ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: Despite research by numerous geologists and geo- physicists, the age and origin of the martian crustal dichotomy remain uncertain. Models for the origin of this dichotomy involve single or multiple impact, mantle megaplumes, primordial crustal asymmetry, and plate tectonics. Most of these models imply a Noachian age for the dichotomy. A major problem common to all genetic models is the difficulty separating the features resulting from the primary cause for the dichotomy from features due to younger fault- ing, impact cratering, volcanism, deposition, and erosion. highlands (the dichotomy boundary) approximates a small circle that ranges in latitude from about -10 deg. in Elysium Planitia to about +45 deg. north of Arabia Terra. For much of its length the boundary is characterized by relatively steep scarps separating highland plateau to the south from lowland plains to the north, generally with a complex transition zone on the lowland side of these scarps. These scarps are almost certainly due to normal faulting. The type fretted terrain, which defines the boundary in north-central Arabia Terra, also is characterized by scarps but has under- gone a more complex history of faulting and dissection [13]. In some places, notably in the Acidalia Planitia region, the dichotomy boundary is gradational. In the Tharsis region the boundary is obscured by younger volcanics.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Hemispheres Apart: The Origin and Modification of The Martian Crustal Dichotomy; 42-43; LPI-Contrib-1213
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-11
    Description: The origin of the Martian dichotomy, which divides highlands from lowlands, is unknown. We examine a section of the dichotomy ( 50 - 90E) defined by steep scarps and normal faults. Stratigraphy and age relationships preclude the formation of the 2.5 km high boundary via erosion. The abrupt disappearance of topographic knobs similar to 300 - 500 km to the northeast is interpreted as a buried fault. Alignment of the buried fault with grabens, stratigraphy, and age determinations using crater counts indicate that the lowland bench is down faulted highlands crust. The estimated local strain (3.5%) and fault pattern are broadly consistent with gravitational relaxation of a plateau boundary. Magnetic and gravity anomalies occur on either side of the buried fault. Admittance analysis indicates isostatic compensation. Although nonunique, a model with a 10 km thick intracrustal block under the lowland bench, a 20 km thick block under the plains, and an excess density of 200 kg/m(3) provides a good fit to the isostatic anomaly. A good fit to a profile of the magnetic field perpendicular to the dichotomy is produced using uniformly polarized intracrustal blocks 10 - 20 km thick, an intensity of 6 Am/m, a field inclination of -30 degrees, and gaps aligned with the isostatic anomalies. One interpretation is that high-density intrusions demagnetized the crust after dynamo cessation and that low-lying magnetized areas could be down faulted highlands crust. Another model (inclination of 30 degrees) has magnetized crust beneath the isostatic anomalies, separated by gaps. The gaps could result from hydrothermal alteration of the crust along fault zones.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Journal of Geophysical Research; Volume 109
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-11
    Description: The global dichotomy divides the northern lowlands from the southern highlands, except where interrupted by relatively young volcanic provinces and impact basins. An elevation change of 2-4 km is typical across the dichotomy, and more than 6 km locally, over distances of several 100s km to as much as 1300 km [1,2]. A variety of exogenic and endogenic formation models have been proposed. Distinguishing between these models would help constrain the overall thermal evolution of the planet, possibly timing of core formation, and the associated mantle heat flux over time. A first step is to determine whether or not gravitational relaxation plays a role in modifying the boundary. Nimmo and Stevenson [3] examined 10 profiles across the dichotomy and used models of gravitational relaxation to conclude the relaxation has not occurred. In this study we begin by considering the geologic history in detail as inputs for modeling [4].
    Keywords: Geophysics
    Type: Lunar and Planetary Science XXXV: Mars Geophysics; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...