (m = 0), as well as in zonal wavenumbers m = 1 to 4. The waves can propagate eastward and westward and have vertical wavelengths around 25 km. The amplitudes in the wind field are typically between 10 and 20 m/s and can reach 30 m/s in the westward propagating component for m = 1 at the poles. In the temperature perturbations, the wave amplitudes above 100 km are typically 5 K and as large as 10 K for m = 0 at the poles. The IGWs are intermittent but reveal systematic seasonal variations, with the largest amplitudes occurring generally in late winter and spring. In the NSM, the IGW are generated like the planetary waves (PW). They are produced apparently by the instabilities that arise in the zonal mean circulation. Relative to the PWs, however, the IGWs propagate zonally with much larger velocities, such that they are not affected much by interactions with the background zonal winds. Since the IGWs can propagate through the mesosphere without much interaction, except for viscous dissipation, one should then expect that they reach the thermosphere with significant and measurable amplitudes.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-10-02
    Description: Pavillion Lake is 5.7km long and an average of 0.8 km in width, and is located in Marble Canyon in the interior of British Columbia, Canada. It is a slightly alkaline, freshwater lake with a maximum-recorded depth of 65m. The basin walls of Pavilion Lake are lined with microbialite structures that are oriented perpendicularly to the shoreline, and which are found from depths of 5 meters to the bottom of the photic zone (light levels 1% of ambient; approximately 30m depth). These structures are speculated to have begun formation nearly 11,000 years ago, after the glacial retreat of the Cordilleran Ice Sheet. They are likely a distinctive assemblage of freshwater calcite microbialites, which display micromorphologies possibly related to the ancient Epiphyton and Girvanella classes of calcareous organosedimentary structures.
    Keywords: Geophysics
    Type: Second Conference on Early Mars: Geologic, Hydrologic, and Climatic Evolution and the Implications for Life; LPI-Contrib-1211
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-10-02
    Description: The east rim of the Hellas basin and the surrounding highlands comprise a geologically significant region for evaluating volatile abundance, volatile distribution and cycling, and potential changes in Martian environmental conditions. This region of the Martian surface exhibits landforms shaped by a diversity of geologic processes and has a well-preserved geologic record, with exposures of Noachian, Hesperian, and Amazonian units, as well as spans a wide range in both latitude and elevation due to the magnitude of Hellas basin. In addition, geologically contemporaneous volcanism and volatile-driven activity in the circum-Hellas highlands provide important ingredients for creating habitats for potential Martian life.
    Keywords: Geophysics
    Type: Second Conference on Early Mars: Geologic, Hydrologic, and Climatic Evolution and the Implications for Life; LPI-Contrib-1211
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-08
    Description: A preliminary study of the impact of the north-central Pacific circulation in the subtropical stratosphere on ozone variability locally observed by lidar is presented.
    Keywords: Geophysics
    Type: Journal of Geophysical Research; Volume 109; D11105-11118
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-11
    Description: Tvashtar Catena (63 N, 120 W) is one of the most interesting features on Io. This chain of large paterae (caldera-like depressions) has exhibited highly variable volcanic activity in a series of observations. Tvashtar is the type example of a style of volcanism seen only at high latitudes, with short-lived Pele-type plumes and short-lived by intense thermal events. Evidence for a hot spot at Tvashtar was first detected in an eclipse observation in April 1997 (orbit G7) by the Solid State Imager (SSI) on the Galileo Spacecraft. Tvashtar was originally targeted for observation at higher resolution in the close flyby in November 1999 (I25) because of its interesting large-scale topography. There are relatively few but generally larger paterae at high latitudes on Io. I25 images revealed a 25 km long, 1-2 km high lava curtain via a pattern of saturation and bleeding in the CCD image, which requires very high temperatures.
    Keywords: Geophysics
    Type: Lunar and Planetary Science XXXV: Io, with a Dash of Titan; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-11
    Description: Hot spots are manifestations of Io s mechanism of internal heating and heat transfer. Therefore, the global distribution of hot spots and their power output has important implications for how Io is losing heat. The end of the Galileo mission is an opportune time to revisit studies of the distribution of hot spots on Io, and to investigate the distribution of their power output.
    Keywords: Geophysics
    Type: Lunar and Planetary Science XXXV: Io, with a Dash of Titan; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-11
    Description: Ionian paterae are a class of volcanic feature that are characterized by irregular craters with steep walls, flat floors, and arcuate margins that may or may not exhibit nesting. Loki (310 W, 12 N) is Io's largest patera at approx.200 km in diameter (Figure 1), and may account for 15% of Io's total heat flow. Earth-based infrared data, as well as information collected using the Galileo Near-Infrared Mapping Spectrometer (NIMS) and the Photopolarimeter Radiometer (PPR) have been used to interpret Loki s eruption style. Debate continues over whether Loki s occasional (periodic or not) temperature increases are due to an overturning lava lake within the patera, or to an eruption of surface flows on the patera floor. Interpretation of model results and comparisons with active terrestrial lava lakes suggest that Loki behaves quite differently from active lava lakes on Earth, and that surface flows (rather than an overturning lava lake) are a more likely explanation of Loki's thermal brightening.
    Keywords: Geophysics
    Type: Lunar and Planetary Science XXXV: Io, with a Dash of Titan; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-06-11
    Description: Now that the Galileo spacecraft s tour of the Jupiter system is over, we seek to integrate all available datasets in the hopes of understanding Io as completely as possible. We have compiled information about the morphologies and locations of paterae (volcano-tectonic depressions), mountains, and hotspots on Io in a single database. It is our hope that an analysis of the spatial and temporal relationships between these features will provide more indications of the nature of the crust of Io and the mechanisms leading to these features formation. Since Io s tidal heat escapes through its crust, more knowledge about the crust will lead to an understanding of internal processes, such as magma generation and delivery to the surface, and magnitude and orientation of internal stresses.
    Keywords: Geophysics
    Type: Lunar and Planetary Science XXXV: Io, with a Dash of Titan; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-08
    Description: Tropical deep convection and its dynamical effect on the tropopause and stratosphere are investigated using a suite of data from the Upper Atmospheric Research Satellite (UARS) Microwave Limb Sounder (MLS), including upper tropospheric humidity, cloud radiance, and gravity wave measurements.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research; Volume 109
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-08
    Description: On 25 August 1992, the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite observed a significant enhancement in the abundance of lower stratospheric methyl cyanide (CH3CN) at 100??hPa (~16??km altitude) in a small region off the east coast of Florida.
    Keywords: Geophysics
    Type: Journal of Geophysical Research; Volume 109
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: We summarize 24 years (1978??2) of ice export estimates and examine, over a 9-year record, the associated variability in the time-varying upward-looking sonar (ULS) thickness distributions of the Fram Strait.
    Keywords: Geophysics
    Type: Journal of Geophysical Research; Volume 109; c09009-c01029
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-08
    Description: A three-dimensional (3-D) Global Assimilative Ionospheric Model (GAIM) is currently being developed by a joint University of Southern California and Jet Propulsion Laboratory (JPL) team. To estimate the electron density on a global grid, GAIM uses a first-principles ionospheric physics model and the Kalman filter as one of its possible estimation techniques.
    Keywords: Geophysics
    Type: Radio science; Volume 39
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: A variance analysis technique is developed here to extract gravity wave (GW) induced temperature fluctuations from NOAA AMSU-A (Advanced Microwave Sounding Unit-A) radiance measurements. By carefully removing the instrument/measurement noise, the algorithm can produce reliable GW variances with the minimum detectable value as small as 0.1 K2. Preliminary analyses with AMSU-A data show GW variance maps in the stratosphere have very similar distributions to those found with the UARS MLS (Upper Atmosphere Research Satellite Microwave Limb Sounder). However, the AMSU-A offers better horizontal and temporal resolution for observing regional GW variability, such as activity over sub-Antarctic islands.
    Keywords: Geophysics
    Type: Geophysical Research Letters; Volume 31
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-11
    Description: The nature of observed variations in temperature-salinity (T-S) relationship between El Nino and non-El Nino years in the pycnocline of the eastern equatorial Pacific Ocean (NINO3 region, 5(deg)S-5(deg)N, 150(deg)W-90(deg)W) is investigated using an ocean general circulation model. The origin of the subject water mass is identified using the adjoint of a simulated passive tracer. The higher salinity during El Nino is attributed to larger convergence of saltier water from the Southern Hemisphere and smaller convergence of fresher water from the Northern Hemisphere.
    Keywords: Meteorology and Climatology
    Type: Geophysical Research Letters; Volume 31
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-06-11
    Description: The interplanetary shock/electric field event of 5-6 November 2001 is analyzed using ACE interplanetary data. The consequential ionospheric effects are studied using GPS receiver data from the CHAMP and SAC-C satellites and altimeter data from the TOPEX/ Poseidon satellite. Data from ~100 ground-based GPS receivers as well as Brazilian Digisonde and Pacific sector magnetometer data are also used. The dawn-to-dusk interplanetary electric field was initially ~33 mV/m just after the forward shock (IMF BZ = -48 nT) and later reached a peak value of ~54 mV/m 1 hour and 40 min later (BZ = -78 nT). The electric field was ~45 mV/m (BZ = -65 nT) 2 hours after the shock. This electric field generated a magnetic storm of intensity DST = -275 nT. The dayside satellite GPS receiver data plus ground-based GPS data indicate that the entire equatorial and midlatitude (up to +/-50(deg) magnetic latitude (MLAT)) dayside ionosphere was uplifted, significantly increasing the electron content (and densities) at altitudes greater than 430 km (CHAMP orbital altitude). This uplift peaked ~2 1/2 hours after the shock passage. The effect of the uplift on the ionospheric total electron content (TEC) lasted for 4 to 5 hours. Our hypothesis is that the interplanetary electric field ''promptly penetrated'' to the ionosphere, and the dayside plasma was convected (by E x B) to higher altitudes. Plasma upward transport/convergence led to a ~55-60% increase in equatorial ionospheric TEC to values above ~430 km (at 1930 LT). This transport/convergence plus photoionization of atmospheric neutrals at lower altitudes caused a 21% TEC increase in equatorial ionospheric TEC at ~1400 LT (from ground-based measurements). During the intense electric field interval, there was a sharp plasma ''shoulder'' detected at midlatitudes by the GPS receiver and altimeter satellites. This shoulder moves equatorward from -54(deg) to -37(deg) MLAT during the development of the main phase of the magnetic storm. We presume this to be an ionospheric signature of the plasmapause and its motion. The total TEC increase of this shoulder is ~80%. Part of this increase may be due to a "superfountain effect." The dayside ionospheric TEC above ~430 km decreased to values ~45% lower than quiet day values 7 to 9 hours after the beginning of the electric field event. The total equatorial ionospheric TEC decrease was ~16%. This decrease occurred both at midlatitudes and at the equator. We presume that thermospheric winds and neutral composition changes produced by the storm-time Joule heating, disturbance dynamo electric fields, and electric fields at auroral and subauroral latitudes are responsible for these decreases.
    Keywords: Geophysics
    Type: Journal Of Geophysical Research (ISSN 0148-0227); Volume 109
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-06-11
    Description: Comparisons are performed between spatially averaged sea surface temperatures (ASST2) as derived from the second Along-Track Scanning Radiometer (ATSR-2) on board the second European Remote Sensing Satellite (ERS-2) and the NOAA-NASA Advanced Very High Resolution Radiometer (AVHRR) Oceans Pathfinder dataset (MPFSST). Difference maps, MPFSST 2 ASST2, along with the application of a simple statistical regression model to aerosol and cloud data from the Total Ozone Mapping Spectrometer ( TOMS), are used to examine the impact of possible aerosol and cloud contamination. Differences varied regionally, but the largest biases were seen off western Africa. Nighttime and daytime differences off western Africa were reduced from -0.5degrees to -0.2degreesC and from -0.1degrees to 0degreesC, respectively. Significant cloud flagging, based on the model, occurred in the Indian Ocean, the equatorial Pacific, and in the vicinity of the Gulf Stream. Comparisons of the MPFSST and the ASST2 with in situ data from the 2002 version of the World Oceanic Database (WOD02) off western Africa show larger mean differences for the MPFSST. The smallest mean differences occurred for nighttime ASST2 - WOD02 with a value of 0.0degrees +/- 0.4degreesC.
    Keywords: Meteorology and Climatology
    Type: Journal of Climate; Volume 17; 3921-3933
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-06-08
    Keywords: Meteorology and Climatology
    Type: 84th AMS Annual Meeting; Seattle, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-06-11
    Description: Studies of Martian surface geomorphology and detection of near-surface water ice by the Mars Odyssey gamma ray spectrometer suggest that Mars may have had a water-rich past. While 2 to 5 wt.% of carbonate has been detected in the Martian dust [1,2], no spectral evidence for significant deposits of carbonates or sulfates has been found to date. Most investigations into Mars aqueous mineralogy have been global in scope with only a few regional studies (e.g., [3]). We are searching for localized deposits in putative lacustrine basins utilizing a basin flow model to identify basins with large drainage areas. Such basins are more likely to accumulate high concentrations of aqueous minerals than deep basins which drain only small regions.
    Keywords: Geophysics
    Type: Lunar and Planetary Science XXXV: Mars Mineralogy: Weathered and Dry; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-11
    Description: Sulfates are likely to be present on Mars as indicated by the sulfur abundances measured at the Viking and Pathfinder landing sites (approx. 5-10% by weight SO3) [1-3] and because of Mars strongly oxidizing environment. Telescopic observations of Mars tentatively identified weak sulfate bands in near infrared [4] and thermal infrared [5] data. The currently orbiting midinfrared instruments (TES, THEMIS) and the Mini-TES on the Mars Exploration Rover landers may enable a positive identification [6] and determination of the chemistry of the sulfates. Critically important to the identification of these minerals is the presence of their spectra in a spectral library. There exist approximately 370 sulfate-mineral species [7]. Sulfate minerals occur in volcanic, hydrothermal, evaporitic, and chemical-weathering environments.
    Keywords: Geophysics
    Type: Lunar and Planetary Science XXXV: Mars Mineralogy: Weathered and Dry; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-11
    Description: The global dichotomy divides the northern lowlands from the southern highlands, except where interrupted by relatively young volcanic provinces and impact basins. An elevation change of 2-4 km is typical across the dichotomy, and more than 6 km locally, over distances of several 100s km to as much as 1300 km [1,2]. A variety of exogenic and endogenic formation models have been proposed. Distinguishing between these models would help constrain the overall thermal evolution of the planet, possibly timing of core formation, and the associated mantle heat flux over time. A first step is to determine whether or not gravitational relaxation plays a role in modifying the boundary. Nimmo and Stevenson [3] examined 10 profiles across the dichotomy and used models of gravitational relaxation to conclude the relaxation has not occurred. In this study we begin by considering the geologic history in detail as inputs for modeling [4].
    Keywords: Geophysics
    Type: Lunar and Planetary Science XXXV: Mars Geophysics; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-11
    Description: The origin of the Martian crustal dichotomy remains a puzzle that when solved can provide an insight to the geological and geophysical evolution of Mars. In this study we model crustal relaxation in order to better constrain the original topographic shape, rheology, and temperature of the Martian crust. Our approach is to model the detailed geologic history of the Ismenius region of Mars, including slope, strain, and timing of faulting [1]. This region may contain the best preserved section of the dichotomy boundary as it is relatively unaffected by large impacts and erosion. So far the only study Martian crustal relaxation [2] suggests that the original topographic shape of the dichotomy is preserved. However, in this area strain from faulting implies at least some relaxation [1].
    Keywords: Geophysics
    Type: Lunar and Planetary Science XXXV: Mars Geophysics; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-06-11
    Description: The authors use satellite data to examine the relationship between lightning and upper-level radar reflectivity. They find correlations between average flash rates and upper-level reflectivities over both land and ocean, although both flash rates and reflectivities are much lower over ocean than land. Analysis of the data using Empirical Orthogonal Functions (EOFs) shows similar EOFs for averaged lightning and reflectivity. In contrast, the EOFs of the anomalies of lightning and reflectivity have different spatial patterns; however, both have principal component time series that are correlated with the Southern Oscillation Index and, hence, El Nino. Differences in behavior of the lightning and reflectivity anomaly EOFs and principal components suggest that El Nino plays a smaller role in lightning anomaly than precipitation anomaly.
    Keywords: Meteorology and Climatology
    Type: Geophysical Research Letters (ISSN 0094-8276); Volume 31
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-06-11
    Description: Numerous studies have documented the effect of El Nino-Southern Oscillation (ENSO) on rainfall in many regions of the globe. The question of whether ENSO is the single most important factor in interannual rainfall variability has received less attention, mostly because the kind of data that would be required to make such an assessment were simply not available. Until 1979 the evidence linking El Nino with changes in rainfall around the world came from rain gauges measuring precipitation over land masses and a handful of islands. From 1980 until the launch of the Tropical Rainfall Measuring Mission (TRMM) in November 1997 the remote sensing evidence was confined to ocean rainfall because of the very poor sensitivity of the instruments over land. In this paper we summarize the results of a principal component analysis of TRMM's 60-month (January 1998 to December 2002) global land and ocean remote-sensing record of monthly rainfall accumulations. Contrary to the first principal component of the rainfall itself, the first three indices of the anomaly are most sensitive to precipitation over the ocean rather than over the land. With the help of archived surface station data the first TRMM rain anomaly index is extended back several decades. Comparison of the extended index with the Southern Oscillation Index confirms that the first principal component of the rainfall anomaly is strongly correlated with the ENSO indices.
    Keywords: Geophysics
    Type: Journal of Geophysical Research; Volume 109; D17103
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-06-06
    Description: In this study, a framework is discussed to apply air/space-borne dual-wavelength radar for the estimation of characteristic parameters of hydrometeors. The focus of our study is on the Global Precipitation Measurements (GPM) precipitation radar, a dual-wavelength radar that operates at Ku (13.8 GHz) and Ka (35 GHz) bands. As the droplet size distributions (DSD) of rain are expressed as the Gamma function, a procedure is described to derive the median volume diameter (D(sub 0)) and particle number concentration (N(sub T)) of rain. The correspondences of an important quantity of dual-wavelength radar, defined as deferential frequency ratio (DFR), to the D(sub 0) in the melting region are given as a function of the distance from the 0 C isotherm. A self-consistent iterative algorithm that shows a promising to account for rain attenuation of radar and infer the DSD without use of surface reference technique (SRT) is examined by applying it to the apparent radar reflectivity profiles simulated from the DSD model and then comparing the estimates with the model (true) results. For light to moderate rain the self-consistent rain profiling approach converges to unique and correct solutions only if the same shape factors of Gamma functions are used both to generate and retrieve the rain profiles, but does not converges to the true solutions if the DSD form is not chosen correctly. To further examine the dual-wavelength techniques, the self-consistent algorithm, along with forward and backward rain profiling algorithms, is then applied to the measurements taken from the 2nd generation Precipitation Radar (PR-2) built by Jet Propulsion Laboratory. It is found that rain profiles estimated from the forward and backward approaches are not sensitive to shape factor of DSD Gamma distribution, but the self-consistent method is.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-06-06
    Description: A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating/drying profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and non-convective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud resolving model simulations, and from the Bayesian formulation itself. Synthetic rain rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in instantaneous rain rate estimates at 0.5 deg resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. These errors represent about 70-90% of the mean random deviation between collocated passive microwave and spaceborne radar rain rate estimates. The cumulative algorithm error in TMI estimates at monthly, 2.5 deg resolution is relatively small (less than 6% at 5 mm/day) compared to the random error due to infrequent satellite temporal sampling (8-35% at the same rain rate).
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-06-06
    Description: The water cycle is the key circuit moving water through the Earth's system. This large system, powered by energy from the sun, is a continuous exchange of moisture between the oceans, the atmosphere, and the land. Precipitation (including rain, snow, sleet, freezing rain, and hail), is the primary mechanism for transporting water from the atmosphere back to the Earth's surface and is the key physical process that links aspects of climate, weather, and the global water cycle. Global precipitation and associate cloud processes are critical for understanding the water cycle balance on a global scale and interactions with the Earth's climate system. However, unlike measurement of less dynamic and more homogenous meteorological fields such as pressure or even temperature, accurate assessment of global precipitation is particularly challenging due to its highly stochastic and rapidly changing nature. It is not uncommon to observe a broad spectrum of precipitation rates and distributions over very localized time scales. Furthermore, precipitating systems generally exhibit nonhomogeneous spatial distributions of rain rates over local to global domains.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-06-06
    Description: Precise repeat airborne laser surveys were conducted over the major ice caps in the Canadian Arctic Archipelago in the spring of 1995 and 2000 in order to measure elevation changes in the region. Our measurements reveal thinning at lower elevations (below 1600 m) on most of the ice caps and glaciers, but either very little change or thickening at higher elevations in the ice cap accumulation zones. Recent increases in precipitation in the area can account for the slight thickening where it was observed, but not for the thinning at lower elevations. For the northern ice caps on the Queen Elizabeth Islands, thinning was generally less than 0.5 m/yr , which is consistent with what would be expected from the warm temperature anomalies in the region for the 5-year period between surveys and appears to be a continuation of a trend that began in the mid 1980s. Further south, however, on the Barnes and Penny ice caps on Baffin Island, this thinning was much more pronounced at over 1 m/yr in the lower elevations. Here temperature anomalies were very small, and the thinning at low elevations far exceeds any associated enhanced ablation. The observations on Barnes, and perhaps Penny are consistent with the idea that the observed thinning is part of a much longer term deglaciation, as has been previously suggested for Barnes Ice Cap. Based on the regional relationships between elevation and elevation-change in our data, the 1995-2000 mass balance for the region is estimated to be 25 cu km/yr of ice, which corresponds to a sea level increase of 0.064 mm/ yr . This places it among the more significant sources of eustatic sea level rise, though not as substantial as Greenland ice sheet, Alaskan glaciers, or the Patagonian ice fields.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-06-06
    Description: A unique set of measurements of wind, water vapor mixing ratio and boundary layer height variability was observed during the first MOP dryline mission of 22 May 2002. Water vapor mixing ratio from the Scanning Raman Lidar (SRL), high-resolution profiles of aerosol backscatter from the HARLIE and wind profiles from the GLOW are combined with the vertical velocity derived from the NCAR/ISS/MAPR and the high-resolution FMCW radar to reveal the convective variability of the cumulus cloud-topped boundary layer. A combined analysis of the in-situ and remote sensing data from aircraft, radiosonde, lidars, and radars reveals moisture variability within boundary layer updraft and downdraft regions as well as characterizes the boundary layer height variability in the dry and moist sides of the dryline. The profiler site measurements will be tied to aircraft data to reveal the relative intensity and location of these updrafts to the dry line. This study provides unprecedented high temporal and spatial resolution measurements of wind, moisture and backscatter within a dryline and the associated convective boundary layer.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-06-06
    Description: Although dry/moist potential vorticity is a useful physical quantity for meteorological analysis, it cannot be applied to the analysis of 2D simulations. A convective vorticity vector (CVV) is introduced in this study to analyze 2D cloud-resolving simulation data associated with 2D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the TOGA COARE, and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2D x-z frame. Analysis of zonally-averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally-averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-06-06
    Description: Previous estimates of land-atmosphere interaction (the impact of soil moisture on precipitation) have been limited by a severe paucity of relevant observational data and by the model-dependence of the various computational estimates. To counter this limitation, a dozen climate modeling groups have recently performed the same highly-controlled numerical experiment as part of a coordinated intercomparison project. This allows, for the first time ever, a superior multi-model approach to the estimation of the regions on the globe where precipitation is affected by soil moisture anomalies during Northern Hemisphere summer. Such estimation has many potential benefits; it can contribute, for example, to seasonal rainfall prediction efforts.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-06-06
    Description: Over the tropical land regions observations of the 85 GHz brightness temperature (T(sub 85v)) made by the TRMM Microwave Imager (TMI) radiometer when analyzed with the help of rain rate (R(sub pR)) deduced from the TRMM Precipitation Radar (PR) indicate that there are two maxima in rain rate. One strong maximum occurs when T(sub 85) has a value of about 220 K and the other weaker one when T(sub 85v) is much colder approx. 150 K. Together with the help of earlier studies based on airborne Doppler Radar observations and radiative transfer theoretical simulations, we infer the maximum near 220 K is a result of relatively weak scattering due to super cooled rain drops and water coated ice hydrometeors associated with a developing thunderstorm (Cb) that has a strong updraft. The other maximum is associated with strong scattering due to ice particles that are formed when the updraft collapses and the rain from the Cb is transit2oning from convective type to stratiform type. Incorporating these ideas and with a view to improve the estimation of rain rate from existing operational method applicable to the tropical land areas, we have developed a rain retrieval model. This model utilizes two parameters, that have a horizontal scale of approx. 20km, deduced from the TMI measurements at 19, 21 and 37 GHz (T(sub 19v), T(sub 21v), T(sub 37v). The third parameter in the model, namely the horizontal gradient of brightness temperature within the 20 km scale, is deduced from TMI measurements at 85 GHz. Utilizing these parameters our retrieval model is formulated to yield instantaneous rain rate on a scale of 20 km and seasonal average on a mesoscale that agree well with that of the PR.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-06-06
    Description: Linear regression trends for the years 1979-2003 were computed using the new Version 8 merged Solar Backscatter Ultraviolet (SBUV) data set of ozone profiles. These trends were compared to trends computed using ozone profiles from the Goddard Space Flight Center (GSFC) zonally averaged coupled model. Observed and modeled annual trends between 50 N and 50 S were a maximum in the higher latitudes of the upper stratosphere, with southern hemisphere (SH) trends greater than northern hemisphere (NH) trends. The observed upper stratospheric maximum annual trend is -5.5 +/- 0.9 % per decade (1 sigma) at 47.5 S and -3.8 +/- 0.5 % per decade at 47.5 N, to be compared with the modeled trends of -4.5 +/- 0.3 % per decade in the SH and -4.0 +/- 0.2% per decade in the NH. Both observed and modeled trends are most negative in winter and least negative in summer, although the modeled seasonal difference is less than observed. Model trends are shown to be greatest in winter due to a repartitioning of chlorine species and the increasing abundance of chlorine with time. The model results show that trend differences can occur depending on whether ozone profiles are in mixing ratio or number density coordinates, and on whether they are recorded on pressure or altitude levels.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: The data from twenty years of the NCEP numerical weather model have been used to calculate the IMF hydrostatic mapping function for several sites distributed in latitude from -66 degrees to +78 degrees. Comparison of heights estimated with the NMF hydrostatic mapping function demonstrates that using NMFh results in height errors at annual and semi-annual periods with amplitudes as large as approximately 8 mm and 4 mm, respectively, when data down to 5 degrees are included. The errors are smallest at the equator and increase towards the poles.
    Keywords: Meteorology and Climatology
    Type: International VLBI Service for Geodesy and Astronomy; 188-190; NASA/TP-2004-212254
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-06-06
    Description: Spatially detailed satellite data of mean color, sea ice concentration, surface temperature, clouds, and wind have been analyzed to quantify and study the large scale regional and temporal variability of phytoplankton blooms in the Arctic and peripheral seas from 1998 to 2002. In the Arctic basin, phytoplankton chlorophyll displays a large symmetry with the Eastern Arctic having about fivefold higher concentrations than those of the Western Arctic. Large monthly and yearly variability is also observed in the peripheral seas with the largest blooms occurring in the Bering Sea, Sea of Okhotsk, and the Barents Sea during spring. There is large interannual and seasonal variability in biomass with average chlorophyll concentrations in 2002 and 2001 being higher than earlier years in spring and summer. The seasonality in the latitudinal distribution of blooms is also very different such that the North Atlantic is usually most expansive in spring while the North Pacific is more extensive in autumn. Environmental factors that influence phytoplankton growth were examined, and results show relatively high negative correlation with sea ice retreat and strong positive correlation with temperature in early spring. Plankton growth, as indicated by biomass accumulation, in the Arctic and subarctic increases up to a threshold surface temperature of about 276-277 degree K (3-4 degree C) beyond which the concentrations start to decrease suggesting an optimal temperature or nutrient depletion. The correlation with clouds is significant in some areas but negligible in other areas, while the correlations with wind speed and its components are generally weak. The effects of clouds and winds are less predictable with weekly climatologies because of unknown effects of averaging variable and intermittent physical forcing (e.g. over storm event scales with mixing and upwelling of nutrients) and the time scales of acclimation by the phytoplankton.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-06-06
    Description: The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island, Bahamas for the third Convection and Moisture Experiment (CAMEX 3) held in August - September, 1998 and acquired an extensive set of water vapor and cirrus cloud measurements (Whiteman et al., 2001). The cirrus data studied here have been segmented by generating mechanism. Distinct differences in the optical properties of the clouds are found when the cirrus are hurricane-induced versus thunderstom-induced. Relationships of cirrus cloud optical depth, mean cloud temperature, and layer mean extinction-to-backscatter ratio (S) are presented and compared with mid-latitude and tropical results. Hurricane-induced cirrus clouds are found to generally possess lower values of S than thunderstorm induced clouds. Comparison of these measurements of S are made with other studies revealing at times large differences in the measurements. Given that S is a required parameter for spacebased retrievals of cloud optical depth using backscatter lidar, these large diffaences in S measurements present difficulties for space-based retrievals of cirrus cloud extinction and optical depth.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-06-06
    Description: Scattering properties of the Ocean surface have been widely used as a calibration reference for airborne and spaceborne microwave sensors. However, at millimeter-wave frequencies, the ocean surface backscattering mechanism is still not well understood, in part, due to the lack of experimental measurements. During the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE), measurements of ocean surface backscattering were made using a 94-GHz (W-band) cloud radar onboard a NASA ER-2 high-altitude aircraft. The measurement set includes the normalized Ocean surface cross section over a range of the incidence angles under a variety of wind conditions. Analysis of the radar measurements shows good agreement with a quasi-specular scattering model. This unprecedented dataset enhances our knowledge about the Ocean surface scattering mechanism at 94 GHz. The results of this work support the proposition of using the Ocean surface as a calibration reference for airborne millimeter-wave cloud radars and for the ongoing NASA CloudSat mission, which will use a 94-GHz spaceborne cloud radar for global cloud measurements.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-06-06
    Description: Urbanization is one of the extreme cases of land use change. Most of world s population has moved to urban areas. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in the near future. It is estimated that by the year 2025, 60% of the world s population will live in cities. Human activity in urban environments also alters atmospheric composition; impacts components of the water cycle; and modifies the carbon cycle and ecosystems. However, our understanding of urbanization on the total Earth-climate system is incomplete. Better understanding of how the Earth s atmosphere-ocean-land-biosphere components interact as a coupled system and the influence of the urban environment on this climate system is critical. The goal of the 2003 AGU Union session Human-induced climate variations on urban areas: From observations to modeling was to bring together scientists from interdisciplinary backgrounds to discuss the data, scientific approaches and recent results on observing and modeling components of the urban environment with the intent of sampling our current stand and discussing future direction on this topic. Herein, a summary and discussion of the observations component of the session are presented.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-06-06
    Description: This paper describes ozone profiles from sonde data during the period of NASA s TRACE-A and the more recent SHADOZ (Southern Hemisphere Additional Ozonesondes) period. The data were taken by the South African Weather Service at the Irene (25 deg.54 min S; 28 deg. 13 min. E) station near Pretoria, South Africa, an area that is a unique mixture of local industry, heavy biofuels use and importation of biomass burning ozone from neighboring countries to the north. The main findings are: (1) With its geographical position at the edge of the subtropical transition zone, mid- latitude dynamical influences are evident at Irene, predominantly in winter when upper tropospheric ozone is enhanced as a result of stratospheric-tropospheric exchange. (2) There has been an increase in the near-surface ozone amount between the early 1990s and a decade later, presumably due to an influx of rural population toward the Johannesburg-Pretoria area, as well as with industrial growth and development. (3) Most significant for developing approaches for satellite ozone profile climatologies, cluster analysis has enabled the delineation of a background and "most polluted" profile. Enhancements of at least 30% occur throughout the troposphere in spring and in certain layers increases of 100 % are observed.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-06-06
    Description: Results provided by two different assimilation methodologies involving data from passive and active space-borne microwave instruments are presented. The impact of the precipitation estimates produced by the TRMM Microwave Imager (TMI) and Special Sensor Microwave/Imager (SSM/I) in a previously developed 1D variational continuous assimilation algorithm for assimilating tropical rainfall is shown on two hurricane cases. Results on the impact of the SeaWinds scatterometer on the intensity and track forecast of a mid-Atlantic hurricane are also presented. This work is the outcome of a collaborative effort between NASA and NOAA and indicates the substantial improvement in tropical cyclone forecasting that can result from the assimilation of space-based data in global atmospheric models.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-06-06
    Description: The Earth Observing System (EOS) Aura satellite is scheduled to launch in the second quarter of 2004. The Aura mission is designed to attack three science questions: (1) Is the ozone layer recovering as expected? (2) What are the sources and processes that control tropospheric pollutants? (3) What is the quantitative impact of constituents on climate change? Aura will answer these questions by globally measuring a comprehensive set of trace gases and aerosols at high vertical and horizontal resolution. Fig. 1 shows the Aura spacecraft and its four instruments.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2018-06-06
    Description: Howard (1833a) made the first documented observation of a temperature difference between an urban area and its rural environment. Manley (1958) termed this contrast the "urban heat island (UHI)". The UHI has now become a widely acknowledged, observed, and researched phenomenon because of its broad implications. It is estimated that by the year 2025, 60% of the world's population will live in cities (UNFP, 1999). In the United States, the current urban growth rate is approximately 12.5%, with 80% currently living in urban areas. As cities continue to grow, urban sprawl creates unique problems related to land use, transportation, agriculture, housing, pollution, and development for policymakers. Urban expansion and its associated urban heat islands also have measurable impacts on weather and climate processes.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-06-06
    Description: The July 2004 CRYSTAL-FACE field program, based from Key West, Florida, showed that long-lived thin tropopause cirrus (TTC) layers were common above thunderstorm anvils. This paper investigates the origins of these cloud using airborne measurements. The horizontal dimensions of the TTC were nearly identical to the convectively formed anvil beneath. However, the TTC did not appear to have originated from convective detrainment. Rather it appears to have formed in stably stratified air derived from high altitudes near the tropopause. The TTC was separated from the anvil by approx. 1 km, it lacked precipitation particles, and it was strongly depleted in HDO. Nonetheless, compared to surrounding clear air near the tropopause, the TTC was enriched in moisture and trace gases in a manner consistent with it having mixed with the same convective airmass that produced the anvil. Unlike surrounding air, the TTC had embedded a monochromatic gravity wave with a wavelength of 2 km and an amplitude of several hundred meters. Combined, this evidence, supported by a photograph from CRYSTAL-FACE, leads to the conjecture that the TTC originated as a pileus cloud layer, which formed near the tropopause ahead of vigorous convective uplift. We hypothesize that the pileus was penetrated by the convection, moistened through mixing, and once the convection subsided, it was sustained by radiative cooling due to the presence of the anvil layer beneath.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-06-06
    Description: The 6-year (1998-2003) rainfall products from the Tropical Rainfall Measuring Mission (TRMM) are used to quantify the Intertropical Convergence Zone (ITCZ) in the eastern Pacific (defined by longitudinal averages over 90 degrees W-130 degrees W) during boreal spring (March-April). The double ITCZ phenomenon, represented by the occurrence of two maxima with respect to latitude in monthly mean rainfall, is observed in most but not all of the years studied. The relative spatial locations of maxima in sea surface temperature (SST), rainfall, and surface pressure are examined. Interannual and weekly variability are characterized in SST, rainfall, surface convergence, total column water vapor, and cloud water. There appears to be a competition for rainfall between the two hemispheres during this season. When one of the two rainfall maxima is particularly strong, the other tends to be weak, with the total rainfall integrated over the two varying less than does the difference between the rainfall integrated over each separately. There is some evidence for a similar competition between the SST maxima in the two hemispheres, but this is more ambiguous, and there is evidence that some variations in the relative strengths of the two rainfall maxima may be independent of SST. Using a 25-year (1979-2003) monthly rainfall dataset from the Global Precipitation Climatology Project (GPCP), four distinct ITCZ types during March-April are defined, based on the relative strengths of rainfall peaks north and south of, and right over the equator. Composite meridional profiles and spatial distributions of rainfall and SST are documented for each type. Consistent with previous studies, an equatorial cold tongue is essential to the existence of the double ITCZs. However, too strong a cold tongue may dampen either the southern or northern rainfall maximum, depending on the magnitude of SST north of the equator.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-06-06
    Description: We apply the GSFC trajectory model with a series of ozonesondes to derive ozone loss rates in the lower stratosphere for the AASE-2/EASOE mission (January - March 1992) and for the SOLVE/THESEO 2000 mission (January - March 2000) in an approach similar to Match. Ozone loss rates are computed by comparing the ozone concentrations provided by ozonesondes launched at the beginning and end of the trajectories connecting the launches. We investigate the sensitivity of the Match results on the various parameters used to reject potential matches in the original Match technique and conclude that only a filter based on potential vorticity changes along the calculated back trajectory seems necessary. Our study also demonstrates that calculated ozone loss rates can vary by up to a factor of two depending upon the precise trajectory paths calculated for each trajectory. As a result an additional systematic error might need to be added to the statistical uncertainties published with previous Match results. The sensitivity to the trajectory path is particularly pronounced in the month of January, the month during which the largest ozone loss rate discrepancies between photochemical models and Match are found. For most of the two study periods, our ozone loss rates agree with those previously published. Notable exceptions are found for January 1992 at 475 K and late February/early March 2000 at 450 K, both periods during which we find less loss than the previous studies. Integrated ozone loss rates in both years compare well with those found in numerous other studies and in a potential vorticity/potential temperature approach shown previously and in this paper. Finally, we suggest an alternate approach to Match using trajectory mapping that appears to more accurately reflect the true uncertainties associated with Match and reduces the dependence upon filters that may bias the results of Match through the rejection of greater than or equal to 80% of the matched sonde pairs and 〉99% of matched observations.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2018-06-06
    Description: Remote sensing of snow depth has been used to infer snow depth for many years. Passive microwave remote sensing of snow depth is compared with the snow gauge data.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018-06-06
    Description: The Tropical Rainfall Measuring Mission (TRMM) provides monthly rainfall estimates using data collected by the TRMM satellite. These estimates cover a substantial fraction of the earth's surface. The physical validation of TRMM estimates involves corroborating the accuracy of spaceborne estimates of areal rainfall by inferring errors and biases from ground-based rain estimates. The TRMM error budget consists of two major sources of error: retrieval and sampling. Sampling errors are intrinsic to the process of estimating monthly rainfall and occur because the satellite extrapolates monthly rainfall from a small subset of measurements collected only during satellite overpasses. Retrieval errors, on the other hand, are related to the process of collecting measurements while the satellite is overhead. One of the big challenges confronting the TRMM validation effort is how to best estimate these two main components of the TRMM error budget, which are not easily decoupled. This four-year study computed bulk sampling and retrieval errors for the TRMM microwave imager (TMI) and the precipitation radar (PR) by applying a technique that sub-samples gauge data at TRMM overpass times. Gridded monthly rain estimates are then computed from the monthly bulk statistics of the collected samples, providing a sensor-dependent gauge rain estimate that is assumed to include a TRMM equivalent sampling error. The sub-sampled gauge rain estimates are then used in conjunction with the monthly satellite and gauge (without sub- sampling) estimates to decouple retrieval and sampling errors. The computed mean sampling errors for the TMI and PR were 5.9% and 7.796, respectively, in good agreement with theoretical predictions. The PR year-to-year retrieval biases exceeded corresponding TMI biases, but it was found that these differences were partially due to negative TMI biases during cold months and positive TMI biases during warm months.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-06-06
    Description: Large errors in numerical weather prediction are often associated with explosive cyclogenesis. Most studes focus on the under-forecasting error, i.e. cases of rapidly developing cyclones which are poorly predicted in numerical models. However, the over-forecasting error (i.e., to predict an explosively developing cyclone which does not occur in reality) is a very common error that severely impacts the forecasting skill of all models and may also present economic costs if associated with operational forecasting. Unnecessary precautions taken by marine activities can result in severe economic loss. Moreover, frequent occurrence of over-forecasting can undermine the reliance on operational weather forecasting. Therefore, it is important to understand and reduce the prdctions of extreme weather associated with explosive cyclones which do not actually develop. In this study we choose a very prominent case of over-forecasting error in the northwestern Pacific. A 960 hPa cyclone develops in less than 24 hour in the 5-day forecast, with a deepening rate of about 30 hPa in one day. The cyclone is not versed in the analyses and is thus a case of severe over-forecasting. By assimilating AIRS data, the error is largely eliminated. By following the propagation of the anomaly that generates the spurious cyclone, it is found that a small mid-tropospheric geopotential height negative anomaly over the northern part of the Indian subcontinent in the initial conditions, propagates westward, is amplified by orography, and generates a very intense jet streak in the subtropical jet stream, with consequent explosive cyclogenesis over the Pacific. The AIRS assimilation eliminates this anomaly that may have been caused by erroneous upper-air data, and represents the jet stream more correctly. The energy associated with the jet is distributed over a much broader area and as a consequence a multiple, but much more moderate cyclogenesis is observed.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Since the ICRF was generated in 1995, VLBI modeling and estimation, data quality: source position stability analysis, and supporting observational programs have improved markedly. There are developing and potential applications in the areas of space navigation Earth orientation monitoring and optical astrometry from space that would benefit from a refined ICRF with enhanced accuracy, stability and spatial distribution. The convergence of analysis, focused observations, and astrometric needs should drive the production of a new realization in the next few years.
    Keywords: Geophysics
    Type: International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings; 337-340; NASA/CP-2004-212255
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-06-06
    Description: The Observing Strategies Sub-group of IVS's Working Group 3 has been tasked with producing a vision for the following aspects of geodetic VLBI: antenna-network structure and observing strategies; source strength/structure/distribution; frequency bands, RFI; and field system and scheduling. These are high level considerations that have far reaching impact since they significantly influence performance potential and also constrain requirements for a number of other \VG3 sub-groups. The paper will present the status of the sub-group's work on these topics.
    Keywords: Geophysics
    Type: International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings; 60-64; NASA/CP-2004-212255
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-06-06
    Description: The study employs a 108-year precipitation data record to identify statistically significant anomalies in rainfall downwind of the Phoenix urban region. The analysis reveals that during the monsoon season locations northeastern suburbs and exurbs of the Phoenix metropolitan area have experienced statistically significant increases in mean precipitation of 12 to 14 percent from a pre-urban (1895-1949) to post-urban (1950-2003) period. Mean and median post-urban precipitation totals in the anomaly region are significantly greater, in the statistical sense, than regions west of the city and in nearby mountainous regions of similar or greater topography. Further analysis of satellite-based rainfall totals for the summer of 2003 also reveal the existence of the anomaly region during a severe drought period. The anomaly can not simply be attributed to maximum topographic relief and is hypothesize to be related to urban-topographic interactions.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-06-06
    Description: The possible impact of an increase in global temperatures of about 2 C, as may be caused by a doubling of atmospheric CO2, is studied using historical satellite records of surface temperatures and sea ice from late 1970s to 2003. Updated satellite data indicate that the perennial ice continued to decline at an even faster rate of 9.2 % per decade than previously reported while concurrently, the surface temperatures have steadily been going up in most places except for some parts of northern Russia. Surface temperature is shown to be highly correlated with sea ice concentration in the seasonal sea ice regions. Results of regression analysis indicates that for every 1 C increase in temperature, the perennial ice area decreases by about 1.48 x 10(exp 6) square kilometers with the correlation coefficient being significant but only -0.57. Arctic warming is estimated to be about 0.46 C per decade on average in the Arctic but is shown to be off center with respect to the North Pole, and is prominent mainly in the Western Arctic and North America. The length of melt has been increasing by 13 days per decade over sea ice covered areas suggesting a thinning in the ice cover. The length of melt also increased by 5 days per decade over Greenland, 7 days per decade over the permafrost areas of North America but practically no change in Eurasia. Statistically derived projections indicate that the perennial sea ice cover would decline considerably in 2025, 2035, and 2060 when temperatures are predicted by models to reach the 2 C global increase.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-06-06
    Description: Ozone measurements from ozonesondes, AROTAL, DIAL, and POAM III instruments during the SOLVE-2/VINTERSOL period are composited in a time-varying, flow-following quasi-conservative (PV-6) coordinate space; the resulting composites from each instrument are mapped onto the other instruments locations and times. The mapped data are then used to intercompare data from the different instruments. Overall, the four data sets are found to be in good agreement. AROTAL shows somewhat lower values below 16 km, and DIAL has a positive bias at the upper limits of its altitude range. These intercomparisons are consistent with those obtained from more conventional near-coincident profiles, where available. Although the PV-theta mapping technique entails larger uncertainties of individual profile differences compared to direct near-coincident comparisons, the ability to include much larger numbers of comparisons can make this technique advantageous.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-06-06
    Description: Conventional wisdom is that lidar pulses do not significantly penetrate clouds having optical thickness exceeding about tau = 2, and that no returns are detectable from more than a shallow skin depth. Yet optically thicker clouds of tau much greater than 2 reflect a larger fraction of visible photons, and account for much of Earth s global average albedo. As cloud layer thickness grows, an increasing fraction of reflected photons are scattered multiple times within the cloud, and return from a diffuse concentric halo that grows around the incident pulse, increasing in horizontal area with layer physical thickness. The reflected halo is largely undetected by narrow field-of-view (FoV) receivers commonly used in lidar applications. THOR - Thickness from Off-beam Returns - is an airborne wide-angle detection system with multiple FoVs, capable of observing the diffuse halo, detecting wide-angle signal from which physical thickness of optically thick clouds can be retrieved. In this paper we describe the THOR system, demonstrate that the halo signal is stronger for thicker clouds, and validate physical thickness retrievals for clouds having z 〉 20, from NASA P-3B flights over the Department of Energy/Atmospheric Radiation Measurement/Southern Great Plains site, using the lidar, radar and other ancillary ground-based data.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-06-06
    Description: Climate models often rely on standard atmospheres to represent various regions; these broadly capture the important physical and radiative characteristics of regional atmospheres, and become benchmarks for simulations by researchers. The high Antarctic plateau is a significant region of the earth for which such standard atmospheres are as yet unavailable. Moreover, representative profiles from atmospheres over other regions of the planet, including &om the northern high latitudes, are not comparable to the atmosphere over the Antarctic plateau, and are therefore only of limited value as substitutes in climate models. Using data from radiosondes, ozonesondes and satellites along with other observations from South Pole station, typical seasonal atmospheric profiles for the high plateau are compiled. Proper representations of rapidly changing ozone concentrations (during the ozone hole) and the effect of surface elevation on tropospheric temperatures are discussed. The differences between standard profiles developed here and the most similar standard atmosphere that already exists - namely, the Arctic Winter profile - suggest that these new profiles will be extremely useful to make accurate representations of the atmosphere over the high plateau.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-06-06
    Description: In this chapter, we describe the suite of Earth Observing System (EOS) Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua snow and sea ice products. Global, daily products, developed at Goddard Space Flight Center, are archived and distributed through the National Snow and Ice Data Center at various resolutions and on different grids useful for different communities Snow products include binary snow cover, snow albedo, and in the near future, fraction of snow in a 5OO-m pixel. Sea ice products include ice extent determined with two different algorithms, and sea ice surface temperature. The algorithms used to develop these products are described. Both the snow and sea ice products, available since February 24,2000, are useful for modelers. Validation of the products is also discussed.
    Keywords: Meteorology and Climatology
    Type: Earth Science Satellite Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-06-06
    Description: We report results from a study with the Numerical Spectral Model (NSM), which produces in the mesosphere significant inter-annual variations in the diurnal tide. Applying Hines Doppler Spread Parameterization (DPS), small-scale gravity waves (GW) drive the Quasi-biennial Oscillation (QBO) and Semi-annual Oscillation (SAO). With a GW source that peaks at the equator and is taken to be isotropic and independent of season, the NSM generates near the equator a QBO with variable periods around 27 months and zonal wind amplitudes close to 20 m / s at 30 Ism. As reported earlier, the NSM reproduces the observed equinoctial maxima in the diurnal tide at altitudes around 95 km. In the present paper it is shown that the QBO modulates the tide such that the seasonal amplitude maxima can vary from one year to another by as much as 30%. Since the period of the QBO is variable, its phase relative to the seasonal cycle changes. The magnitude of the QBO modulation of the tide thus varies considerably as our long-term model simulation shows. To shed light on the underlying mechanism, the relative importance of the linearized advection terms are discussed that involve the meridional and vertical winds of the diurnal tide.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-06-06
    Description: Sensitivity experiments with an atmospheric general circulation model (AGCM) show that parameterized rain re-evaporation has a large impact on simulated precipitation patterns in the tropical Pacific, especially on the configuration of the model s intertropical convergence zone (ITCZ). Weak re-evaporation leads t o the formation of a "double ITCZ" during the northern warm season. The double ITCZ is accompanied by strong coupling between precipitation and high-frequency vertical motion in the planetary boundary layer (PBL). Strong reevaporation leads to a better overall agreement of simulated precipitation with observations. The model s double ITCZ bias is reduced. At the same time, correlation between high-frequency vertical motion in the PBL and precipitation is reduced. Experiments with modified physics suggest that evaporative cooling by rain near the PBL top weakens the coupling between precipitation and vertical motion. This may reduce the model s tendency to form double ITCZs. The strength of high-frequency vertical motions in the PBL was also reduced directly through the introduction of a diffusive cumulus momentum transport (DCMT) parameterization. The DCMT had a visible impact on simulated precipitation in the tropics, but did not reduce the model s double bias in all cases.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-06-06
    Description: The 1930s was characterized by a decade of rainfall deficits and high temperatures that desiccated much of the United States Great Plains. Numerous dust storms created one of the most severe environmental catastrophes in U.S. history and led to the popular characterization of much of the southern Great Plains as the Dust Bowl . In this study, we show that the origin of the drought was in the anomalous tropical sea surface temperatures that occurred during that decade. We further show that interactions between the atmosphere and the land surface were essential to the development of the severe drought conditions. The results are based on simulations with the NASA Seasonal-to-Interannual Prediction Project general circulation model forced with observed and idealized sea surface temperatures. We contrast the 1930s drought with other major droughts of the 20th century, and speculate on the possibility of another Dust Bowl developing in the foreseeable future.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-06-12
    Description: Data from a single Weather Surveillance Radar-1988 Doppler (WSR-88D) and the National Lightning Detection Network are used to examine the characteristics of the convective storms that produced a severe tornado outbreak, including three tornadoes that reached F3 intensity, within Tropical Storm Beryl s remnants on 16 August 1994. Comparison of the radar data with reports of tornadoes suggests that only 13 cells produced the 29 tornadoes that were documented in Georgia and the Carolinas on that date. Six of these cells spawned multiple tornadoes, and the radar data confirm the presence of miniature supercells. One of the cells was identifiable on radar for 11 h. spawning tornadoes over a time period spanning approximately 6.5 h. Several other tornadic cells also exhibited great longevity, with cell lifetimes longer than ever previously documented in a landfalling tropical cyclone (TC) tornado event. This event is easily the most intense TC tornado outbreak yet documented with WSR-88Ds. Time-height analyses of the three strongest tornadic supercells are presented in order to document storm kinematic structure and to show how these storms appear at different ranges from a WSR-88D. In addition, cloud-to-ground (CG) lightning data are examined in Beryl s remnants. Although the tornadic cells were responsible for most of Beryl's CG lightning, their flash rates were only weak to moderate, and in all the tornadic storms the lightning flashes were almost entirely negative in polarity. A few of the single-tornado storms produced no detectable CG lightning at all. There is evidence that CG lightning rates decreased during the tornadoes, compared to 30-min periods before the tornadoes. A number of the storms spawned tornadoes just after producing their final CG lightning flashes. Contrary to the findings for flash rates, both peak currents and positive flash percentages were larger in Beryl's nontornadic storms than in the tornadic ones.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-06-05
    Description: Accurate, global profiling of wind velocity is highly desired by NASA, NOAA, the DOD/DOC/NASA Integrated Program Office (IPO)/NPOESS, DOD, and others for many applications such as validation and improvement of climate models, and improved weather prediction. The most promising technology to deliver this measurement from space is Doppler Wind Lidar (DWL). The NASA/NOAA Global Tropospheric Wind Sounder (GTWS) program is currently in the process of generating the science requirements for a space-based sensor. In order to optimize the process of defining science requirements, it is important for the scientific and user community to understand the nature of the wind measurements that DWL can make. These measurements are very different from those made by passive imaging sensors or by active radar sensors. The purpose of this paper is to convey the sampling characteristics and data product trade-offs of an orbiting DWL.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-06-02
    Description: Large-eddy simulation (LES) is a widely used technique in armospheric modeling research. In LES, large, unsteady, three dimensional structures are resolved and small structures that are not resolved on the computational grid are modeled. A filtering operation is applied to distinguish between resolved and unresolved scales. We present two near-surface models that have found use in atmospheric modeling. We also suggest a simpler eddy viscosity model that adopts Prandtl's mixing length model (Prandtl 1925) in the vicinity of the surface and blends with the dynamic Smagotinsky model (Germano et al, 1991) away from the surface. We evaluate the performance of these surface models by simulating a neutraly stratified atmospheric boundary layer.
    Keywords: Meteorology and Climatology
    Type: Annual Research Briefs, 2004: Center for Turbulence Research; 343-353
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-06-02
    Description: NASA has developed an Earth Observing System (EOS) consisting of a series of satellites designed to study global change from space. The EOS flagship is the EOS TERRA satellite, launched in December 1999, equipped with five unique sensors to monitor and study the Earth s heat budget and many of the key controlling variables governing the Earth's climate system. CLAMS, the Chesapeake Lighthouse and Aircraft Measurements for Satellites field campaign was conducted from NASA Wallops Flight Facility and successfully executed over the middle Atlantic eastern seaboard from July 10 August 2, 2001. CLAMS is primarily a shortwave closure experiment designed to validate and improve EOS TERRA satellite data products being derived from three sensors: CERES (Clouds and Earth's Radiant Energy System), MISR (Multi-angle Imaging Spectro-Radiometer) and MODIS (MODerate Resolution Imaging Spectroradiometer). CLAMS is jointly sponsored by the CERES, MISR and MODIS instrument teams and the NASA GEWEX Global Aerosol Climatology Project (GACP). CLAMS primary objectives are to validate satellite-based retrievals of aerosol properties and vertical profiles of radiative flux, temperature and water vapor. Central to CLAMS measurement strategy is the Chesapeake Lighthouse, a stable sea platform located in the Atlantic Ocean, 13 miles east of Virginia Beach near the mouth of the Chesapeake Bay and the site of an ongoing CERES Ocean Validation Experiment (COVE). Six research aircraft were deployed to make detailed measurements of the atmosphere and ocean surface in the vicinity of COVE, over the surrounding ocean, over nearby NOAA buoys and over a few land sites. The measurements are used to validate and provide ground truth for simultaneous products being derived from TERRA data, a key step toward an improved understanding and ability to predict changes in the Earth's climate. One of the two CERES instruments on-board TERRA was programmed for Rotating Azimuth Plane Scans (RAPS) during CLAMS, increasing the CERES coverage over COVE by a factor of 10. Nine coordinated aircraft missions and numerous additional sorties were flown under a variety of atmospheric conditions and aerosol loadings. On one golden day, July 17, all six aircraft flew coordinated patterns, vertically stacked between 100 ft and 65,000 ft over the COVE site as the TERRA satellite orbited overhead. A summary of CLAMS measurement campaign and a description of the platforms and measurements is given.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-06-06
    Description: The VLBI antenna (GILCREEK) at Fairbanks, Alaska observes in networks routinely twice a week with operational networks and on additional days with other networks on a more uneven basis. The Fairbanks antenna position is about 150 km north of the Denali fault and from the earthquake epicenter. We examine the transient behavior of the estimated VLBI position during the year following the earthquake to determine how the rate of change of postseismic deformation has changed. This is compared with what is seen in the GPS site position series.
    Keywords: Geophysics
    Type: International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings; 491-495; NASA/CP-2004-212255
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2017-10-02
    Description: Whereas the surface units of the northern plain of Mars generally exhibit ages ranging from late Hesperian to Amazonian, interpretation of precise topographic measurements indicate that the age of the underlying "basement" is early Noachian, or almost as old as the southern highlands. This suggests that widespread but relatively superficial resurfacing has occurred throughout the northern plains since the end of early heavy bombardment. In this abstract I examine some of the possible implications of the subsurface structure inferred for the Utopia basin from gravity data on the nature of this resurfacing. The large, shallow, circular depression in Utopia Planitia has been identified as a huge impact basin, based on both geological evidence and detailed analysis of MOLA topography. Its diameter (approx. 3000 km) is equivalent to that of the Hellas basin, as is its inferred age (early Noachian). However, whereas Hellas is extremely deep with rough terrain and large slopes, the Utopia basin is a smooth, shallow, almost imperceptible bowl. Conversely, Utopia displays one of the largest (non-Tharsis-related) positive geoid anomalies on Mars, in contrast to a much more subdued negative anomaly over Hellas.
    Keywords: Geophysics
    Type: Second Conference on Early Mars: Geologic, Hydrologic, and Climatic Evolution and the Implications for Life; LPI-Contrib-1211
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-06-11
    Description: For the years 1999-2003, we estimate the time-varying perennial ice zone (PIZ) coverage and construct the annual cycles of multiyear (MY, including second year) ice coverage of the Arctic Ocean using QuikSCAT backscatter, MY fractions from RADARSAT, and the record of ice export from satellite passive microwave observations. An area balance approach extends the winter MY coverage from QuikSCAT to the remainder of the year. From these estimates, the coverage of MY ice at the beginning of each year is 3774 x 10(exp 3) sq km (2000), 3896 x 10(exp 3) sq km (2001), 4475 x 10(exp 3) sq km (2002), and 4122 x 10(exp 3) sq km (2003). Uncertainties in coverage are approx.150 x 10(exp 3) sq km. In the mean, on 1 January, MY ice covers approx.60% of the Arctic Ocean. Ice export reduces this coverage to approx.55% by 1 May. From the multiple annual cycles, the area of first-year (FY) ice that survives the intervening summers are 1192 x 10(exp 3) sq km (2000), 1509 x 10(exp 3) sq km (2001), and 582 x 10(exp 3) sq km (2002). In order for the MY coverage to remain constant from year to year, these replenishment areas must balance the overall area export and melt during the summer. The effect of the record minimum in Arctic sea ice area during the summer of 2002 is seen in the lowest area of surviving FY ice of the three summers. In addition to the spatial coverage, the location of the PIZ is important. One consequence of the unusual location of the PIZ at the end of the summer of 2002 is the preconditioning for enhanced export of MY ice into the Barents and Kara seas. Differences between the minimums in summer sea ice coverage from our estimates and passive microwave observations are discussed.
    Keywords: Geophysics
    Type: Journal of Geophysical Research; Volume 109
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-06-08
    Description: Bi-directional reflectances of marine liquid water clouds, as measured by the Multiangle Imaging SpectroRadiometer (MISR), are compared with plane-parallel radiative transfer model calculations.
    Keywords: Geophysics
    Type: Geophysical Research Letters; Volume 30; no. 1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-08
    Description: The Crustal Dynamics Data Information System (CDDIS) has supported the International GPS Service (IGS) as a global data center since 1992. The CDDIS activities within the IGS during 2001 are summarized below; this report also includes any changes or enhancements made to the CDDIS during the past year. General CDDIS background and system information can be found in the CDDIS data center summary included in the IGS 1994 Annual Report (Noll, 1995) as well as the subsequent updates (Noll, 1996, Noll, 1997, Noll, 1998, Noll, 1999, and Noll, 2001).
    Keywords: Geophysics
    Type: International GPS Service 2001 - 2002 Technical Reports; 295-304; JPL-Publ-04-017
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2018-06-08
    Description: Temperature-Salinity (T-S) relationship variability in the pycnocline of the eastern equatorial Pacific Ocean (NINO3 region, 5 degrees S ??degrees N, 150 degrees W ?? degrees W) over the last two decades is investigated using observational data and model simulation.
    Keywords: Geophysics
    Type: Geophysical Research Letters; Volume 31
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-06-08
    Description: We show that the reconstructed sensitivity of the sea level temperature to long term solar forcing in the Northern Hemisphere is in very good agreement with the empirical temperature pattern corresponding to changes of the North Annular Mode (NAM).
    Keywords: Geophysics
    Type: Geophysical Research Letters; Volume 31; L12201
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-06-08
    Description: A fluid, mobile atmosphere and oceans surrounds the solid Earth and upon its land surface lays a continually changing distribution of ice, snow, and ground water.
    Keywords: Geophysics
    Type: Geophysical Research Letters; Volume 31; no. 7; L07601-L07604
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-06-06
    Description: This report describes preliminary results of work done by JHU/APL under contract to the NASA Glenn Research Center to support flight testing of the Universal Access Transceiver (UAT) data link as a medium for weather data exchange. It presents a high level architectural description of the use of UAT to meet the program objectives with an identification of issues associated with the use of this data link, including a high level definition of the changes required to UAT avionics and ground-based receivers and supporting ground infrastructure to support implementation of the recommended architecture with focus on the issues associated with these changes.
    Keywords: Meteorology and Climatology
    Type: Proceedings of the Fourth Integrated Communications, Navigation, and Surveillance (ICNS) Conference and Workshop; NASA/CP-2004-213308
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2018-06-06
    Description: Automated cloud detection and tracking is an important step in assessing global climate change via remote sensing. Cloud masks, which indicate whether individual pixels depict clouds, are included in many of the data products that are based on data acquired on- board earth satellites. Many cloud-mask algorithms have the form of decision trees, which employ sequential tests that scientists designed based on empirical astrophysics studies and astrophysics simulations. Limitations of existing cloud masks restrict our ability to accurately track changes in cloud patterns over time. In this study we explored the potential benefits of automatically-learned decision trees for detecting clouds from images acquired using the Advanced Very High Resolution Radiometer (AVHRR) instrument on board the NOAA-14 weather satellite of the National Oceanic and Atmospheric Administration. We constructed three decision trees for a sample of 8km-daily AVHRR data from 2000 using a decision-tree learning procedure provided within MATLAB(R), and compared the accuracy of the decision trees to the accuracy of the cloud mask. We used ground observations collected by the National Aeronautics and Space Administration Clouds and the Earth s Radiant Energy Systems S COOL project as the gold standard. For the sample data, the accuracy of automatically learned decision trees was greater than the accuracy of the cloud masks included in the AVHRR data product.
    Keywords: Meteorology and Climatology
    Type: SIAM International Conference on Data Mining Worksop; Newport Beach, CA; Unknown
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2018-06-06
    Description: Rainfall rate estimates from space-borne k&ents are generally accepted as reliable by a majority of the atmospheric science commu&y. One-of the Tropical Rainfall Measuring Mission (TRh4M) facility rain rate algorithms is based upon passive microwave observations fiom the TRMM Microwave Imager (TMI). Part I of this study describes improvements in the TMI algorithm that are required to introduce cloud latent heating and drying as additional algorithm products. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, OP5resolution estimates of surface rain rate over ocean fiom the improved TMI algorithm are well correlated with independent radar estimates (r approx. 0.88 over the Tropics), but bias reduction is the most significant improvement over forerunning algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm, and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly, 2.5 deg. -resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data are limited, TMI estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with: (a) additional contextual information brought to the estimation problem, and/or; (b) physically-consistent and representative databases supporting the algorithm. A model of the random error in instantaneous, 0.5 deg-resolution rain rate estimates appears to be consistent with the levels of error determined from TMI comparisons to collocated radar. Error model modifications for non-raining situations will be required, however. Sampling error appears to represent only a fraction of the total error in monthly, 2S0-resolution TMI estimates; the remaining error is attributed to physical inconsistency or non-representativeness of cloud-resolving model simulated profiles supporting the algorithm.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: The current cache of S/X-band geodetic/astrometric VLBI data accumulated since 1979 is approx. 5 million observations and is increasing by approx. 300,000 observations per year. The long time interval and access to all such VLBI data for re-analysis have contributed to their usefulness for the terrestrial and celestial reference frames, Earth orientation parameters, tidal and non-tidal loading, and troposphere. While data access and integrity have been maintained through the Mark III data base system as storage devices and media have evolved, past transitions have been major projects. A new format and retention concept to ensure eternal archiving and access should make use of self-documentation, generalized media, network connectivity and multiple redundancy. Similarly permanent organizations or sequences of organizations are also necessary.
    Keywords: Geophysics
    Type: International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings; 97-99; NASA/CP-2004-212255
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2018-06-06
    Description: The 2003-2004 Arctic winter was remarkable in the 40-year record of meteorological analyses. A major warming beginning in early January 2004 led to nearly two months of vortex disruption with high-latitude easterlies in the middle to lower stratosphere. The upper stratospheric vortex broke up in late December, but began to recover by early January, and in February and March was the strongest since regular observations began in 1979. The lower stratospheric vortex broke up in late January. Comparison with two previous years, 1984-1985 and 1986-1987, with prolonged mid-winter warming periods shows unique characteristics of the 2003-2004 warming period: The length of the vortex disruption, the strong and rapid recovery in the upper stratosphere, and the slow progression of the warming from upper to lower stratosphere. January 2004 zonal mean winds in the middle and lower stratosphere were over two standard deviations below average. Examination of past variability shows that the recent frequency of major stratospheric warmings (seven in the past six years) is unprecedented. Lower stratospheric temperatures were unusually high during six of the past seven years, with five having much lower than usual potential for PSC formation and ozone loss (nearly none in 1998-1999, 2001-2002 and 2003-2004, and very little in 1997-1998 and 2000-2001). Middle and upper stratospheric temperatures, however, were unusually low during and after February. The pattern of five of the last seven years with very low PSC potential would be expected to occur randomly once every approximately 850 years. This cluster of warm winters, immediately following a period of unusually cold winters, may have important implications for possible changes in interannual variability and for determination and attribution of trends in stratospheric temperatures and ozone.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2018-06-06
    Description: Based on an empirical analysis of measurements with the High Resolution Doppler Imager (HRDI) on the UARS spacecraft in the upper mesosphere (95 km), persistent and regular intra-seasonal oscillations (ISO) with periods of about 2 to 4 months have recently been reported in the zonal-mean meridional winds. Similar oscillations have also been discussed independently in a modeling study, and they were attributed to wave-mean-flow interactions. The observed and modeled meridional wind ISOs were largely confined to low latitudes. We report here an analysis of concurrent temperature measurements on UARS, which produces oscillations similar to those seen in the meridional winds. Although the temperature oscillations are observed at lower altitudes (55 km), their phase variations with latitude are qualitatively consistent with the inferred properties seen in the meridional winds and thus provide independent evidence for the existence of ISOs in the mesosphere.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018-06-06
    Description: Formation and evolution of cirrostratus in response to weak, uniform and constant synoptic forcing is simulated using a one-dimensional numerical model with explicit microphysics, in which the particle size distribution in each grid box is fully resolved. A series of tests of the model response to nucleation modes (homogeneous-freezing-only/heterogeneous nucleation) and heterogeneous nucleation parameters are performed. In the case studied here, nucleation is first activated in the prescribed moist layer. A continuous cloud-top nucleation zone with a depth depending on the vertical humidity gradient and one of the nucleation parameters is developed afterward. For the heterogeneous nucleation cases, intermittent nucleation zones in the mid-upper portion of the cloud form where the relative humidity is on the rise, because existent ice crystals do not uptake excess water vapor efficiently, and ice nuclei (IN) are available. Vertical resolution as fine as 1 m is required for realistic simulation of the homogeneous-freezing-only scenario, while the model resolution requirement is more relaxed in the cases where heterogeneous nucleation dominates. Bulk microphysical and optical properties are evaluated and compared. Ice particle number flux divergence, which is due to the vertical gradient of the gravity-induced particle sedimentation, is constantly and rapidly changing the local ice number concentration, even in the nucleation zone. When the depth of the nucleation zone is shallow, particle number concentration decreases rapidly as ice particles grow and sediment away from the nucleation zone. When the depth of the nucleation zone is large, a region of high ice number concentration can be sustained. The depth of nucleation zone is an important parameter to be considered in parametric treatments of ice cloud generation.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2018-06-06
    Description: The Goddard Lidar Observatory for Winds (GLOW) is a mobile direct detection Doppler lidar system which uses the double edge technique to measure the Doppler shift of the molecular backscattered laser signal at a wavelength of 355 nm. In the spring of 2002 GLOW was deployed to the western Oklahoma profiling site (36 deg 33.500 min. N, 100 deg. 36.371 min. W) to participate in the International H2O Project (IHOP). During the IHOP campaign over 240 hours of wind profiles were obtained with the GLOW lidar in support of a variety of scientific investigations.
    Keywords: Meteorology and Climatology
    Type: International Laser Radar Conference; Matera; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2018-06-06
    Description: Solar proton events (SPEs) are known to have caused changes in constituents in the Earth's polar neutral middle atmosphere. The past four years, 2000-2003, have been replete with SPEs and huge fluxes of high energy protons occurred in July and November 2000, September and November 2001, and October 2003. The highly energetic protons produce ionizations, excitations, dissociations, and dissociative ionizations of the background constituents, which lead to the production of HOx (H, OH, HO2) and NOy (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, BrONO2). The HOx increases lead to short-lived ozone decreases in the polar mesosphere and upper stratosphere due to the short lifetimes of the HOx constituents. Large mesospheric ozone depletions (〉70%) due to the HOx enhancements were observed and modeled as a result of the very large July 2000 SPE. The NOy increases lead to long-lived stratospheric ozone changes because of the long lifetime of the NOy family in this region. Polar total ozone depletions 〉1% were simulated in both hemispheres for extended periods of time (several months) as a result of the NOy enhancements due to the very large SPEs.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2018-06-06
    Description: This study presents a systematic and quantitative analysis of the effect of inhomogeneous surface albedo on shortwave cloud absorption estimates. We use 3D radiative transfer modeling with gradually complex clouds over a simplified surface to calculate cloud absorption. We find that averaging surface albedo always underestimates cloud absorption, and thus accounting for surface heterogeneity always enhances cloud absorption. However, the impact on cloud absorption estimates is not enough to explain the discrepancy between measured and model calculated shortwave cloud absorptions.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2018-06-06
    Description: High-resolution mesoscale model simulations of the 6-7 May 2000 Missouri flash flood event were performed to test the impact of model initialization and land surface treatment on timing, intensity, and location of extreme precipitation. In this flash flood event, a mesoscale convective system (MCS) produced over 340 mm of rain in roughly 9 hours in some locations. Two different types of model initialization were employed: 1) NCEP global reanalysis with 2.5-degree grid spacing and 12-hour temporal resolution, and 2) Eta reanalysis with 40- km grid spacing and $hour temporal resolution. In addition, two different land surface treatments were considered. A simple land scheme. (SLAB) keeps soil moisture fixed at initial values throughout the simulation, while a more sophisticated land model (PLACE) allows for r interactive feedback. Simulations with high-resolution Eta model initialization show considerable improvement in the intensity of precipitation due to the presence in the initialization of a residual mesoscale convective vortex (hlCV) from a previous MCS. Simulations with the PLACE land model show improved location of heavy precipitation. Since soil moisture can vary over time in the PLACE model, surface energy fluxes exhibit strong spatial gradients. These surface energy flux gradients help produce a strong low-level jet (LLJ) in the correct location. The LLJ then interacts with the cold outflow boundary of the MCS to produce new convective cells. The simulation with both high-resolution model initialization and time-varying soil moisture test reproduces the intensity and location of observed rainfall.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2018-06-06
    Description: The influence of hurricane-ocean coupling on intensity and track of tropical cyclones (TCs) is investigated through idealized numerical experiments using a coupled hurricane-ocean model. The focus is placed on how air-sea interaction affects TC tracks and intensity. It is found that the symmetric sea surface temperature (SST) cooling is primarily responsible for the TC weakening in the coupled experiments because the induced asymmetric circulation associated with the asymmetric SST anomalies is weak and shallow. The track difference between the coupled and fixed SST experiments is generally small because of the competing processes. One is associated with the modified TC asymmetries. The asymmetric SST anomalies - weaken the surface fluxes in the rear and enhance the fluxes in the front. As a result, the enhanced diabatic heating is located on the southern side for a westward-moving TC, tending to shift the TC southward. The symmetric SST anomalies weakens the TC intensity and thus the dymmetrization process, leading to more prominent TC asymmetries. The other is associated with the weakening of the beta drift resulting from the weakening of the TC outer strength. In the coupled experiment, the weakening of the beta drift leads to a more northward shift. By adjusting the vortex outer strength of the initial vortices, the beta drift can vary while the effect of air-sea interaction changes little. Two types of track differences simulated in the previous numerical studies are obtained.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018-06-06
    Description: The association between tall precipitation and tropical cyclone intensification may have implications for the difficult task of forecasting the destructive potential of these storms. We propose a novel way to use radar-observed rain height to help predict tropical cyclone intensity. Then, we adapt this technique for use on the much more plentiful data from infrared and microwave instruments.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-06-06
    Description: Abstract: Since 1998 the Southern Hemisphere ADditional OZonesondes (SHADOZ) project has collected more than 2000 ozone profiles from a dozen tropical and subtropical sites using balloon-borne electrochemical concentration cell (ECC) ozonesondes. The data (with accompanying pressure-temperature-humidity soundings) are archived. Analysis of ozonesonde imprecision within the SHADOZ dataset revealed that variations in ozonesonde technique could lead to station-to-station biases in the measurements. In this paper imprecisions and accuracy in the SHADOZ dataset are examined in light of new data. When SHADOZ total ozone column amounts are compared to version 8 TOMS (2004 release), discrepancies between sonde and satellite datasets decline 1-2 percentage points on average, compared to version 7 TOMS. Variability among stations is evaluated using total ozone normalized to TOMS and results of laboratory tests on ozonesondes (JOSE-2O00, Julich Ozonesonde Intercomparison Experiment). Ozone deviations from a standard instrument in the JOSE flight simulation chamber resemble those of SHADOZ station data relative to a SHADOZ-defined climatological reference. Certain systematic variations in SHADOZ ozone profiles are accounted for by differences in solution composition, data processing and instrument (manufacturer). Instrument bias leads to a greater ozone measurement above 25 km over Nairobi and to lower total column ozone at three Pacific sites compared to other SHADOZ stations at 0-20 deg.S.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-06-06
    Description: Observational records in the past 50 years show an upward trend of boreal-summer precipitation over central eastern China and a downward trend over northern China. During boreal spring, the trend is upward over southeastern China and downward over central eastern China. This study explores the forcing mechanism of these trends in association with the global sea-surface temperature (SST) variations on the interannual and inter-decadal timescales. Results based on Singular Value Decomposition analyses (SVD) show that the interannual variability of China precipitation in boreal spring and summer can be well defined by two centers of actions for each season, which are co-varying with two interannual modes of SSTs. The first SVD modes of precipitation in spring and summer, which are centered in southeastern China and northern China, respectively, are linked to an ENSO-like mode of SSTs. The second SVD modes of precipitation in both seasons are confined to central eastern China, and are primarily linked to SST variations over the warm pool and Indian Ocean. Features of the anomalous 850-hPa winds and 700-Wa geopotential height corresponding to these modes support a physical mechanism that explains the causal links between the modal variations of precipitation and SSTs. On the decadal and longer timescale, similar causal links are found between the same modes of precipitation and SSTs, except for the case of springtime precipitation over central eastern China. For this case, while the interannual mode of precipitation is positively correlated with the interannual variations of SSTs over the warm pool and Indian Ocean; the inter-decadal mode is negatively correlated with a different SST mode, the North Pacific mode. The later is responsible for the observed downward trend of springtime precipitation over central eastern China. For all other cases, both the interannual and inter-decadal variations of precipitation can be explained by the same mode of SSTs. The upward trend of springtime precipitation over southeastern China and downward trend of summertime precipitation over northern China are attributable to the warming trend of the ENSO-like mode. The recent frequent summertime floods over central eastern China are linked to the warming trend of SSTs over the warm pool and Indian Ocean.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-06-06
    Description: A short course on off-beam cloud lidar is given. Specific topics addressed include: motivation and goal of off-beam cloud lidar; diffusion physics; numeric amalysis; and validity of the diffusion approximation. A demo of the process is included.
    Keywords: Meteorology and Climatology
    Type: Lidar for Meteorologists 101
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018-06-11
    Description: I have done detailed petrologic study of Ibitira, nominally classified as a basaltic eucrite. The Fe/Mn ratio of Ibitira pyroxenes with 〈10 mole % wollastonite component is 36.4 0.4, and is well-resolved from those of five basaltic eucrites studied for comparison; 31.2-32.2. Data for the latter completely overlap. Ibitira pyroxenes have lower Fe/Mg than the basaltic eucrite pyroxenes. Thus, the higher Fe/Mn ratio does not reflect a simple difference in oxidation state. Ibitira also has an oxygen isotopic composition, alkali element contents and a Ti/Hf ratio that distinguish it from basaltic eucrites. These differences support derivation from a distinct parent asteroid. Ibitira is the first recognized representative of the fifth known asteroidal basaltic crust.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2018-06-11
    Description: The Shock Compression Laboratory in the Department of Earth and Planetary Sciences at Harvard is a new facility for the study of impact and collisional phenomena. The following describes the experimental capabilities of the laboratory.
    Keywords: Geophysics
    Type: Lunar and Planetary Science XXXV: Impact Experiments; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018-06-11
    Description: The Mars Global Surveyor and Odyssey spacecraft reveal evidence that Mars may have experienced significant climate change in the recent past (105-106 Myr ago). Examples include gullies [1], cold-based tropical glaciers [2], paleolakes [3], and youthful near-surface ice [4]. Except for the gullies, the evidence for recent climate change requires ice and/or liquid water at low latitudes. An obvious question, therefore, is how is it possible for ice and/or liquid water to exist at low latitudes which is not possible in the present climate system? There are several mechanisms to consider. An episode of intense volcanic activity could alter the mean composition of the atmosphere and, therefore, the climate system. Impacts, depending on the size, composition, and velocity of the impactor are another way to dramatically alter the climate system. Polar wander and solar variability are also possibilities. However, the most promising way to change the climate is through changes in orbital properties. Mars, because of its proximity to Jupiter and lack of a large stabilizing moon, experiences much greater changes in its orbit properties than the Earth.
    Keywords: Meteorology and Climatology
    Type: Lunar and Planetary Science XXXV: Special Session: Mars Climate Change; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2018-06-11
    Description: Various killing mechanisms have been suggested to contribute to the mass extinctions at the KT boundary, including severe, global deterioration of the atmosphere and hydrosphere due to SO(x) released from heavily shocked, sulfate-bearing target rocks. The devolatilization of anhydrite is predominantly inferred from thermodynamic considerations and lacks experimental confirmation. To date, the experimentally determined shock behavior of anhydrite is limited to solid-state effects employing X-ray diffraction methods. The present report employs additional methods to characterize experimentally shocked anhydrite.
    Keywords: Geophysics
    Type: Lunar and Planetary Science XXXV: Effects of Impacts: Shock and Awe; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018-06-11
    Description: Osmium isotope data had shown that Ivory Coast tektites contain an extraterrestrial component, but do not allow distinction between chondritic and iron meteorite contamination. PGE abundances of Ivory Coast tektites and impactites and target rocks from the Bosumtwi crater, the source crater of the Ivory Coast tektites, were all relatively high and did not allow to resolve the presence, or identify the nature, of the meteoritic component. However, Cr isotope analyses of an Ivory Coast tektite yielded a distinct 53Cr excess of 0.30+/-0.06, which indicates that the Bosumtwi impactor was an ordinary chondrite.
    Keywords: Geophysics
    Type: Lunar and Planetary Science XXXV: Effects of Impacts: Shock and Awe; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018-06-11
    Description: The Miniature Thermal Emission Spectrometer (Mini-TES) has provided remote measurements of the mineralogy and thermophysical properties of the scene surrounding the Mars Exploration Rovers. The specific scientific objectives of this investigation are to: (1) determine the mineralogy of rocks and soils; (2) determine the thermophysical properties of surface materials; and (3) determine the temperature profile, dust and water-ice opacity, and water vapor abundance in the lower atmospheric boundary layer.
    Keywords: Geophysics
    Type: Lunar and Planetary Science XXXV: Special Session: Mars Missions; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...