ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (6,217)
  • Man/System Technology and Life Support  (6,217)
  • 1
    Publication Date: 2019-12-07
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN75491
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-26
    Description: Following Z-2 space suit testing that occurred from 2016-2017, the Exploration Extravehicular Mobility Unit (xEMU) Project was tasked with building a demonstration unit of the xEMU space suit to test on the International Space Station (ISS) in 2023. This suit is called xEMU Demonstration Suit (xEMU Demo). Based on feedback from astronauts during the Z-2 NBL test series, design changes were made, resulting in a new prototype suit called the Z-2.5 space suit. The design of the Z-2.5 space suit with an exploration Portable Life Support Systems (xPLSS) mock-up represents the architecture of xEMU Demo. The team is testing Z-2.5 in the NBL to evaluate this architecture and validate changes made from Z-2. The results will inform the xEMU Demo design going forward to its Preliminary Design Review (PDR) in the summer of 2019. This Z-2.5 NBL test series focuses on evaluating the microgravity performance of the suit and the ability to complete ISS-related tasks. The series is comprised of 10 manned runs and an unmanned corn-man run. Six test subjects, including four astronauts, will participate. The test objective is to evaluate ability xEMU Demo architecture to perform ISS microgravity tasks. Each crew members will complete both a familiarization run and a nominal EMU EVA timeline run. Qualitative and quantitative data will be collected to aid the assessment of the suit. Preliminary feedback from astronauts who have completed the test series evaluate the xEMU Demo architecture as acceptable to complete a demonstration mission on the ISS.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN70593 , International Conference on Environmental Systems (ICES) 2019; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: A spacecraft water disinfection system, suitable for extended length space exploration missions, should prevent or control the growth of microbes, prevent or limit biofilm formation, and prevent microbiologically-influenced corrosion. In addition, the system should have minimal maintenance requirements, the effluent should be chemically compatible with all materials in contact with the water, be safe for human consumption, and suitable to be shared across international spacecraft platforms and mission architectures. Silver ions are a proven broad spectrum biocide. Silver is also the potable water biocide of choice for future exploration missions. Currently, the proposed method for implementing silver biocide in spacecraft systems relies on silver electrode technology to produce a controlled amount of silver ions. Unfortunately, electrolytic-based silver dosing presents multiple inherent challenges that affect performance and increase maintenance requirements over time. To decrease the risk of failure, an alternative silver biocide delivery method is needed. Control-release technology is an attractive option for developing a passive high-reliability silver dosing device. The concept of a nanoparticle/polyurethane (PU) composite foam for the controlled release of silver was prompted by the controlled release technology developed by NASA for the delivery of corrosion inhibitors and indicators. This paper presents the technical background and results from the synthesis and properties testing of the silver nanoparticles (AgNPs)/PU composite foam that is being developed for use in spacecraft potable water systems.
    Keywords: Man/System Technology and Life Support
    Type: KSC-E-DAA-TN68835 , International Conference on Environmental Systems; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: The development of engineering technologies and hardware for aerospace applications is often tracked on a 1-9 scale of readiness or TRL, with a "1" representing very basic or fundamental principles, and a "9" being flight tested, functional hardware. Preparing to grow crops for supplemental food and eventual life support contributions on space missions faces similar challenges. Nearly 20 years ago, the concept of a "crop readiness level" was suggested at a bioregenerative life support conference held at Kennedy Space Center, but there was little follow up to this. We propose to revive this concept to track the preparation and testing of different crop species for eventual use in the unique environment of space. For the sake of uniformity, we recommend a 1-9 scale, with a "1" being just the identification of a potential crop, followed by some basic horticultural testing, cultivars trials, then testing growth and yield under various controlled environments, progression to more space-like environments and hardware, understanding the nutritional, organoleptic, and food safety aspects of the crop, initial testing in space, and a final stage of growing the crop for food in space ("9"). We attempted to make the scaling logical and progressive, but our main goal is to initiate a dialogue in the space, plant research community to develop a scale for assessing crop readiness.
    Keywords: Man/System Technology and Life Support
    Type: KSC-E-DAA-TN63641 , International Conference on Environmental Systems (ICES) 2019; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-20
    Description: A well-known hazard associated with exposure to the space environment is the risk of vehicle failure due to an impact from a micrometeoroid and orbital debris (MMOD) particle. Among the vehicles of importance to NASA is the extravehicular mobility unit (EMU) spacesuit used while performing a US extravehicular activity (EVA). An EMU impact is of great concern as a large leak could prevent an astronaut from safely reaching the airlock in time resulting in a loss of life. For this reason, a risk assessment is provided to the EVA office at the Johnson Space Center (JSC) prior to certification of readiness for each US EVA.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN64707 , 2019 Hypervelocity Impact Symposium (HVIS2019); Apr 14, 2019 - Apr 19, 2019; Destin, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: M19-7391 , Annual IAASS Conference “Making Safety Happen”; May 15, 2019 - May 17, 2019; Los Angeles, Ca; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-25
    Description: Human spaceflight logistics requirements are strongly driven by the daily living needs of the astronauts, including their biological functions. Oxygen, water and food are absolute requirements to sustain life and must be supplied at adequate rates. However, these rates can vary from day to day and from person to person. Beyond the body's immediate physical needs, water is also required for important health and hygiene functions within the spacecraft. Undesirable weight loss or gain aside, human waste product mass outputs will equal the inputs over time, resulting in an average astronaut mass balance. Best values, as well as range of variability for inputs and outputs are explored at both the individual physiological level and the spacecraft level. These values are important for design of life support and habitability systems as well as for mission planning of consumables. Current spacecraft life support systems are not fully closed loop, but the International Space Station (ISS) does recycle most of its air and water. The astronaut mass balances at the personal and vehicle level can have different impacts at different levels of system closure. Recommendations are made for a consistent set of values representing a realistic average astronaut mass balance over reasonable durations for exploration missions.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2019-126 , JSC-E-DAA-TN67810 , International Conference on Environmental Systems (ICES 2019); Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-23
    Description: This document is the final report resulting from the work conducted by undergraduate students at the University of South Alabama during the 2018/2019 academic year and was prepared by the undergraduate students. As NASA pushes the boundaries further into space, the current technologies within the various life support systems must be improved upon. One such improvement is needed to the current air revitalization systems, specifically sorbents that can capture CO2 more effectively from enclosed habitats. Ionic liquids (ILs) have been considered as absorbents for flue gas, but little research has been done to test the ability of ILs at ambient pressures and relatively low concentration of CO2. The experiment outlined below utilizes the task-specific ionic liquid, tetramethylammonium taurinate (TMN), in a commercial off the shelf absorption system to capture CO2. The CO2 stream is combined with nitrogen to produce an inlet gas concentration relevant to close air revitalization applications. At an inlet gas flow with a CO2 partial pressure of 3.8 torr the system was capable of removing just under 97% of the inlet CO2. The concentration of CO2 in the outlet stream, partial pressure 0.16 torr, was less than that of atmospheric air. The duty required to separate the absorbed gas from the ionic liquid as well to cool the ionic liquid to be reintroduced to the column were acquired utilizing laboratory cooling/heating baths. These results show that TMN may be an efficient candidate for consideration in closed air revitalization.
    Keywords: Man/System Technology and Life Support
    Type: M19-7479
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-20
    Description: Every day in aviation, pilots, air traffic controllers, and other front-line personnel perform countless correct judgments and actions in a variety of operational environments. These judgments and actions are often the difference between an accident and a non-event. Ironically, data on these behaviors are rarely collected or analyzed. Data-driven decisions about safety management and design of safety-critical systems are limited by the available data, which influence how decision makers characterize problems and identify solutions. Large volumes of data are collected on the failures and errors that result in infrequent incidents and accidents, but in the absence of data on behaviors that result in routine successful outcomes, safety management and system design decisions are based on a small sample of nonrepresentative safety data. This assessment aimed to find and document safety successes made possible by human operators. With many Aeronautics Research Mission Directorate (ARMD) Programs and Projects focusing on increased automation and autonomy and decreased human involvement, failure to fully consider the human contributions to successful system performance in civil aviation represents a significant risk a risk that has not been recognized to date. Without understanding how humans contribute to safety, any estimate of predicted safety of autonomous capabilities is incomplete and inherently suspect. Furthermore, understanding the ways in which humans contribute to safety can promote strategic interactions among safety technologies, functions, procedures and the people using them. Without this understanding, the full benefits of an integrated, optimized human/technology or autonomous system will not be realized. Historically, safety has been consistently defined in terms of the occurrence of accidents or recognized risks (i.e., in terms of things that go wrong). These adverse outcomes are explained by identifying their causes, and safety is restored by eliminating or mitigating these causes. An alternative to this approach is to focus on what goes right and identify how to replicate that process. Focusing on the rare cases of failures attributed to human error provides little information about why human performance routinely prevents adverse events. Hollnagel has proposed that things go right because people continuously adjust their work to match their operating conditions. These adjustments become increasingly important as systems continue to grow in complexity. Thus, the definition of safety should reflect not only avoiding things that go wrong but ensuring that things go right. The basis for safety management requires developing an understanding of everyday activities. However, few mechanisms to monitor everyday work exist in the aviation domain, which limits opportunities to learn how designs function in reality. This concept of safety thinking and safety management is reflected in the emerging field of resilience engineering. According to Hollnagel, a system is resilient if it can sustain required operations under expected and unexpected conditions by adjusting its functioning prior to, during, or following changes, disturbances, and opportunities. To explore positive behaviors that contribute to resilient performance in commercial aviation, the assessment team examined a range of existing sources of data about pilot and air traffic control (ATC) tower controller performance, including subjective interviews with domain experts and objective aircraft flight data records. These data were used to identify strategies that support resilient performance, methods for exploring and refining those strategies in existing data, and proposed methods for capturing and analyzing new data.
    Keywords: Man/System Technology and Life Support
    Type: NASA/TM-2019-220254 , NESC-RP-18-01304 , L-21002 , NF1676L-32475
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-25
    Description: This paper discusses the current focus of NASA's Advanced Space Suit Pressure Garment Technology Development team's efforts, the status of that work, and a summary of longer term technology development priorities and activities. The Exploration Extra-vehicular Activity Unit (xEMU) project's International Space Station Demonstration Suit (xEMU Demo) project continues to be the team's primary customer and effort. In 2018 the team was engaged in addressing hardware design changes identified in the Z-2 pressure garment prototype Neutral Buoyancy Laboratory (NBL) test results. These changes will be discussed. Additionally components whose first iterations were produced in 2018 will be discussed. A full pressure garment prototype, termed Z-2.5, was assembled that is composed of updated and first prototype iteration hardware. Z-2.5 NBL testing, performed from October 2018 through April 2019 will inform final design iterations in preparation for the xEMU Demo preliminary design review planned to occur in the third quarter of government fiscal year 2019. A primary objective of the Z-2.5 NBL testing is to validate changes made to the hard upper torso geometry, which depart from the planetary walking suit upper torso geometry that has been used over the last 30 years. The team continues to work technology development, with GFY2018 work being used to supplement and feed the gaps left by the scope defined for the xEMU Demo. Specifically, a Phase IIx Small Business Innovative Research Grant to mature durable bearings that are compatible with a dust environment and a grant funded by the Science Technology Mission Directorate, Lightweight and Robust Exploration Space Suit (LARESS) project, to mature planetary impact requirements and hardware will be described. Finally, a brief review of longer-term pressure garment challenges and technology gaps will be presented to provide an understanding of the advanced pressure garment team's technology investment priorities and needs.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2019-185 , JSC-E-DAA-TN68528 , JSC-E-DAA-TN67836 , International Conference on Environmental Systems; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN68380 , London Calling; May 22, 2019 - May 24, 2019; London, UK; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-17
    Description: Pleated panel filters offer a new commercial form factor for controlling VOCs in spacecraft cabin air. They differ from conventional commercial granular activated carbons because they have a lower pressure drop across the filter. A testbed was developed for evaluating the removal capacities of commercial pleated panel filters for NH3. The adsorptive capacity of a commercial cation-exchange pleated filter was compared versus the adsorptive capacities of two acid- impregnated activated carbons used for controlling ammonia in spacecraft cabin air.
    Keywords: Man/System Technology and Life Support
    Type: KSC-E-DAA-TN69061 , Internatinal Conference on Environmental Systems; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-18
    Description: Silver has been selected as the forward disinfectant candidate for potable water systems in future space exploration missions. To develop a reliable antibacterial system that requires minimal maintenance, it is necessary to address relevant challenges to preclude problems for future missions. One such challenge is silver depletion in potable water systems. When in contact with various materials, silver ions can be easily reduced to silver metal or form insoluble compounds. The same chemical properties that make ionic silver a powerful antimicrobial agent also result in its quick inactivation or depletion in various environments. Different metal surface treatments, such as thermal oxidation and electropolishing, have been investigated for their effectiveness in reducing silver disinfectant depletion in potable water. However, their effects on the metal surface microstructure and chemical resistance have not often been included in the studies. This paper reports the effects of surface treatments on stainless steel 316 (SS316) exposed to potable water containing silver ion as a disinfectant. Early experimental results showed that thermal oxidation, when compared with electropolishing, resulted in a thicker oxide layer but compromised the corrosion resistance of SS316.
    Keywords: Man/System Technology and Life Support
    Type: KSC-E-DAA-TN68841 , International Conference on Enviromental Systems; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-18
    Description: Since the 1950s, mechanical counter-pressure (MCP) has been investigated as a possible alternative architecture to traditional extra-vehicular activity (EVA) suits. While traditional gas-pressurized EVA suits provide physiological protection against the ambient vacuum environment by means of pressurized oxygen to at least 3.1 psid, MCP provides protection by direct application of pressure on the skin by a fabric. In reviewing the concept, MCP offers distinct potential advantages to traditional EVA suits: lower mass, reduced consumables, increased mobility, increased comfort, less complexity, and improved failure modes. In addition, as basic feasibility was established in the 1960s with the successful testing of the Space Activity Suit, MCP seems poised to inevitably supplant traditional EVA architectures with a modest degree of concentrated development. However, as they say, "The devil is in the details". This paper serves as a comprehensive summary of the technical work that has been completed related to MCP from 1960 to 2019, the technical gaps that need to be closed to facilitate a flight-capable design, and outlines an overall development strategy that NASA feels would best address these gaps moving forward.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN62780 , International Conference on Environmental Systems (ICES) 2019; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-18
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: MSFC-E-DAA-TN70408 , International Conference on Environmental Systems; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-08-03
    Description: Cost-effective high reliability can be achieved in future space life support systems through careful systems analysis and design. This paper outlines a comprehensive approach. Potential future human space missions are described. The mission parameter impacts on life support system design and reliability requirements are discussed. Not all human space missions require high reliability life support. The potential reliability and cost of storage and of recycling life support systems are investigated. Simple storage systems can provide cost-effective high reliability life support where it is needed. More complex recycling systems with lower reliability and higher cost can be used when suitable.
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN69477 , International Conference on Environmental Systems (ICES); Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-03
    Description: This presentation provides a status of the xEMU ISS Demo project and the approach to requirements definition related to certification and extensibility considerations.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN70834 , 2019 EVA Workshop; Jul 25, 2019; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-08-02
    Description: This presentation supports a Collaborative Discussion regarding industry's utilization of other NASA or external design standards and feedback and recommendations to support the possibility of an EVA suit standard.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN70883 , EVA Exploration Workshop; Jul 25, 2019; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-08-03
    Description: Mars is the crucial goal of human exploration beyond the Earth-moon system. The Mars round trip transit vehicle has been expected to use a regenerative Life Support System (LSS) similar to the one on the International Space Station (ISS). It often assumed that the Mars transit LSS will be operated on the outward trip to Mars, placed in dormancy while the full crew explores the surface, and then restored to operation for the return trip to Earth. The major difference between Mars missions and operations in the Earth-moon system is the need for much higher reliability for Mars missions, since rapid resupply of parts and materials or a quick crew return to Earth are not possible. Mars systems must achieve intrinsic high reliability by design, test, failure analysis, and redesign and then increase operational robustness by providing spare parts and redundant systems. Further requiring the LSS to be capable of dormancy and restoration to operation greatly increases the difficulty of design, test, and verification. The process of implementing dormancy and then restoring operation would add significant risk to the mission. Dormancy should be avoided for Mars and can be avoided several ways. First and most obvious, some crew can remain continually on board. If no crew can remain onboard, dormancy can still be avoided if an unused spare LSS is activated for the return trip, rather than restarting the used out bound system. Systems similar to the ISS LSS would have a significant probability of failure on a Mars trip and therefore would require two or three spares. Another full spare LSS could be provided as the return trip system, rather than refurbishing a used LSS.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2019-13 , ARC-E-DAA-TN69479 , International Conference on Environmental Systems (ICES); Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-27
    Description: Recycling waste has been an issue on Earth for decades. The OSCAR project seeks to find ways to make sure that it does not become an issue in space. The main focus of OSCAR is the combustion of waste and reclamation of gaseous products in microgravity. The first phase of testing relies on a ground rig that operates both under normal (Earth) gravity and in drop tower tests that briefly simulate a microgravity environment. In the second phase, a test will be performed during a suborbital flight were the experiment will be carried out in microgravity. Throughout the spring term, interns have played an integral part in continuing the progress made by the project. They performed work in upgrading the electrical and mechanical systems that make up OSCAR. They made multiple improvements to the test rig's operating software to improve readability and usability. They prepared and edited documents that were vital to the engineering process. And, they were responsible for performing lab tests and refining the lab operations document and procedure. The interns were a big help in maintaining the rigorous test schedule. OSCAR, which stands for Orbital Syngas Commodity Augmentation Reactor, is to find a way to turn astronaut waste into chemical energy. The two parts of this are important: finding a way to dispose of waste generated in space, and seeing if there is a way to recycle that waste into chemical energy. The importance of the disposal aspect is that there is currently no way to dispose of, or recycle, waste that is created in space other than jettisoning it (which is what the ISS does via empty supply capsules). As manned missions go deeper into space, that method will no longer be viable, as a craft would essentially be littering the space and planets that they visit. Energy reclamation is also important because of the high monetary and spatial costs of sending supplies on space missions. Every little bit extra that can be reused out of what is sent can save room and funds for other supplies. The facet of this problem that the OSCAR project is focusing on is how to combust waste in zero gravity. Combustion in the presence of gravity is one of those things that is taken for granted. When something burns on Earth, the flames rise above the fuel as oxygen flows from underneath. In microgravity, the flames surround the object completely, which restricts the amount of oxygen that can reach the fuel, and retards the combustion. OSCAR uses a vortex reaction chamber to counter this phenomenon. The OSCAR test rig will eventually be tested on a suborbital flight to see if it is an effective solution to the issue in real-world conditions. Currently, there is a prototype test rig that is fully functional. This rig has been previously tested in a 2 second drop test at Glenn Research Centers (GRC) Zero Gravity Facility (ZGF). (The free-fall conditions of the drop mimic microgravity, if only for a brief period of time). This sessions focus was on upgrading the test rig and software, updating the paperwork, performing additional lab tests, and readying the rig for the five second drop test, again at GRC. II. Upgrades The state of the testing rig at the start of the session was in between its configurations for the two second drop tower and the five second drop tower. The rig needed upgrades to address various insufficiencies that either were discovered during the two second campaign or were a direct result of the differences between the two drop tower setups. The main differences that had to be handled were the increase in shock loads from 30g to 65g, a difference in drop indicating signal (on the falling edge of a pulse instead of a change from high to low), and the ambient pressure of the test apparatus (the two second tower dropped the rig in atmosphere, while the five second tower drops in vacuum).
    Keywords: Man/System Technology and Life Support
    Type: KSC-E-DAA-TN67756
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-27
    Description: Since the 1950s, mechanical counter-pressure (MCP) has been investigated as a possible alternative design concept to traditional extra-vehicular activity (EVA) space suits. While traditional gas-pressurized EVA suits provide physiological protection against the ambient vacuum by means of pressurized oxygen to at least 3.1 pounds per square inch absolute (160 millimeters of mercury), MCP provides protection by direct application of pressure on the skin by a fabric. In reviewing the concept, MCP offers distinct potential advantages to traditional EVA suits: lower mass, reduced consumables, increased mobility, increased comfort, less complexity, and improved failure modes. In the mid 1960s to early 1970s, Dr. Paul Webb of Webb Associates developed and tested such a suit under funding from NASA Langley Research Center. This "Space Activity Suit" (SAS) was improved many times while testing in the laboratory and an altitude chamber to as low as 0.3 pounds per square inch absolute (15 millimeters of mercury). This testing, and the reports by Webb documenting it, are often presented as evidence of the feasibility of MCP. In addition, the SAS reports contain a wealth of information regarding the physiological requirements to make MCP work at the time, which is still accurate today. This paper serves to document the Space Activity Suit effort and analyze it in today's context.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2019-173 , JSC-E-DAA-TN68682 , International Conference on Environmental Systems; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-27
    Description: In 2017, our team investigated and evaluated the novel concept of operations of astronaut self-scheduling (rescheduling their own timeline without creating violations) onboard International Space Station (ISS). Five test sessions were completed for this technology demonstration called Crew Autonomous Scheduling Test (CAST). For the first time in a spaceflight operational environment, an ISS crewmember planned, rescheduled, and executed their activities in real-time on a mobile device while abiding by flight and scheduling constraints. This paper discusses the lessons learned from deployment to execution.
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN70121 , International Workshop on Planning and Scheduling for Space (IWPSS 2019); Jul 08, 2019 - Jul 10, 2019; Berkley, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-27
    Description: Historically, competitions and prizes such as those executed by the NASA Centennial Challenges (CC) program have created broader avenues through which to spur innovation from unlikely sources. In 2005, Congress amended the National Aeronautics and Space Act of 1958 to authorize NASA to create challenges through which prizes could be awarded to United States citizens or entities that succeeded in meeting the challenge objectives. Over the past 13 years, the CC program has initiated more than 19 challenges in a variety of technology areas, including propulsion, robotics, communications and navigation, human health, science instrumentation, nanotech, materials/structures and aerodynamics. This paper will discuss the status and the accomplishments of the CC program and discuss results of an ideation process designed to identify and formulate topics for a potential Centennial Challenge competition targeting a life support technology gap for future long-term exploration missions. Status of this challenge formulation process with information on how to use crowdsourcing tools will be discussed. An overview of the CC Programs accomplishments, including strategic objectives, past challenges, and current challenge development and execution. This program exemplifies the values that have formed the bedrock of the culture at NASA since the beginning: innovation, imagination, and a passion for exploration.
    Keywords: Man/System Technology and Life Support
    Type: MSFC-E-DAA-TN68902 , International Conference on Environmental Systems; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-08-17
    Description: On the International Space Station (ISS) there are currently two toilets. One is located in the Russian Service Module and the other is located in the U.S. segment's Node 3. A new Exploration Toilet will be integrated next to the existing Node 3 Waste and Hygiene Compartment (WHC). The Toilet will be evaluated as a technology demonstration for a minimum of three years. In addition, it will support an increase in ISS crew size due to Commercial Crew flights to ISS. The Toilet is designed to minimize mass and volume for Orion, the first Exploration vehicle. Currently ISS does not have a designated volume for an additional Toilet. Furthermore, operating the Toilet on ISS presents a different set of challenges as it must integrate into existing vehicle systems for urine processing. To integrate the Toilet on ISS, a suite of hardware was developed to provide mechanical, electrical, data, and fluid interfaces. This paper will provide an overview of the Toilet Integration Hardware design as well as the engineering challenges, crew interface provisions and vehicle integration complexities encountered during the concept and design phases.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2019-154 , JSC-E-DAA-TN70111 , International Conference on Environmental Systems (ICES 2019) ; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-08-16
    Description: As the agency focuses on lunar missions, it is important to revisit the human factors and behavioral performance (HFBP) challenges for long duration exploration missions. We outline the important factors from the Apollo program, the long duration experience gained onboard International Space Station (ISS), and HFBP research applicable to exploration-class missions.
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN71197 , NASA Exploration Science Forum; Jul 23, 2019 - Jul 25, 2019; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-08-13
    Description: The Extravehicular Activity (EVA) Framework for Exploration describes NASA's EVASystem Goals in the broader context of ongoing human spaceflight efforts. The purpose of thisdocument is to drive integration, coordination and communication of the EVA community'sexploration development plans as crafted to meet long-term EVA needs. Inclusive in the EVAcommunity are NASA partners in academia and industry. The 2019 EVA Framework outlinesthe office's current method to answer the following questions: What product does NASA useto compare, contrast and integrate across the elements of the EVA community's perceivedgaps, risks, and unfunded work, particularly for future systems intended for use beyond LowEarth Orbit (LEO)? What product does NASA use to proactively coordinate support acrossthe EVA community's wide spectrum of exploration development work? Where can one go toobtain awareness of ongoing efforts, particularly during consideration of new-start activitiesand proposals? These questions lead to the need for a product that speaks to the distributednature of the EVA System across human spaceflight programs, concept studies and flightvehicle architectural elements. This framework can be used and evaluated by the EVAcommunity to assess the full spectrum of needs and answer the question of "what are wemissing" or "are we doing things that just do not make sense". In the end is the EVAcommunity effectively pursuing the future needs of EVA? If answers to those questions revealthe need for change or re-prioritization then actions can be taken through existing projectcontrol processes as well as revision to this document and supporting project plans.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2019-021 , JSC-E-DAA-TN70005 , International Conference on Environmental Systems; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-08-13
    Description: A review of NASA's bioregenerative life support research will be presented along with testing related to Mars greenhouse or plant growth systems.
    Keywords: Man/System Technology and Life Support
    Type: KSC-E-DAA-TN67065 , 2019 BIG Idea Challenge Forum; 23-24 Apr. 219; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-08-28
    Description: The BioBot concept consists of a robotic rover which is capable of traversing the same terrain as a spacesuited human. It carries the primary life support system for the astronaut, including consumables, atmosphere revitalization systems (e.g., CO2 scrubbing, humidity and temperature management, ventilation fan), power system (e.g., battery, power management and distribution),and thermal control system (e.g., water sublimator, cooling water pump), along with umbilical lines to connect to the supported astronaut. Although not technically part of life support, it would be logical for the BioBot to also provide long-range communications, video monitoring, tool and sample transport, and other functions to enable and enhance EVA productivity in planetary surface exploration.The design reference scenario for this concept is that astronauts involved in future lunar or Mars exploration will be on the surface for weeks or months rather than days, and will be involved in regular EVA operations. It is not unreasonable to think of geologists spending several days inEVA exploration each week over a prolonged mission duration, with far more ambitious operational objectives than were typical of Apollo. In this scenario, each astronaut will be accompanied by a "BioBot", which will transport their life support system and consumables, an extended umbilical and umbilical reel, and robotic systems capable of controlling the position and motion of the umbilical. The astronaut will be connected to the robot via the umbilical, carrying only a small emergency open-loop life support system similar to those contained in every PLSS. The robotic mobility base will be designed to be capable of traveling anywhere the astronaut can walk, and will also be useful as a transport for the EVA tools, science instrumentation, and collected samples. In addition, the BioBot can potentially carry the astronaut on traverses as well. Such a system will also be a significant enhancement to public engagement in these future exploration missions, as the robotic vehicles can also support high-resolution cameras and high bandwidth communications gear to providehigh-definition video coverage of each crew throughout each EVA sortie.
    Keywords: Man/System Technology and Life Support
    Type: HQ-E-DAA-TN67504
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-09-07
    Description: Future Exploration missions will require an Oxygen Generation Assembly (OGA) to electrolyze water to supply oxygen for crew metabolic consumption. The system design will be based on the International Space Station (ISS) OGA but with added improvements based on lessons learned during ISS operations and technological advances since the original OGA was designed and built. These improvements will reduce system weight, crew maintenance time and spares mass while increasing reliability. Currently, the design team is investigating the feasibility of the upgrades by performing ground tests and analyses. Upgrades being considered include: redesign of the electrolysis cell stack, deletion of the hydrogen dome, replacement of the hydrogen sensors, deletion of the wastewater interface, redesign of the recirculation loop deionizing bed and redesign of the cell stack Power Supply Module. The upgrades will be first demonstrated on the ISS OGA.
    Keywords: Man/System Technology and Life Support
    Type: M19-7382 , International Conference on Environmental Systems (ICES 2019); Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-09-07
    Description: The Advanced Concepts Office needed human factors analyses on various hatches for future deep space modules. The current standard is the 32" hatch, and the goal of this analysis was to assess this hatch size compared to larger sizes for egress, logistics, and safety.
    Keywords: Man/System Technology and Life Support
    Type: M19-7536 , International Conference on Applied Human Factors and Ergonomics (AHFE); Jul 24, 2019 - Jul 28, 2019; Washington, DC ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-09-06
    Description: NASA Marshall Space Flight Center (MSFC) Human Factors Engineering (HFE) Team is implementing virtual reality (VR) and motion capture (MoCap) into HFE analyses of various projects through its Virtual Environments Lab (VEL). These techniques are being implemented for concept of development of Deep Space Habitats (DSH) and design and analyses for NASAs Space Launch System (SLS). VR utilization in the VEL will push the design to be better formulated before mockups are constructed, saving budget and time.
    Keywords: Man/System Technology and Life Support
    Type: M19-7537 , International Conference on Applied Human Factors and Ergonomics (AHFE); Jul 24, 2019 - Jul 28, 2019; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-09-06
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: M19-7478 , International Conference on Environmental Systems (ICES 2019); Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-09-06
    Description: Methane and carbon monoxide are gaseous contaminants commonly found in a crewed spacecrafts cabin environment that are of interest to trace contaminant control equipment design. Generation sources include crew metabolism and equipment offgassing. Sources and generation rates of methane and carbon monoxide aboard the International Space Station (ISS) are examined. Cabin atmosphere concentration dynamics covering 19 years of ISS crewed operations are presented and correlation with octafluoropropane (Freon 218) concentration levels is analyzed.
    Keywords: Man/System Technology and Life Support
    Type: M19-7379 , International Conference on Environmental Systems; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-09-06
    Description: MSFCs Human Factors Engineering (HFE) team is responsible for all worksite analyses performed for the SLS pre-launch integration activities at Kennedy Space Center (KSC). There is a wide variety of tasks associated with pre-launch integration activities and it is important to verify that vehicle integration will be successful early in the design process. The VR work performed by the HFE team at MSFC has allowed fast changing layouts to be analyzed by various departments with minimal impact to cost or schedule. Implementing these methods for SLS allows for VR use in early design cycles, saving time and budget. Utilizing the resulting HFE analyses improves usability and safety. Ultimately, the goal is to provide a safe environment for the technicians assembling the vehicle and the astronaut crew at launch.
    Keywords: Man/System Technology and Life Support
    Type: M19-7396 , Annual International Association for the Advancement of Space Safety (IAASS); May 15, 2019 - May 17, 2019; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-11-02
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: M19-7593 , AIAA NextGen Technical Symposium; Sep 09, 2019 - Sep 10, 2019; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-08-07
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN70864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-08-07
    Description: Spacesuits allow humans to function in an incredibly harsh environment. However, they introduce some restrictions to human capabilities. In general, crewmembers in a spacesuit have a restricted maximal reach envelope, reduced field of view, and reduced tactility. When tasks and interfaces are being designed, they need to take into account the restrictions associated with working in an Extravehicular Activity (EVA) suit.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN70975 , International Conference on Applied Human Factors and Ergonomics (AHFE); Jul 24, 2019 - Jul 28, 2019; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-12-03
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: M19-7699 , NASA Space Life and Physical Sciences Research and Applications (SLPSRA) Fluid Physics Workshop; Oct 16, 2019 - Oct 17, 2019; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-11-30
    Description: Long-duration space missions will eventually require a fresh food supply to supplement crew diets, which means growing crops in space. The Passive Orbital Nutrient Delivery System (PONDS) is a new plant growth approach that contains both an area for a contained substrate and a reservoir for water and/or plant nutrient solutions. Ground studies have shown that the system facilitates both reliable water delivery to seeds for germination (e.g., while avoiding overwatering), and transport of water from the reservoir for improved plant growth while providing nutrients and oxygen to the root zone. In ground prototypes a capillary mat wicking material passively links the water/nutrient solution reservoir to a removable rooting module containing a substrate adapted to support plant growth. Oxygen permeable membranes are incorporated into both the reservoir walls and the rooting modules, bringing in oxygen from outside of the system into the reservoir and then into the rooting modules where the plant roots proliferate. Water is delivered from the reservoir to the substrate contained within the rooting module through the use of wicking material inserted into the plant growth substrate both from the bottom and from the sides of the rooting module. The capillary mat material is intrinsically hydrophilic and continuously wicks water to the substrate throughout the plant growth interval. The system is therefore self-watering in terms of supplying water to the root zone encompassed within the rooting module on demand. At the top, a hydrophilic phenolic foam plug surrounds the wick in the seed insertion zone, and both contains the substrate within the rooting module, and facilitates removal of excess moisture from the capillary mat wick before it can encompass seeds prior to germination. This work is supported by NASAs Space Life and Physical Sciences and Research Applications Division (SLPSRAD).
    Keywords: Man/System Technology and Life Support
    Type: KSC-E-DAA-TN69736 , American Society for Gravitational and Space Research (ASGSR) Meeting; Nov 20, 2019 - Nov 23, 2019; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-10-19
    Description: Long-term planetary space missions present new and unique challenges in life-support systems. Water constitutes the majority of the mass required to sustain human life in space and it follows that efficient water recycling has the potential to lower mission costs. The effect of partial gravity in planetary missions mean that terrestrial systems could be applicable. This trade study evaluates terrestrial and NASA developed water recycling technologies on the basis of applicability as a planetary base water recycling systems. Various bioreactors, membrane reactors, filtration, and district water reclamation systems are investigated and rated based on several standardized parameters. A customer-oriented Quality Function Deployment (QFD) is utilized to analyze the ratings of the technologies for the tasks required. The trade study aims to rank the various systems based on their Equivalent System Mass (ESM), Technology Readiness Level (TRL), scalability, crew time, and overall logistics requirements, among others. The results of the study can serve as a basis for future inquiries and studies by NASA and other interested parties. The results of this study provide a down selection from 24 systems to 5 systems that trade very close to each other. The results provide a context and justification for a future comparative hardware test program to determine which of these systems offer the best solution.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2019-347 , ARC-E-DAA-TN70125 , International Conference on Environmental Systems; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-09-07
    Description: Use of a Sabatier reactor to recover the oxygen from the carbon dioxide exhaled by the crew on the International Space Station has been limited by the loss of the hydrogen contained in the methane it generates. Maximizing the oxygen recovered requires the hydrogen to be recovered from the methane product and recycled back to the Sabatier reactor. We describe the use of a tailored methane pyrolysis reactor to completely recover this hydrogen. The carbon-containing byproduct is elemental carbon, which is generated in the form of easily handled, non-sooty material that may have various uses. The process of creating this tailored carbon vapor deposition process involved exploration of the effects of temperature, pressure, substrate design and other variables to develop a high yield process that cleanly generates the desired products. Reaction kinetics and kinetics modelling were used to specify the temperature, pressure and reactor volume required to achieve the target conversion and to assure that the final average density was as high as possible. Reactor design included the selection of materials that will survive the high temperatures and environment in the pyrolysis reactor, and thermal modeling to achieve the required temperatures with minimum power consumption. The successful construction and demonstration of a brassboard prototype will allow the results of the chemical, thermal and mechanical models to be validated and should provide a useful alternative for a completely closed loop ECLS system. Integration of this technology with state-of-the-art (SOA) Sabatier hardware on ISS requires a complete understanding of the effects of impurities in the product hydrogen on the Sabatier catalyst. SOA Sabatier catalyst was evaluated over short and long-term exposure to anticipated contaminants to identify effects.
    Keywords: Man/System Technology and Life Support
    Type: ICES 2019-103 , M19-7476 , Annual International Conference on Environmental Systems (ICES); Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-09-07
    Description: The NASA Docking System (NDS) is a 31.4961-inch (800 mm) diameter circular hatch for astronauts to pass through when docked to other pressurized elements in space or for entrance or egress on surface environments. The NDS is utilized on the Orion Spacecraft and has been implemented as the International Docking System Standard (IDSS). The EV74 Human Factors Engineering (HFE) Team at NASAs Marshall Space Flight Center (MSFC) conducted human factors analyses with various hatch shapes and sizes to accommodate for all astronaut anthropometries and daily task comfort. It is believed that the hatch, approximately 32 inches, is too small, and a bigger hatch size would better accommodate most astronauts. In order to conduct human factors analyses, four participants were gathered based on anthropometry percentiles: 1st female, 5th female, 95th male, and 99th male.
    Keywords: Man/System Technology and Life Support
    Type: M19-7190 , International Conference on Applied Human Factors and Ergonomics (AHFE); Jul 24, 2019 - Jul 28, 2019; Washington, D. C. ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-11-13
    Description: As next-generation space exploration missions necessitate increasingly autonomous systems, there is a critical need to better detect and anticipate crewmember interactions with these systems. The success of present and future autonomous technology in exploration spaceflight is ultimately dependent upon safe and efficient interaction with the human operator. Optimal interaction is particularly important for surface missions during highly coordinated extravehicular activity (EVA), which consists of high physical and cognitive demands with limited ground support. Crew functional state may be affected by a number of variables including workload, stress, and motivation. Real-time assessments of crew state that do not require a crewmembers time and attention to complete will be especially important to assess operational performance and behavioral health during flight. In response to the need for objective, passive assessment of crew state, the aim of this work is to develop an accurate and precise prediction model of human functional state for surface EVA using multi-modal psychophysiological sensing. The psychophysiological monitoring approach relies on extracting a set of features from physiological signals and using these features to classify an operators cognitive state. This work aims to compile a non-invasive sensor suite to collect physiological data in real-time. Training data during cognitive and more complex functional tasks will be used to develop a classifier to discriminate high and low cognitive workload crew states. The classifier will then be tested in an operationally relevant EVA simulation to predict cognitive workload over time. Once a crew state is determined, further research into specific countermeasures, such as decision support systems, would be necessary to optimize the automation and improve crew state and operational performance.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN72202 , ISWC/UBICOMP 2019; Sep 09, 2019 - Sep 13, 2019; London, Enland; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-08-09
    Description: NASA has identified the need for robust and sustainable Pick-and-Eat systems for supplementing crew diets with fresh leafy green crops in near-term LEO (Low Earth Orbit), cislunar, and lunar missions. Spaceflight plant growth systems have been primarily designed for conducting space biology studies, but these systems are not optimal for sustained food production. Improved water and nutrient delivery subsystems that do not use bulky and non-reusable media are needed for decreasing the mass of the food production system. Autonomous technologies for monitoring plant health and food safety are needed for ensuring that the food produced is suitable supplementing crew diets with fresh, nutritious salad crops. Improved plant imaging techniques used for high-throughput phenotyping can be leveraged for monitoring plant health. Near-real-time measurements of the microbial ecology of food production systems are needed for assessing food safety. Furthermore, newly identified plant species and cultivars with improved growth habits and contents of antioxidants, vitamins, and minerals when grown in spaceflight environmental conditions are needed. These improvements in food production technologies will enable the design of sustainable life support systems for manned exploration missions beyond Low Earth Orbit.
    Keywords: Man/System Technology and Life Support
    Type: KSC-E-DAA-TN69819 , International Space Station Research & Development Conference (ISSR&D 2019); Jul 29, 2019 - Aug 01, 2019; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-10-30
    Description: The presentation describes the NASA effort to upgrade and develop new technologies for demonstration of Exploration class life support systems on the International Space Station. It addresses key areas of emphasis for life support system improvement, integration of the system into the ISS vehicle, and a high level schedule for overall execution.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN74196 , Association of Space Explorers XXXII Planetary Congress; Oct 14, 2019 - Oct 18, 2019; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-08-08
    Description: Spacesuits are critical to performing spacewalks or EVA, however can increase injury risks due to - Spacesuit Fit Concerns: Astronauts come from a diverse population; Improper suit fit will result in persistent contact and mechanical pressure on the body. - Altered Biomechanics: Mechanical constraints and pressurization can make it difficult due to - Reduced range of motion, Reduced strength capability. To improve suit design and mitigate injuries, kinematic and geometric measurements are required during EVA evaluations - Human motions inside a spacesuit may not coincide with the suit motions: Spacesuit configurations do not exactly match with human anatomical joints; Gaps/paddings inside the suit induce lags between human motion and suit motion - Conventional motion capture or 3-D scanning techniques are difficult to use to measure internal motion: Optical occlusions; Volume restrictions; Ferrous magnetic interference.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN70900 , International Conference on Applied Human Factors and Ergonomics (AHFE 2019); Jul 24, 2019 - Jul 28, 2019; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2020-01-16
    Description: Crewmembers' ability to adjust to changes in gravity and sensorimotor function is essential for successful suited mobility in lunar and planetary missions. Setups for current pressurized spacesuit testing require suit technicians, specialized medical clearances, and test support personnel along with increased risk to the subject. Furthermore, suited setups constrain the types of additional hardware that can be used. A test bed was developed with the goal to evaluate human suited performance using an unpressurized Mark III mockup suit and virtual reality (VR) system.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN74245-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2020-01-16
    Description: Crewmembers' ability to adjust to changes in gravity and sensorimotor function is essential for successful suited mobility in lunar and planetary missions. Setups for current pressurized spacesuit testing require suit technicians, specialized medical clearances, and test support personnel along with increased risk to the subject. Furthermore, suited setups constrain the types of additional hardware that can be used. A test bed was developed with the goal to evaluate human suited performance using an unpressurized Mark III mockup suit and virtual reality (VR) system. The mockup suit provides a means of performing proof-of-concept tasks for suited performance with lower time and cost demands. Additionally, VR goggles provide a means for projecting an immersive planetary environment and applying perturbations to the visuo-vestibular system with minimal equipment. Furthermore, the test bed will be developed to allow room for improvement in fidelity for future suited applications.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN74245-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-12-06
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: M19-7698 , The Electrochemical Society (ECS) Meeting Topic Close-up: Electrochemistry in Space; Oct 13, 2019 - Oct 17, 2019; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-12-14
    Description: A well-known hazard associated with exposure to the space environment is the risk of failure from an impact from a meteoroid and orbital debris (MMOD) particle. An extravehicular mobility unit (EMU) spacesuit impact during a US extravehicular activity (EVA) is of great concern as a large leak could prevent an astronaut from safely reaching the airlock in time resulting in a loss of life. A risk assessment is provided to the EVA office at the Johnson Space Center (JSC) by the Hypervelocity Impact Technology (HVIT) group prior to certification of readiness for each US EVA. Need to understand the effect of updated meteoroid and orbital debris environment models to EMU risk.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN75550 , International Orbital Debris Conference (IOC); Dec 09, 2019 - Dec 12, 2019; Sugar Land, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-12-13
    Description: The allowable leakage rate for space hardware is typically specified as scc/sec of helium. It is important to be able to use the measured helium leakage rate to calculate the expected leakage rate of the working fluid. In this U.S. Spacesuit Knowledge Capture seminar, Dr. Eugene Ungar will explore the physical configuration of typical leak paths, discuss the physics of molecular, transition, and continuum flow, and present the accepted method of conservatively calculating the expected leakage rate of the working fluid.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN75755
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-12-04
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: M19-7695 , The Electrochemical Society (ECS) Meeting 2019; Oct 13, 2019 - Oct 17, 2019; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-08-23
    Description: Aerobic biological stabilization has been previously demonstrated for full size MABR?s (CoMANDR 1.0, CoMANDR 2.0, and R-CoMANDR) over operating periods of ~1 year. These systems have successfully treated a variety of possible habitation waste streams including an ISS (urine + flush and humidity condensate) and Early Planetary Base (EPB) wastewater (urine, flush water, hygiene wastewater, and laundry). Biological stabilization has a number of advantages including: 1) elimination of hazardous pre-treat chemicals; 2) production of NOx species (that can be easily rejected by evaporative or membrane systems); 3) elimination of volatile organic constituents; 4) a low pH effluent that facilitates membrane and distillation processes; and 5) a effluent that produces a better quality and less hazardous brine for water recovery. Previous work has primarily evaluated aerobic operation in which organic carbon and nitrogen is converted to CO2 and NOx-, respectively. An alternative to aerobic operation would be to include anoxic operation to promote denitrification and production of N2 gas. This allows for production of make-up gas as well as reduces the O2 demand and can increase ammonia oxidation efficiency. We evaluated the operation of a full scale (2 crew/day) MABR operated to perform oxidation of organic carbon and nitrogen with and without simultaneous reduction of oxidized N to N2 gas, simultaneous nitrification denitrification (SNDN). The system was challenged with a variety of space habitation wastewaters ranging from an ISS composition to a possible EPB waste stream under both continuous and on-production feeding modes. The system has been operated for over 2.5 years. We report on an overall comparison of aerobic oxidation and SNDN operational regimes to evaluate the system with the best overall attributes to support recycling of space habitation waste streams.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2018-274 , JSC-E-DAA-TN54648 , International Conference on Environmental Systems (ICES); Jul 07, 2019 - Jul 11, 2019; Albuqurque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-08-17
    Description: On the International Space Station (ISS) there are currently two toilets. One is located in the Russian segment's Service Module and the other is located in the U.S. segment's Node 3. A new Exploration Toilet will be integrated next to the existing Node 3 Waste and Hygiene Compartment (WHC). The Toilet will be evaluated as a technology demonstration for a minimum of three years. In addition, it will support an increase in ISS crew size due to Commercial Crew flights to ISS. The Toilet is designed to minimize mass and volume for Orion, the first Exploration vehicle. Currently ISS does not have a designated volume for an additional Toilet. Furthermore, operating the Toilet on ISS presents a different set of challenges as it must integrate into existing vehicle systems for urine processing. To integrate the Toilet on ISS, a suite of hardware was developed to provide mechanical, electrical, data, and fluid interfaces. This paper will provide an overview of the Toilet Integration Hardware design as well as the engineering challenges, crew interface provisions and vehicle integration complexities encountered during the concept and design phases.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2019-154 , JSC-E-DAA-TN67925 , International Conference on Environmental Systems (ICES); Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-08-17
    Description: United States On-Orbit Segment (USOS) crew members aboard the International Space Station (ISS) are each furnished with a Crew Quarters that serves as their personal private space for the duration of their expedition. Within these quarters, crew members use sleeping bags to provide a comfortable environment that is conducive to sleeping in microgravity. Microgravity presents unique challenges to obtaining good sleep. Sleep position preferences which are influenced by gravity are disturbed when the feeling is absent while other environmental factors prevent the familiar feeling of lying in bed. NASA developed a new US Sleeping Bag for USOS crew members launching aboard United States Crewed Vehicles (USCVs), using this opportunity to improve upon the current sleeping bag design based on lessons learned from years of living and working in space. The US Sleeping Bag design was based on the current sleeping bag's design with enhancements to key features based on feedback from crew members and sleep study experts at the Johnson Space Center and the Ames Research Center. Key areas of improvement include facilitating thermal comfort in the warm Crew Quarters environment, ease of maintenance when replacing the inner lining, allowing for maximum versatility for adjustment to crew preference, and adding features for additional functionality such as accommodations for a pillow. Two US Sleeping Bags have flown aboard the ISS to date, utilized by veteran crew members who have experience with the existing sleeping bags and have provided feedback and comparisons for assessment. Enabling good sleep is essential for crew member health and productivity, especially in longer duration expeditions. This paper will detail the challenges with sleeping in microgravity and the enhancements made in development of the US Sleeping Bag to provide a better on-orbit sleep environment.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN68145 , JSC-E-DAA-TN66053 , International Conference on Environmental Systems; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-18
    Description: NASA is developing a waste management system for use in a pressurizable space suit for future Orion missions. Driven by Orion's cabin depress operational scenario, specific life support equipment is needed for crew survival. Immediate life-sustaining resources can be provided by the Orion launch and entry suit as a pressurizable safe haven. Before long, though, the crew would also need an appropriate waste management system to maintain their crew health in a confined environment, especially over multiple days. Long-duration waste management hardware for use with a space suit has not been designed or utilized since the Apollo program, and there are numerous technical challenges associated with its implementation. In conjunction both NASA's Orion Crew Survival Systems (OCSS) and Omni Medical Systems are addressing such challenges through their on-going hardware design efforts to support future Orion missions. This paper details some of the initial design and testing efforts that have been completed while discussing the major challenges that have arisen in the process.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN62583 , International Conference on Environmental Systems (ICES) 2019; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: NASA's mission for manned long- duration space exploration drives the research for crop selection to provide a nutritious and safe supplement to an astronaut's diet. Understanding plant growth, health, and the associated microbial communities in closed environments will be critical to the success of this mission. Cultivation of crops in closed controlled environment agricultural systems may limit microbial colonization and reduce diversity of the microbial communities. Furthermore, practices like seed and growth medium sanitization may impact microbial communities in the mature plant and the capacity to limit the growth of food borne pathogens through competition.
    Keywords: Man/System Technology and Life Support
    Type: KSC-E-DAA-TN70067 , ASM Microbe 2019; Jun 20, 2019 - Jun 24, 2019; San Fransisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: As more and more electric vehicles emerge in our daily operation progressively, a very critical challenge lies in the prediction of remaining driving-time distance (for cars) or flying time-distance (for aircraft). This information is important, particularly in the case of unmanned vehicles, because such vehicles can become self-aware, autonomously compute its own capabilities, and identify how to best plan and successfully complete vehicular missions safely. In case of electric aircrafts, computing remaining flying time is also safety-critical, since an aircraft that runs out of power (battery charge) while in the air will eventually lose control leading to catastrophe. In order to tackle and solve the prediction problem, it is essential to have awareness of the current state and health of the system, especially since it is necessary to perform condition-based predictions. To be able to predict the future state of the system, it is also required to possess knowledge of the current and future operations of the vehicle.
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN39512 , MARCON 2017; Mar 07, 2019; Knoxville,TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-09-07
    Description: This document serves as the Final Report for Iowa State University's Space Habitat group to fulfill the specifications of NASA's eXploration Systems and Habitation (X-Hab) 2019 Academic Innovation Challenge for the 'Implementation of Advanced Sorbents in a Carbon Dioxide Management Unit' portion of the challenge. The scope of this document includes a description of the current Carbon Dioxide management systems implemented on ISS, a description of the groups design, a description of the operational environment and scenarios, risks and mitigations, performance and testing results of the system, outreach, and future work.
    Keywords: Man/System Technology and Life Support
    Type: M19-7509
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-09-07
    Description: Use of a Sabatier reactor to recover the oxygen from the carbon dioxide exhaled by the crew on the International Space Station has been limited by the loss of the hydrogen contained in the methane it generates. Maximizing the oxygen recovered requires the hydrogen to be recovered from the methane product and recycled back to the Sabatier reactor. We describe the use of a tailored methane pyrolysis reactor to completely recover this hydrogen. The carbon-containing byproduct is elemental carbon, which is generated in the form of easily handled, non-sooty material that may have various uses. The process of creating this tailored carbon vapor deposition process involved exploration of the effects of temperature, pressure, substrate design and other variables to develop a high yield process that cleanly generates the desired products. Reaction kinetics and kinetics modelling were used to specify the temperature, pressure and reactor volume required to achieve the target conversion and to assure that the final average density was as high as possible. Reactor design included the selection of materials that will survive the high temperatures and environment in the pyrolysis reactor, and thermal modeling to achieve the required temperatures with minimum power consumption. The successful construction and demonstration of a brassboard prototype will allow the results of the chemical, thermal and mechanical models to be validated and should provide a useful alternative for a completely closed loop ECLS system. Integration of this technology with state-of-the-art (SOA) Sabatier hardware on ISS requires a complete understanding of the effects of impurities in the product hydrogen on the Sabatier catalyst. SOA Sabatier catalyst was evaluated over short and long-term exposure to anticipated contaminants to identify effects.
    Keywords: Man/System Technology and Life Support
    Type: M19-7244 , ICES 2019-103 , International Conference on Environmental Systems (ICES); Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-09-06
    Description: NASA Marshall Space Flight Center (MSFC) Human Factors Engineering (HFE) Team is implementing virtual reality (VR) and motion capture (MoCap) into HFE analyses of various projects through its Virtual Environments Lab (VEL). VR allows for multiple analyses early in the design process and more opportunities to give design feedback. This tool can be used by engineers in most disciplines to compare design alternatives and is particularly valuable to HFE to give early input during these evaluations. These techniques are being implemented for concept development of Deep Space Habitats (DSH), and work is being done to implement VR for design aspects of the Space Launch System (SLS). VR utilization in the VEL will push the design to be better formulated before mockups are constructed, saving budget and time. The MSFC VEL will continue forward leaning implementation with VR technologies in these and other projects for better models earlier in the design process.
    Keywords: Man/System Technology and Life Support
    Type: M19-7195 , International Conference on Applied Human Factors and Ergonomics (AHFE); Jul 24, 2019 - Jul 28, 2019; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-11-22
    Description: On board the International Space Station, particulate HEPA filters known as Bacterial Filter Elements (BFE's) are used as the main ventilation filters on the US modules. They consist of two stages of filtration, a static screen filter and a HEPA filter element. Historically, these filters have performed well during the life of the ISS. However, as NASA sets its sights towards mission beyond low earth orbit, or deep space, more capable filters requiring minimal maintenance will be essential because of the nature of these remote and of long duration missions. Therefore NASA is currently developing new filter systems for these mission. One of the filter designs being considered is a new filter system, coined the Scroll BFE. This filter provides two stages of filtration. The first stage is a pre-filter stage using a roll of screen media on a motorized spooling, or scrolling, mechanism to automate the change-out of the screen media in the flow. The second and finishing stage is a static HEPA filter element similar to the ones used on the ISS BFE's. The volume and dimensional format of the filter matches that of the ISS BFE which facilitates is deployment as potential future flight technology demonstration on board the ISS. Ground tests are underway to assess the filter system's performance under industrial standard test protocols applied in a custom designed filtration test stand. In addition, a method of generating relevant particulate matter loads, such as loose fibrous matter, is also being devised to challenge the filter in testing. The latter test challenge will help determine the pre-filter's capacity for handling layers of lint, or fibrous, particulate matter. Early results confirm HEPA efficiency performance of the HEPA stage. This paper will present the results of ground testing of the Scroll Filter System prototype.
    Keywords: Man/System Technology and Life Support
    Type: GRC-E-DAA-TN70506 , International Concerence on Environmental Systems; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-11-19
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: KSC-E-DAA-TN75540 , 2019 ASA-CSSA-SSSA International Annual Meeting; Nov 10, 2019 - Nov 13, 2019; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-11-15
    Description: The International Space Station (ISS) gives a 6-member astronaut crew the ability to live and work in low Earth orbit. It is a unique indoor environment, which has served as both home and workplace to over 230 people since the year 2000. In this low gravity environment, smoke does not rise and cookie crumbs do not settle the way they do on Earth, causing airborne particulate matter, or aerosols, to behave differently and pose unique hazards for crew members. In its existence, virtually the same volume of ISS air has been continuously conditioned and revitalized, including the removal of particles by filtration. While gaseous constituents of ISS air are monitored meticulously, sparse data exists on the indoor aerosols. The quantity and types of ISS airborne debris have been investigated in NASAs Aerosol Sampling Experiment. Both active and passive samplers successfully collected airborne particulate matter in U.S. segments of the ISS, which were returned to Earth for characterization by microscopy and other techniques. The resulting data has informed the design of candidate particle instruments for spacecraft. In 2020, a reference-quality aerosol instrument will be flown to ISS, and will provide real-time data of particle concentrations in various modules. Smaller, more compact instruments will be necessary in future space missions, for example, in smaller vehicles, in habitats on lunar and planetary surfaces with ubiquitous dust, and also for use as wearable technology throughout missions. Miniaturized aerosol sensors, though lower fidelity than reference-quality instruments, can monitor the environment well when calibrated appropriately. Indoor air quality in spacecraft is fundamentally important to human health and comfort, and several particulate monitoring technologies will be at sufficient technology readiness levels for operational use within the next two years. Results of the Aerosol Sampling Experiment will be presented, along with the status of NASAs aerosol instrument technology demonstrations on ISS.
    Keywords: Man/System Technology and Life Support
    Type: GRC-E-DAA-TN74165 , International Astronautical Congress (IAC); Oct 21, 2019 - Oct 25, 2019; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-11-14
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN74049 , Association of Space Explorers XXXII Planetary Congress; Oct 14, 2019 - Oct 18, 2019; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-08-08
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: 2019-371 , JSC-E-DAA-TN70570 , International Conference on Environmental Systems Conference ; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-08-08
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN70898 , International Conference on Applied Human Factors and Ergonomics (AHFE 2019); Jul 24, 2019 - Jul 28, 2019; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-09-21
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: NASA/CR-2019-220447
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-11-09
    Description: What if one existing work domain could be leveraged to inform an instantiation of a second type of work domain? This is the question that informed a three year NASA-funded study, SUBSEA (Systematic Underwater Biogeochemical Science and Exploration Analog), on the use of ocean science and exploration via telepresence as an analog for future human-robot spaceflight. SUBSEA included two field programs performed in 2018 and 2019. Each was comprised of a multidisciplinary team of natural scientists studying deep-sea venting sites in tandem with a team of social scientists conducting work ethnography to understand the existing ocean exploration domain. This paper presents results from the 2018 field program which includes analyses that were required to generate specific flight-like conditions for the 2019 field program.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN74266 , International Annual Meeting of the Human Factors and Ergonomics Society; Oct 28, 2019 - Nov 01, 2019; Seatle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-11-07
    Description: We have investigated and evaluated a novel concept of operations for human spaceflight: allowing astronauts to manage and schedule their own timeline. In order to evaluate this self-scheduling concept of operations, we have designed, implemented, and field-tested astronaut-centric planning and scheduling aid. Our mobile-based software aid, Playbook, has been used in a variety of Earth analogs as well as onboard the International Space Station. We will demonstrate the unique Playbook features that we have developed based on research findings during field testing that facilitate planning and scheduling in extreme environments.
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN70767 , International Annual Meeting of the Human Factors and Ergonomics Society; Oct 28, 2019 - Nov 01, 2019; Seattle,WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-12-06
    Description: This report describes research conducted under Cooperative Agreement 80NSSC18K0042 for the Human Factors and Behavioral Performance Element, Human Research Program, located at the National Aeronautics and Space Administrations (NASA) Johnson Space Center. The research addresses the Risk of Inadequate Mission, Process, and Task Design and the Risk of Performance Errors Due to Training Deficiencies during exploration-class space missions by identifying the tasks that will be conducted by human crew during an expedition to Mars and the abilities, skills, and knowledge that will be required of crew members. By focusing on an expedition to Mars, we have considered the extremes of what is possible for human space exploration during the first half of the 21st Century and accommodated the human requirements for missions to asteroids, Cis-Lunar orbit, and a return to the Moon.
    Keywords: Man/System Technology and Life Support
    Type: NASA/CR-2018-220445 , JSC-E-DAA-TN64782
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-09-25
    Description: Bioregenerative technologies have been suggested for human life support in space for decades. Such technologies have not yet been incorporated due to 1) assumed unreliability and 2) bioregeneration rates for given processes are slower when compared to equivalent physical/chemical treatment technologies. Slower treatment capacity for biological system result in larger technology infrastructure (i.e., higher mass, power, and volume requirements), and thus less attractive. Current ISS (International Space Station) life support systems are strictly physical/chemical. However, bioregenerative systems are being suggested for future surface systems (on the Moon or Mars) due to the limited access to resupplied materials and continued need for resiliency and sustainability. In the realm of water reclamation, the ISS system processes only urine, metabolic condensates, and hygiene (i.e., handwash and oral, no shower or laundry) waters with 75 percent closure. For future surface habitats with 4 crew members, approximately 30 liters per day of wastewater will be generated, containing estimated 850 milligrams per liter NH4-N. Conventional algae PBRs (photobioreactors) require dilution to accommodate such high concentrations of ammonium. If dilution is required, resulting technology hardware will increase dramatically in mass. A new approach was explored, whereby high carbon dioxide (1200-2000 parts per million) and light (400-600 micromoles per square meter per second) conditions were provided to treat the undiluted wastewater stream. Daily treatment capacity for Chlorella sorokiniana and Chlorella vulgaris was observed to be 85 and 107 milligrams NH4-N per gram of biomass, respectively. This preliminary study shows that there is capacity to increase ammonium removal rates by algal species, and thus reactor size (mass and volume) for future surface systems. Smaller reactor volumes will help bioregenerative treatment technologies compete with the presently accepted physical/chemical treatment technologies.
    Keywords: Man/System Technology and Life Support
    Type: KSC-E-DAA-TN73138 , Algae Biomass Summit; Sep 16, 2019 - Sep 19, 2019; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-10-22
    Description: As we search for life on Mars, we will be simultaneously contaminating Mars with life from Earth. The contamination from Earth could be mistaken for Martian life. How can this paradox be avoided? With the results of our research, the scientific community will be able to determine locations of future habitats that minimize the aerial extent subject to bio-contaminants, protect sites of astrobiological interest, and constrain landing site selection of life detection missions to reduce risk of false positives. We consider a putative human habitat on Mars. Biological contaminants will flow out of the habitat into the Martian atmosphere, and the atmosphere will move these contaminants around. How many biological particles per year will be released from the habitat into the Martian ambient environment? How far will the contamination travel? In what directions will it travel? How long will the contamination be in the atmosphere? We study these questions quantitatively by simulating the Martian atmosphere using the NASA Ames Mars Global Climate Model. Various combinations of human habitat locations and contaminant sizes are considered. The results from these simulations enable the creation of novel contamination heat maps showing the aerial distribution of contaminants from putative human habitats on Mars.
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN72430 , Young Scientist Program Night of Science; Aug 15, 2019; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-08-02
    Description: N5 Sensors, Inc. and NASA through a STTR program are jointly developing ultra-small, low-power carbon dioxide (CO2) gas sensors, suited for monitoring CO2 levels inside the spacesuits. Due to the unique environmental conditions within the spacesuits, such as high humidity, large temperature and operating pressure swings, measurement of key gases relevant to astronaut's safety and health such as carbon dioxide, is quite challenging. Conventional non-dispersive infrared absorption based CO2 sensors cannot be effectively implemented inside the spacesuits due to their sizes, weights, and power constraints. Metal-oxide based sensors have been effectively miniaturized for several applications, however detection of CO2 utilizing metal-oxide based sensors is challenging due to the chemical inertness and high stability of CO2 at room-temperatures. To mitigate these limitations, unique chip-scale, nanoengineered chemiresistive gas-sensing architecture has been developed - to allow the Metal-oxide sensors to operate in space-suite environmental conditions. Unique design combining the selective adsorption properties of the nanophotocatalytic clusters of metal-oxides and metals, provides selective detection of CO2 in high relative humidity conditions. All electronic design provides a compact and low-power solution, which can be implemented for multipoint detection of CO2 inside the spacesuits. This paper will describe a novel approach in refining the sensor architecture, development of new photocatalytic material for better sensor performance.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN54321 , International Conference on Environmental Systems; Jul 08, 2018 - Jul 12, 2018; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-19
    Description: This Summer I participated in two projects at Kennedy Space Center in Cape Canaveral, Florida. The projects focus on the NASA's Deep Space Gateway applications for future Mars travel. All of these projects use recycling technology to use resources found on Earth and on other planets for fuel and other environmental applications. The first project I took the lead on is Plasma Arc Gasification. Plasma is a high temperature and very efficient way to process waste to create usable byproducts. The plasma chamber in temperature is comparable to that of the sun and this energy will help create an environment in which the waste can be recycled properly for not only plant support, but also for possible fuel application as well. I preformed the tests in a quartz tube, which is used to hold the waste (cotton, plastics, nylon, paper and a human waste simulant) and the waste is then combusted using O2 (present in air) into gases such as H2, H2O, CH4 and CO2. I determined which gases are present using a Fourier-transform infrared spectroscopy (FTIR) machine, which analyzes the peaks of the gases using liquid nitrogen. Problems arose in the beginning from the reactor emitting electromagnetic waves (EMI) that interfered with the technology of the experiment, specifically the thermocouples. This was solved through multiple tests with the positioning of the thermocouple power supply further away from the plasma reactor. I worked with another intern, Daniel Santander, who developed a space plant chamber which uses CO2 and H2O (harvested from the plasma reactor) to grow plants in space. The chamber possess a CO2 monitor, which controls the amount of gas that enters the chamber, along with a water integration system to supply the amount of water needed for proper plan growth. This technology will then be used for plant growth in space for the Astronauts on future space flights and possibly on the International Space Station (ISS). The second project I worked on is the Orbital Syngas / Commodity Augmentation Reactor (OSCAR) which focuses on the issues experienced in long-duration space flight regarding waste disposal. In previous space flight missions, waste was stored on board and returned to Earth for disposal. This technique is not applicable to long space flight missions to Mars due to the rocket being months away from Earth. OSCAR is using microgravity waste disposal techniques to produce fuels from the recycled waste. The waste is converted to syngas through a thermal degradation process. This process helps create an environmentally friendly way to dispose and reuse trash on board the space craft. Currently waste is being tested in the form of cotton and plastics. OSCAR is designed as a microgravity reactor that is currently being tested in a drop tower rig at Glenn Research Center. I helped design the 3D model for the insulation that will line the reactor. The first few trials, I dissolved the plastic of the mold in acetone. This method worked, but was very costly. I then received a silicone material to construct the mold from Swamp Works here at Kennedy. Through multiple trials with the silicone, this method worked best for developing the end pieces of the insulation for the chamber.
    Keywords: Man/System Technology and Life Support
    Type: KSC-E-DAA-TN58925
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-19
    Description: To accomplish the objective of human missions to Mars and/or the long-term colonization of the moon, bioregenerative life support systems and food production systems will be absolutely necessary. Microbes are an essential and unavoidable component of these systems. In fact, these systems are driven by complex microbial communities about which we know very little, a glaring strategic knowledge gap in our ability to support extended human exploration in closed systems. Our laboratory has been working to use molecular ecological methods, including nanopore sequencing technology already deployed on the International Space Station, to understand the microbes in food production systems on Earth. Our ultimate goal is to inform the implementation of food production systems off-world. To date, we have sampled and sequenced the microbiomes of aquaponics systems, hydroponics systems, and fish ponds. Our results have revealed that the microbial communities in these systems are extremely diverse, and highly variable between systems. Along the way, we have discovered the power of aquaponics systems as teaching tools, and the capacity of students to perform high quality citizen science. By designing, constructing, and operating aquaponics systems, students better understand the role of microbes in the cycling of the elements in natural ecosystems, and in the human built environment. In partnership with schools and colleges, contributing new knowledge as citizen scientists, we are now exploring the relationships between the functioning of these systems and their microbial flora.
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN54836 , WVC Annual Earth Stewardship Symposium; Apr 19, 2018 - Apr 20, 2018; Saratoga, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-12
    Description: The Baseline Values and Assumptions Document (BVAD) provides analysts, modelers, and other life support researchers with a common set of values and assumptions which can be used as a baseline in their studies. This baseline, in turn, provides a common point of origin from which many studies in the community may depart, making research results easier to compare and providing researchers with reasonable values to assume for areas outside their experience. This document identifies many specific physical quantities that define life support systems, serving as a general reference for spacecraft life support system technology developers.
    Keywords: Man/System Technology and Life Support
    Type: NASA/TP-2015-218570/REV1 , JSC-E-DAA-TN51698
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-19
    Description: Life support on the International Space Station is made possible by a combination of technologies to ensure the availability of clean water and air for the crew. Resources, including water and oxygen, are partially recovered and recycled; the balance is lost as waste either to space or incinerated during reentry into Earth's atmosphere. Frequent resupply cargo is provided to ISS to replace these lost resources. For missions beyond Low Earth Orbit, resupply becomes increasingly challenging both economically and logistically. To limit the need for these resupply missions, three options are available: increase the recovery and recycling of necessary materials, leverage in situ resources available for a given mission, or a combination of both. Here we discuss several basic life support and in situ resource utilization (ISRU) architectures, identify common technologies, propose possible integrated architectures, identify benefits of and challenges to varying levels of life support and ISRU integration, and discuss several considerations for technology commonality, dis-similar redundancy, and developmental overlap.
    Keywords: Man/System Technology and Life Support
    Type: MSFC-E-DAA-TN48554 , International Conference on Environmental Systems (ICES); Jul 09, 2018 - Jul 12, 2018; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-20
    Description: As long-term spaceflight missions become ever more imminent, astronaut nutrition and diet require further investigation and development. Dehydrated or stabilized food sources are currently used for spaceflight, but growing fresh produce aboard spacecraft can potentially supplement the astronauts diets. Further, having astronauts work with plants while in space can provide psychological benefits by serving as a tangible passage of time and representing a living component aboard an otherwise mechanical environment. As spaceflight duration will lengthen as missions head back to the Moon and to Mars, having the ability and knowledge to grow fresh produce will become even more vital. The following experiments were conducted in the late summer and fall of 2018. The purpose of these studies were to examine potential off-gas from a system component that could potentially inhibit plant germination, optimizing lighting methods and protocol for mizuna production, determining a fertilizer method that best promotes healthy mizuna yields, and troubleshooting tomato production for the next generation of the Vegetable Production System.
    Keywords: Man/System Technology and Life Support
    Type: KSC-E-DAA-TN62580
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-20
    Description: Final document is attached. In 2018, the International Space Station (ISS) [Figure 1] partnership completed a revision for the third edition of the International Space Station Benefits for Humanity, a compilation of case studies of benefits being realized from ISS activities in the areas of human health, Earth observations and disaster response, innovative technology, global education, and economic development of space. The revision included new assessments of economic value and scientific value with more detail than the second edition. The third edition contains updated statistics on the impacts of the benefits as well as new benefits that have developed since the previous publication. This presentation will summarize the updates on behalf of the ISS Program Science Forum, which consists of senior science representatives across the ISS international partnership. An independent consultant determined the economic valuation (EV) of ISS research benefits case studies and the third edition contains the results. The process involved a preliminary assessment of economic, social, and innovation factors. A more detailed assessment followed, which included factors such as addressable market, market penetration, revenue generation, ability to leverage across other applications or customer groups, quality of life improvements, health benefits, environmental benefits, cultural and community cohesion, inspiration, new knowledge, novel approaches, creation of a unique market niche, and research leadership. Because of the unique microgravity environment of the ISS laboratory, the multidisciplinary and international nature of the research, and the significance of the investment in its development, analyzing ISS scientific impacts is an exceptional challenge. As a result, the ISS partnership determined the scientific valuation (SV) of ISS research using a combination of citation analyses, bibliometrics, and narratives of important ISS utilization results. Approximately 2,100 ISS results publications comprised of scientific journal articles, conference proceedings, and gray literature, representing over 5,000 authors and co-authors on Earth were used in this evaluation to enable the communication of impacts of ISS research on various science and technology fields across many countries. The publication also updates and expands the previously described benefits of research results in the areas of space commerce, technology development, human health, environmental change and disaster response, and education activities. Distinct benefits return to Earth from the only orbiting multidisciplinary laboratory of its kind. The ISS is a stepping-stone for future space exploration while also providing findings that develop low Earth orbit as a place for sustained human activity and improve life on our planet.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN61292 , International Astronautical Congress (IAC); Oct 01, 2018 - Oct 05, 2018; Bremen; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-20
    Description: Environmental sensing will be key to autonomous vehicle operation and crew health monitoring in tended/untended long-duration habitats for Human Space Exploration in deep space. Small wireless sensors, based on Radio Frequency Identification (RFID) technology, can provide unprecedented capacity to monitor crew/habitat health. We propose a next-generation, wireless air quality sensor capable of operating for years on a small coin-cell battery without crew-member intervention.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN61850 , JSC Technology Showcase; Oct 22, 2018; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: NASA is developing an advanced portable life support system (PLSS) to meet the needs of a new NASA advanced space suit. The PLSS provides the necessary oxygen, ventilation, and thermal protection for an astronaut performing a spacewalk. The PLSS ventilation subsystem is responsible for providing adequate carbon dioxide (CO2) and water vapor removal. To experimentally validate the performance of CO2 removal and advanced CO2 sensing systems, NASA Johnson Space Center developed the Ventilation Test Loop 2.0 (VTL2) and tested the Oceaneering Swing Bed Scrubber (SBS) that was fabricated and delivered under the Constellation Space Suit System Contract in 2015. The SBS was designed to continuously remove CO2 and water vapor from a space suit ventilation loop with a pair of thermally integrated amine beds that alternately adsorb and desorb water vapor and CO2. The SBS hardware was recently resurrected and reassembled to support a full battery of performance testing in the VTL2. This paper describes the design and development of the SBS and the VTL2 along with the performance test results of the SBS.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2018-336 , JSC-E-DAA-TN54249 , International Conference on Environmental Systems; Jul 08, 2019 - Jul 12, 2019; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN61375 , Industrial Fabrics Association International (IFAI) Expo; Oct 15, 2018 - Oct 18, 2018; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: The International Space Station Water Processor Assembly provides contaminant control and deionization to the Water Recovery System. The Water Processor Assembly presently utilizes sorbent-based Multifiltration Beds and a downstream Catalytic Reactor for these operations. Upgrades and process improvements are desired to improve performance, increase reliability, and decrease consumable resupply. To this end, reverse osmosis membrane separation technologies were evaluated to reduce influent contaminant loads, candidate additives to inhibit wastewater biofilm formation were studied, and life stability testing was completed for a recently developed high-activity catalyst. Evaluation of an adsorption media integration concept was also completed. The performance and applicability of these new technologies within the Water Processor Assembly, as well as their suitability for exploration missions, are discussed herein.
    Keywords: Man/System Technology and Life Support
    Type: M18-6993 , International Conference on Environmental Systems (ICES); Jul 08, 2018 - Jul 12, 2018; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: Environmental Control and Life Support requires highly effective CO2 removal systems. The current system onboard the International Space Station is known as Carbon Dioxide Removal Assembly. Recent high-fidelity simulation of this system predicted a major efficiency gain via reduction of desiccant zeolite. Commercial beaded 13X zeolite is used in the desiccant bed to scrub water below 1 ppm but is also a highly active CO2 sorbent. The simultaneous adsorption of water vapor and CO2 is known to strongly favor water, but more accurate measurements are needed. This work details the characterization of the zeolite to be used in the next-generation CO2 removal system for co-adsorption of water and CO2.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2018-3 , M18-6687 , International Conference on Environmental Systems; Jul 08, 2018 - Jul 12, 2018; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: The presentation and videos that will be included in this technology talk will summarize the basic functions of spacesuits, the evolution of spacesuit design, and the development plans for future exploration spacesuits. The videos will run in a loop with no audio. The speakers will generally follow the slide presentation. There will be a 5-minute intro on basic suit functions, followed by a 7-10 minute discussion on suit history and evolution, then 7-10 minutes to cover the current ISS (International Space Station) suit and the development of the next generation exploration spacesuits. That will leave around 5-10 minutes for questions and answers.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN57899 , Space Center Houston Technology Talks; Apr 27, 2018; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: ICES-2018-185 , JSC-E-DAA-TN58524 , International Conference on Environmental Systems; Jul 08, 2018 - Jul 12, 2018; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN58060 , TASI (Thales Alenia Space Italia) presentation; Jun 29, 2018; Rome; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: There are currently no established standards or guidelines that define the functions to be present in habitats for use beyond Low Earth Orbit (LEO), or for the capabilities of those functions. There is limited human experience with long duration space habitation, none of which is beyond LEO. There is significantly less experience with even short duration human habitation beyond LEO. Studies since the Apollo program that have proposed long duration habitats have applied inconsistent functionality, yet these functions have substantial implications for spacecraft mass and volume. There are also numerous aspects of human space flight beyond LEO that have implications for these functions. This paper develops a method for design teams to identify and justify the functions and capabilities to include in long duration habitats intended for use beyond LEO. Finally, human-in-the-loop testing methods are recommended for use in the early spacecraft design stages to ensure that the habitat will successfully provide the intended functions and capabilities.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN59666 , Space and Astronautics Forum (AIAA SPACE Forum 2018); Sep 17, 2018 - Sep 19, 2018; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: What is a space suit? Space suit testing; How and why we test them; hardware design vs. user functionality; Data collection lessons learned; Challenges of objective and subjective data; Personal experience from 2 perspectives: test director and test subject
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN55445 , Car HMi; Apr 22, 2018 - Apr 24, 2018; Detroit, MI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: High-workload, fast-paced, and degraded sensory environments are the likeliest candidates to benefit from multimodal information presentation. For example, during EVA (Extra-Vehicular Activity) and telerobotic operations, the sensory restrictions associated with a space environment provide a major challenge to maintaining the situation awareness (SA) required for safe operations. Multimodal displays hold promise to enhance situation awareness and task performance by utilizing different sensory modalities and maximizing their effectiveness based on appropriate interaction between modalities. During EVA, the visual and auditory channels are likely to be the most utilized with tasks such as monitoring the visual environment, attending visual and auditory displays, and maintaining multichannel auditory communications. Previous studies have shown that compared to unimodal displays (spatial auditory or 2D visual), bimodal presentation of information can improve operator performance during simulated extravehicular activity on planetary surfaces for tasks as diverse as orientation, localization or docking, particularly when the visual environment is degraded or workload is increased. Tactile displays offer a third sensory channel that may both offload information processing effort and provide a means to capture attention when urgently required. For example, recent studies suggest that including tactile cues may result in increased orientation and alerting accuracy, improved task response time and decreased workload, as well as provide self-orientation cues in microgravity on the ISS (International Space Station). An important overall issue is that context-dependent factors like task complexity, sensory degradation, peripersonal vs. extrapersonal space operations, workload, experience level, and operator fatigue tend to vary greatly in complex real-world environments and it will be difficult to design a multimodal interface that performs well under all conditions. As a possible solution, adaptive systems have been proposed in which the information presented to the user changes as a function of taskcontext-dependent factors. However, this presupposes that adequate methods for detecting andor predicting such factors are developed. Further, research in adaptive systems for aviation suggests that they can sometimes serve to increase workload and reduce situational awareness. It will be critical to develop multimodal display guidelines that include consideration of smart systems that can select the best display method for a particular contextsituation.The scope of the current work is an analysis of potential multimodal display technologies for long duration missions and, in particular, will focus on their potential role in EVA activities. The review will address multimodal (combined visual, auditory andor tactile) displays investigated by NASA, industry, and DoD (Dept. of Defense). It also considers the need for adaptive information systems to accommodate a variety of operational contexts such as crew status (e.g., fatigue, workload level) and task environment (e.g., EVA, habitat, rover, spacecraft). Current approaches to guidelines and best practices for combining modalities for the most effective information displays are also reviewed. Potential issues in developing interface guidelines for the Exploration Information System (EIS) are briefly considered.
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN51912 , NASA Human Research Program Investigators'' Workshop (HRP IWS 2018); Jan 22, 2018 - Jan 25, 2018; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: M18-6487 , International Conference on Plasma Assisted Technologies (ICPAT); Jan 22, 2018 - Jan 24, 2018; Abu Dhabi; United Arab Emirates
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration's (NASA's) deep space exploration missions will be of significant duration requiring long-life and reliably performing spacecraft cabin ventilation filters. A particulate filter system is being developed at NASA Glenn Research Center (GRC) to meet the challenges of these remote and long duration missions. The capabilities and features of the filter system are expected to expand the life and reduce the maintenance requirements over that of the current ISS (International Space Station) filter by providing pre-filtration stages with novel self-cleaning and regenerable techniques. The filter provides two regenerable pre-filtration stages using a screen mesh media and an impactor collection system, and also provides intermediate stage filtration employing self-replacing filter media. The filter system is also designed to be compatible with the interfaces and performance requirements of the ISS distributed ventilation architecture in the US modules to facilitate testing on ISS type test or mock up platforms. Currently, a prototype of the filter system is undergoing tests in a custom configured filter test stand at the NASA GRC. The test stand provides the same range of flow rates produced on the ISS distributed architecture, and is equipped and instrumented to perform filter tests based on industrial test standards. The test stand has been used successfully to perform filter and flow performance test on returned ISS Bacterial Filter Elements. Similar test protocols were used to characterize the performance of the current filter system. Different performing grades of filter media will be installed and tested on the filter system, and different test particle standards will be used to simulate the range of particulate matter particles and debris the filter will see during a mission. This paper will present results and analysis of the test data to guide and provide input to the next generation filter system.
    Keywords: Man/System Technology and Life Support
    Type: GRC-E-DAA-TN56966 , International Conference on Environmental Systems (ICES 2018); Jul 08, 2018 - Jul 12, 2018; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: A pilot's job is unique in the demands it places on the human body, and many conditions can seriously affect pilot performance, threatening mission completion and pilot safety. The gas in a flight mask contains key indicators of the pilot's physiological state, including oxygen inhaled and carbon dioxide exhaled, which can signal hypoxia, hyperoxia, hypocapnia, and hypercapnia. A fiber optic-based sensor system, integrated into the pilot mask, has been developed to monitor in real time, during flight, the pilot breathing gas levels. Monitoring the partial pressure of oxygen and carbon dioxide in the pilot mask supports real-time closed loop control of the on-board oxygen generation system, based on a direct reading of what the pilot is actually breathing. The pilot Mask Sensor (MASES) system incorporates luminescence sensors for pO2, pCO2, relative humidity, pressure, and temperature in a compact probe in the pilot mask; it is based on sensor technology developed for gas monitoring in space suit systems, in work supported by NASA under the Small Business Innovation Research program. Relevant requirements for the MASES system include sensor operation while wet, operation at reduced pressure, ability to withstand rapid decompression, operation in a pure oxygen atmosphere, low power consumption, a compact readout unit, and flexible miniature sensors; many of these requirements are shared with gas monitors in space suits. Data are presented from tests conducted with human subjects in an altitude chamber and in a centrifuge.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2018-334 , JSC-E-DAA-TN54364 , International Conference on Environmental System; Jul 08, 2018 - Jul 12, 2018; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: NASA's Advanced Exploration Systems Logistics Reduction Project is developing technologies that reduce mission mass and volume for exploration. Recently there has been increasing interest in determining the quantity of consumable logistics and system spares necessary to ensure a certain level of reliability. This is influenced by a technology's criticality and degree of impact to the overall mission. Technologies that directly reduce mass (e.g. longer wear crew clothing) are relatively straightforward for calculating the savings and understanding the mission impacts. Waste management technologies that process waste can reduce mass, but spares and contingency modes are more interwoven with other vehicle systems, so assessment is more complex. This paper considers mission benefits while also considering impacts from hardware failures for technologies including: crew clothing, reusable cargo bags for habitat outfitting, automated RFID cargo tracking, trash processing/storage/repurposing, and high reliability toilets.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN60424 , Space Forum; Sep 17, 2018 - Sep 19, 2018; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: NASA has embarked on an endeavor that will enable humans to explore deep space, with the ultimate goal of sending humans to Mars. This journey will require significant developments in a wide range of technical areas, as resupply is unavailable in the Mars transit phase and early return is not possible. Additionally, mass, power, volume, and other resources must be minimized for all subsystems to reduce propulsion needs. Among the critical areas identified for development are life support systems, which will require increases in reliability and reductions in resources. This paper discusses current and planned developments in the area of carbon dioxide removal to support crewed Mars-class missions.
    Keywords: Man/System Technology and Life Support
    Type: M18-6802 , International Conference on Environmental Systems; Jul 08, 2018 - Jul 12, 2018; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment as of May 2018 and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA).
    Keywords: Man/System Technology and Life Support
    Type: ICES-088 , M18-6793 , International Conference on Environmental Systems; Jul 08, 2018 - Jul 12, 2018; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: Future Exploration missions will require an Oxygen Generation Assembly (OGA) to electrolyze water to supply oxygen for crew metabolic consumption. The system design will be based on the International Space Station (ISS) OGA but with added improvements based on lessons learned during ISS operations. These improvements will reduce system weight, crew maintenance time and resupply mass from Earth while increasing reliability. Currently, the design team is investigating the feasibility of the upgrades by performing ground tests and analyses. Upgrades being considered include: redesign of the electrolysis cell stack, deletion of the hydrogen dome, replacement of the hydrogen sensors, deletion of the wastewater interface, redesign of the recirculation loop deionizing bed and redesign of the cell stack Power Supply Module. The upgrades will be first demonstrated on the ISS OGA.
    Keywords: Man/System Technology and Life Support
    Type: M18-6748 , ICES-2018-113 , International Conference on Environmental Systems; Jul 08, 2018 - Jul 12, 2018; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: Dimethylsilanediol (DMSD) is a small organosilicon compound present in humidity condensate on the International Space Station. Aqueous DMSD originates from volatile methyl siloxane (VMS) compounds in the ISS cabin atmosphere. DMSD is not effectively removed by the WPA (Water Processor Assembly), requiring removal and replacement of both WPA Multifiltration (MF) Beds for an estimated resupply penalty of approximately 70 kg/year. Analyses indicate that WPA can handle DMSD if the concentration in the condensate can by reduced by fifty percent. Personal Hygiene Products (PHPs) used by crew are suspected to be a significant source of VMS. Source removal of VMS will be required to achieve a measurable impact to the DMSD concentration in the condensate. The inventory of total crew provisions for ISS was analyzed to identify silicon containing materials and products used for personal hygiene that emit VMS. Accounting for the wide range in mass of hygiene product applied to skin or hair, the frequency of application, the product selection, the number of crew using a given product, the range in silicon mass fraction of different products, and the potential vaporization of the product, the potential total VMS emissions from personal hygiene products for a crew of six on ISS were estimated. The total daily VMS emissions from PHPs estimate ranges from 261 to 1145 mg-Si per day, compared to total estimated VMS generation rates on ISS of 800 to 1500 mg-Si per day. The main sources of VMS were determined to be antiperspirants (173 to 696 mg-Si per day), skin lotions (63 to 248 mg-Si per day), wipes (25 to 124 mg-Si per day) and hair conditioner (0 to 69 mg-Si per day). Several siloxanes-free options are available for deodorants, wet wipes, lotions, and leave-in conditioners. These products are now being assessed for crew member use in future increments.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2018-123 , M18-6756 , International Conference on Environmental Systems; Jul 08, 2018 - Jul 12, 2018; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: Contamination of a crewed spacecraft's cabin environment leading to ECLS system functional capability and operational margin degradation or loss can have an adverse effect on NASA's space exploration mission figures of merit-safety, mission success, effectiveness, and affordability. Experience gained during the International Space Station program has shown the vital role that evaluating ECLS system compatibility and cabin environmental impact serves as a passive trace contaminant control tool which can provide guidance to crewed spacecraft system and payload developers relative to designing for minimum risk. As well, such evaluations can aid in guiding containment design, developing flight rules and procedures suitable for protecting the ECLS system and cabin environment, and defining contamination event remediation approaches. The approach to evaluating ECLS system compatibility and cabin environmental impact developed during the ISS program is presented and its role in future exploration spacecraft design is discussed.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2018-44 , M18-6751 , International Conference on Environmental Systems; Jul 08, 2018 - Jul 12, 2018; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...