ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (581)
  • 1995-1999  (581)
  • 1990-1994
  • 1999  (386)
  • 1998  (195)
Collection
Years
  • 1995-1999  (581)
  • 1990-1994
Year
  • 1
    Publication Date: 2011-08-24
    Description: The first 18 tracks of laser altimeter data across the northern hemisphere of Mars from the Mars Global Surveyor spacecraft show that the planet at latitudes north of 50 degrees is exceptionally flat; slopes and surface roughness increase toward the equator. The polar layered terrain appears to be a thick ice-rich formation with a non-equilibrium planform indicative of ablation near the periphery. Slope relations suggest that the northern Tharsis province was uplifted in the past. A profile across Ares Vallis channel suggests that the discharge through the channel was much greater than previously estimated. The martian atmosphere shows significant 1-micrometer atmospheric opacities, particularly in low-lying areas such as Valles Marineris.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 279; 5357; 1686-92
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The age of secondary carbonate mineralization in the martian meteorite ALH84001 was determined to be 3.90 +/- 0.04 billion years by rubidium-strontium (Rb-Sr) dating and 4.04 +/- 0.10 billion years by lead-lead (Pb-Pb) dating. The Rb-Sr and Pb-Pb isochrons are defined by leachates of a mixture of high-graded carbonate (visually estimated as approximately 5 percent), whitlockite (trace), and orthopyroxene (approximately 95 percent). The carbonate formation age is contemporaneous with a period in martian history when the surface is thought to have had flowing water, but also was undergoing heavy bombardment by meteorites. Therefore, this age does not distinguish between aqueous and impact origins for the carbonates.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 286; 5437; 90-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: Hydrogen peroxide chemisorbed on titanium dioxide (peroxide-modified titanium dioxide) is investigated as a chemical analog to the putative soil oxidants responsible for the chemical reactivity seen in the Viking biology experiments. When peroxide-modified titanium dioxide (anatase) was exposed to a solution similar to the Viking labeled release (LR) experiment organic medium, CO2 gas was released into the sample cell headspace. Storage of these samples at 10 degrees C for 48 hr prior to exposure to organics resulted in a positive response while storage for 7 days did not. In the Viking LR experiment, storage of the Martian surface samples for 2 sols (approximately 49 hr) resulted in a positive response while storage for 141 sols essentially eliminated the initial rapid release of CO2. Heating the peroxide-modified titanium dioxide to 50 degrees C prior to exposure to organics resulted in a negative response. This is similar to, but not identical to, the Viking samples where heating to approximately 46 degrees C diminished the response by 54-80% and heating to 51.5 apparently eliminated the response. When exposed to water vapor, the peroxide-modified titanium dioxide samples release O2 in a manner similar to the release seen in the Viking gas exchange experiment (GEx). Reactivity is retained upon heating at 50 degrees C for three hours, distinguishing this active agent from the one responsible for the release of CO2 from aqueous organics. The release of CO2 by the peroxide-modified titanium dioxide is attributed to the decomposition of organics by outer-sphere peroxide complexes associated with surface hydroxyl groups, while the release of O2 upon humidification is attributed to more stable inner-sphere peroxide complexes associated with Ti4+ cations. Heating the peroxide-modified titanium dioxide to 145 degrees C inhibited the release of O2, while in the Viking experiments heating to this temperature diminished but did not eliminated the response. Although the thermal stability of the titanium-peroxide complexes in this work is lower than the stability seen in the Viking experiments, it is expected that similar types of complexes will form in titanium containing minerals other than anatase and the stability of these complexes will vary with surface hydroxylation and mineralogy.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Origins of life and evolution of the biosphere : the journal of the International Society for the Study of the Origin of Life (ISSN 0169-6149); Volume 29; 1; 59-72
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Spatially resolved infrared and ultraviolet wavelength spectra of Europa's leading, anti-jovian quadrant observed from the Galileo spacecraft show absorption features resulting from hydrogen peroxide. Comparisons with laboratory measurements indicate surface hydrogen peroxide concentrations of about 0.13 percent, by number, relative to water ice. The inferred abundance is consistent with radiolytic production of hydrogen peroxide by intense energetic particle bombardment and demonstrates that Europa's surface chemistry is dominated by radiolysis.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 283; 5410; 2062-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 283; 5407; 1470-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: An option in the long-duration exploration of space, whether on the Moon or Mars or in a spacecraft on its way to Mars or the asteroids, is to utilize a bioregenerative life-support system in addition to the physicochemical systems that will always be necessary. Green plants can use the energy of light to remove carbon dioxide from the atmosphere and add oxygen to it while at the same time synthesizing food for the space travelers. The water that crop plants transpire can be condensed in pure form, contributing to the water purification system. An added bonus is that green plants provide a familiar environment for humans far from their home planet. The down side is that such a bioregenerative life-support system--called a controlled environment life-support system (CELSS) in this paper--must be highly complex and relatively massive to maintain a proper composition of the atmosphere while also providing food. Thus, launch costs will be high. Except for resupply and removal of nonrecycleable substances, such a system is nearly closed with respect to matter but open with respect to energy. Although a CELSS facility is small compared to the Earth's biosphere, it must be large enough to feed humans and provide a suitable atmosphere for them. A functioning CELSS can only be created with the help of today's advanced technology, especially computerized controls. Needed are energy for light, possibly from a nuclear power plant, and equipment to provide a suitable environment for plant growth, including a way to supply plants with the necessary mineral nutrients. All this constitutes the biomass production unit. There must also be food preparation facilities and a means to recycle or dispose of waste materials and there must be control equipment to keep the facility running. Humans are part of the system as well as plants and possibly animals. Human brain power will often be needed to keep the system functional in spite of the best computer-driven controls. The particulars of a CELSS facility depend strongly on where it is to be located. The presence of gravity on the Moon and Mars simplifies the design for a facility on those bodies, but a spacecraft in microgravity is a much more challenging environment. One problem is that plants, which are very sensitive to gravity, might not grow and produce food in the virtual absence of gravity. However, the experience with growing super-dwarf wheat in the Russian space station Mir, while not entirely successful because of the sterile wheat heads, was highly encouraging. The plants grew well for 123 days, producing more biomass than had been produced in space before. This was due to the high photon flux available to the plants and the careful control of substrate moisture. The sterile heads were probably due to the failure to remove the gaseous plant hormone, ethylene, from the Mir atmosphere. Since ethylene can easily be removed, it should be possible to grow wheat and other crops in microgravity with the production of viable seeds. On the ground Biosphere-2 taught us several lessons about the design and construction of a CELSS facility, but Bios-3 came much closer to achieving the goals of such a facility. Although stability was never completely reached, Bios-3 was much more stable than Biosphere-2 apparently because every effort was made to keep the system simple and to use the best technology available to maintain control. Wastes were not recycled in Bios-3 except for urine, and inedible plant materials were incinerated to restore CO2 to the atmosphere. Since much meat (about 20% of calories) was imported, closure in the Bios-3 experiments was well below 100%. But then, a practical CELSS on the Moon might also depend on regular resupply from Earth. Several important lessons have been learned from the CELSS research described in this review.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Advances in space biology and medicine (ISSN 1569-2574); Volume 7; 131-62
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: A major argument in the claim that life had been discovered during the Viking mission to Mars is that the results obtained in the Labeled Release (LR) experiment are analogous to those observed with terrestrial microorganisms. This assertion is critically examined and found to be implausible.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Origins of life and evolution of the biosphere : the journal of the International Society for the Study of the Origin of Life (ISSN 0169-6149); Volume 29; 6; 625-31
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: A combination of scanning electron microscopy (SEM) and environmental scanning electron microscopy (ESEM) techniques, as well as atomic force microscopy (AFM) methods has been used to study fragments of the Martian meteorite ALH84001. Images of the same areas on the meteorite were obtained prior to and following gold/palladium coating by mapping the surface of the fragment using ESEM coupled with energy-dispersive X-ray analysis. Viewing of the fragments demonstrated the presence of structures, previously described as nanofossils by McKay et al. (Search for past life on Mars--possible relic biogenic activity in martian meteorite ALH84001. Science, 1996, pp. 924-930) of NASA who used SEM imaging of gold-coated meteorite samples. Careful imaging of the fragments revealed that the observed structures were not an artefact introduced by the coating procedure.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Journal of microscopy (ISSN 0022-2720); Volume 189 Pt 1; 2-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: With the recent announcement of the discovery of the possibility of life on Mars, there is renewed interest in Mars missions, perhaps eventually in human missions. Astronauts on such missions are at risk to occasional periods of enhanced high energy particle flux from the sun known as Solar Particle Events. These events can pose a substantial risk to the health of the astronauts and to the on-board electronics. Effective forecast and warning of these events could provide time to take steps to minimize the risk (retreating to a safe haven, shutting down sensitive equipment, etc.) Providing that forecast capability, will require additional monitoring capability. The extent of this architecture is sensitive to the orbit selected for the transfer to and from Mars. This paper looks at the major classes of Mars missions (Conjunction and Opposition) and sub-categories of these classes and draws conclusions on the number of monitoring satellites needed for each, with a goal to reducing total system cost through optimum orbit selection.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Acta astronautica (ISSN 0094-5765); Volume 42; 1-8; 411-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: Determining the source of Earth's oceans is a longstanding problem in planetary science. Possible sources of water include water ice or water of hydration of silicate minerals in the original material from which the bulk Earth accreted and water brought in by late-arriving planetesimals during the heavy bombardment period (4.5-3.8 Gyr ago) [Chyba, 1989, 1991]. Comets are an attractive source of water because their origin in the outer solar system is consistent with the long timescale for heavy bombardment. However, the high deuterium/hydrogen (D/H) ratio of the three comets that have been studied, Halley, Hyakutake, and Hale-Bopp, indicates that Earth must have had a source with a low-D/H ratio as well. Here we suggest that solar wind-implanted hydrogen on interplanetary dust particles (IDPs) provided the necessary low-D/H component of Earth's water inventory.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Journal of geophysical research (ISSN 0148-0227); Volume 104; E12; 30725-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2011-08-24
    Description: Chemical compositions of impact melt glass veins, called Lithology C (Lith C) in Martian meteorite EET79001 were determined by electron microprobe analysis. A large enrichment of S, and significant enrichments of Al, Ca, and Na were observed in Lith C glass compared to Lithology A (Lith A). The S enrichment is due to mixing of plagioclase- enriched Lith A material with Martian soil, either prior to or during impact on Mars. A mixture of 87% Lith A, 7% plagioclase, and 6% Martian soil reproduces the average elemental abundances observed in Lith C. Shock melting of such a mixture of plagioclase-enriched, fine-grained Lith A host rock and Martian soil could yield large excesses of S (observed in this study) and Martian atmospheric noble gases (found by Bogard et al., 1983) in Lith C. These mixing proportions can be used to constrain the elemental abundance of phosphorus in Martian soil.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Geophysical research letters (ISSN 0094-8276); Volume 26; 21; 3265-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-08-24
    Description: Trace amounts of glycine, serine, and alanine were detected in the carbonate component of the martian meteorite ALH84001 by high-performance liquid chromatography. The detected amino acids were not uniformly distributed in the carbonate component and ranged in concentration from 0.1 to 7 parts per million. Although the detected alanine consists primarily of the L enantiomer, low concentrations (〈0.1 parts per million) of endogenous D-alanine may be present in the ALH84001 carbonates. The amino acids present in this sample of ALH84001 appear to be terrestrial in origin and similar to those in Allan Hills ice, although the possibility cannot be ruled out that minute amounts of some amino acids such as D-alanine are preserved in the meteorite.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 279; 5349; 362-5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-08-24
    Description: Deuterated water (HDO) was detected in comet C/1995 O1 (Hale-Bopp) with the use of the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. The inferred D/H ratio in Hale-Bopp's water is (3.3 +/- 0.8) x 10(-4). This result is consistent with in situ measurements of comet P/Halley and the value found in C/1996 B2 (Hyakutake). This D/H ratio, higher than that in terrestrial water and more than 10 times the value for protosolar H2, implies that comets cannot be the only source for the oceans on Earth.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 279; 5352; 842-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-08-24
    Description: The Thermal Emission Spectrometer spectra of low albedo surface materials suggests that a four to one mixture of pyroxene to plagioclase, together with about a 35 percent dust component provides the best fit to the spectrum. Qualitative upper limits can be placed on the concentration of carbonates (〈10 percent), olivine (〈10 percent), clay minerals (〈20 percent), and quartz (〈5 percent) in the limited regions observed. Limb observations in the northern hemisphere reveal low-lying dust hazes and detached water-ice clouds at altitudes up to 55 kilometers. At an aerocentric longitude of 224 degrees a major dust storm developed in the Noachis Terra region. The south polar cap retreat was similar to that observed by Viking.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 279; 5357; 1692-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-24
    Description: Deuterated hydrogen cyanide (DCN) was detected in a comet, C/1995 O1 (Hale-Bopp), with the use of the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. The inferred deuterium/hydrogen (D/H) ratio in hydrogen cyanide (HCN) is (D/H)HCN = (2.3 +/- 0.4) x 10(-3). This ratio is higher than the D/H ratio found in cometary water and supports the interstellar origin of cometary ices. The observed values of D/H in water and HCN imply a kinetic temperature 〉/=30 +/- 10 K in the fragment of interstellar cloud that formed the solar system.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 279; 5357; 1707-10
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-08-24
    Description: Radio Doppler data from a single encounter (C3) of the Galileo spacecraft with Callisto, the outermost Galilean moon of Jupiter, indicated that Callisto was probably undifferentiated. Now, similar data from a second encounter (C9) corroborate this conclusion, but more accurate data from a third encounter (C10) indicate that the rock and ice within Callisto have partially, but not completely, separated. Callisto may be differentiated into a rock-metal core less than 25 percent of Callisto's radius, an outer layer of clean ice less than 350 km thick, and a middle layer of mixed rock and ice. Models in which ice and rock are mixed all the way to the center of Callisto are also consistent with the data.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 280; 5369; 1573-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-08-24
    Description: High-resolution spectroscopy of Mars' atmosphere with the Hubble Space Telescope revealed the deuterium Lyman alpha line at an intensity of 23 +/- 6 rayleighs. This measured intensity corresponds to HD/H2 = 1.5 +/- 0.6 x 10(-4), which is smaller by a factor of 11 than HDO/H2O. This indicates that fractionation of HD/H2 relative to that of HDO/H2O is not kinetically controlled by the rates of formation and destruction of H2 and HD but is thermodynamically controlled by the isotope exchange HD + H2O left and right arrow HDO + H2. Molecular hydrogen is strongly depleted in deuterium relative to water on Mars because of the very long lifetime of H2 (1200 years). The derived isotope fractionation corresponds to an estimate of a planetwide reservoir of water ice about 5 meters thick that is exchangeable with the atmosphere.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 280; 5369; 1576-80
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2011-08-24
    Description: Spectra of the Centaur 1997 CU26 were obtained at the Keck Observatory on 27 October 1997 (universal time). The data show strong absorptions at 1.52 and 2.03 micrometers attributable to water ice on the surface of 1997 CU26. The reflectance spectrum of 1997 CU26 is matched by the spectrum of a mixture of low-temperature, particulate water ice and spectrally featureless but otherwise red-colored material. Water ice dominates the spectrum of 1997 CU26, whereas methane or methane-like hydrocarbons apparently dominate the spectrum of the Kuiper belt object 1993 SC, perhaps indicating different origins, thermal histories, or both for these two objects.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 280; 5368; 1430-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-08-24
    Description: The permanent ice covers of Antarctic lakes in the McMurdo Dry Valleys develop liquid water inclusions in response to solar heating of internal aeolian-derived sediments. The ice sediment particles serve as nutrient (inorganic and organic)-enriched microzones for the establishment of a physiologically and ecologically complex microbial consortium capable of contemporaneous photosynthesis, nitrogen fixation, and decomposition. The consortium is capable of physically and chemically establishing and modifying a relatively nutrient- and organic matter-enriched microbial "oasis" embedded in the lake ice cover.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 280; 5372; 2095-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-08-24
    Description: Crystals of halite and sylvite within the Monahans (1998) H5 chondrite contain aqueous fluid inclusions. The fluids are dominantly sodium chloride-potassium chloride brines, but they also contain divalent cations such as iron, magnesium, or calcium. Two possible origins for the brines are indigenous fluids flowing within the asteroid and exogenous fluids delivered into the asteroid surface from a salt-containing icy object.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 285; 5432; 1377-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2011-08-24
    Description: Radio Doppler data from four encounters of the Galileo spacecraft with the jovian moon Europa have been used to refine models of Europa's interior. Europa is most likely differentiated into a metallic core surrounded by a rock mantle and a water ice-liquid outer shell, but the data cannot eliminate the possibility of a uniform mixture of dense silicate and metal beneath the water ice-liquid shell. The size of a metallic core is uncertain because of its unknown composition, but it could be as large as about 50 percent of Europa's radius. The thickness of Europa's outer shell of water ice-liquid must lie in the range of about 80 to 170 kilometers.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 281; 5385; 2019-22
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2011-08-24
    Description: Voyager images reveal that three prominent clumps in Saturn's F ring were short-lived, appearing rapidly and then spreading and decaying in brightness over periods of approximately 2 weeks. These features arise from hypervelocity impacts by approximately 10-centimeter meteoroids into F ring bodies. Future ring observations of these impact events could constrain the centimeter-sized component of the meteoroid population, which is otherwise unmeasurable but plays an important role in the evolution of rings and surfaces in the outer solar system. The F ring's numerous other clumps are much longer lived and appear to be unrelated to impacts.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 282; 5391; 1099-102
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2011-08-24
    Description: Significant gas-phase chemistry occurs in the comae of bright comets, as is demonstrated here for the case of Comet Hale-Bopp. The abundance ratio of the two isomers, hydrogen cyanide and hydrogen isocyanide, is shown to vary with heliocentric distance in a way that is consistent with production of HNC by ion-molecule chemistry initiated by the photoionization of water. Likewise, the first maps of emission from HCO+ show an abundance and an extended distribution that are consistent with the same chemical model.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Faraday discussions (ISSN 1359-6640); 109; 475-92
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: An off-limb scan of Callisto was conducted by the Galileo near-infrared mapping spectrometer to search for a carbon dioxide atmosphere. Airglow in the carbon dioxide nu3 band was observed up to 100 kilometers above the surface and indicates the presence of a tenuous carbon dioxide atmosphere with surface pressure of 7.5 x 10(-12) bar and a temperature of about 150 kelvin, close to the surface temperature. A lifetime on the order of 4 years is suggested, based on photoionization and magnetospheric sweeping. Either the atmosphere is transient and was formed recently or some process is currently supplying carbon dioxide to the atmosphere.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 283; 5403; 820-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-08-24
    Description: In the 20 years since the Viking experiments, major advances have been made in the areas of microbial systematics, microbial metabolism, microbial survival capacity, and the definition of environments on earth, suggesting that life is more versatile and tenacious than was previously appreciated. Almost all niches on earth which have available energy, and which are compatible with the chemistry of carbon-carbon bonds, are known to be inhabited by bacteria. The oldest known bacteria on earth apparently evolved soon after the formation of the planet, and are heat loving, hydrogen and/or sulfur metabolizing forms. Among the two microbial domains (kingdoms) is a great deal of metabolic diversity, with members of these forms being able to grow on almost any known energy source, organic or inorganic, and to utilize an impressive array of electron acceptors for anaerobic respiration. Both hydrothermal environments and the deep subsurface environments have been shown to support large populations of bacteria, growing on energy supplied by geothermal energy, thus isolating these ecosystems from the rest of the global biogeochemical cycles. This knowledge, coupled with new insights into the history of the solar system, allow one to speculate on possible evolution and survival of life forms on Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Origins of life and evolution of the biosphere : the journal of the International Society for the Study of the Origin of Life (ISSN 0169-6149); Volume 29; 1; 73-93
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2004-12-03
    Description: Direct indicators of shorelines, spillways, and terraces allowed to determine the extent of the Elysium Paleolake between the contour-lines 1000 and 500 m below the Martian datum. The Elysium Paleolake is bordered north by Orcus Patera (14N/181W), which lies west of the Tartarus Montes and Tartarus Colles. The Orcus Patera displays an ellipse-shaped collapsed caldera of 360-km long and 100-km wide. Viking topographic data show that the bottom of the caldera is located at 2500 below the Martian datum, and surrounded by a steep-walled ram art which crest is located at about 0 m elevation. Considering the localization of Orcus Patera in the Elysium paleolake, its altimetry, and the magmatic origin of this caldera, we propose the existence of a paleolake in Orcus Patera generated (a) by juvenile water from magma during the Noachian period, and (b) by intermittent influx of the Elysium Basin from Hesperian to Amazonian. Results are encouraging to consider this site as a potential high-energy source environment for microbial communities. are circumscribed by a 50-km wide lava field mapped as Noachian material. The structure of Orcus Patera represents the record of material erupted from a magmatic reservoir. The caldera is enclosed by steep inner walls (25% measured from topographic data), values which could be in agreement with the presence of a deep magmatic reservoir, as suggested by the typology of Crumpler et.al. The depth of the caldera might be due to the collapse of the magma reservoir, and the release of gases accompanying the magma thermal evolution. Origins of water for the paleolake(s): The water that generated a paleolake in Orcus Patera may have come from two origins: (1) Juvenile water: Plescia and Crips estimated a magma H20 content by weight between 0.5% and 1.5% using for the first value a comparison with terrestrial basalt, and for the second values from a Martian meteorite. The amount of H20 can be estimated by the volume of erupted lava, and the lava content of the caldera. In this study, we adopt a water content of 1%. The total volume of magma that has been contained in the caldera, and the volume of lava contained in the observed lava field is about 110 x 10(exp 6) cubic km, that gives a total volume of 1.10 x 10(exp 6) cubic km of water. The juvenile water expelled by the overpressure within the magma chamber charged with desolved water-vapor may have moved into the crust. The decrease in overburden pressure led to bubble formation. The ascent of these bubbles generated a pressurization of the magma, which was sufficient to fracture the overlaying magma layer, (2) Water from Elysium paleolake. During the Amazonian, the rise of the Elysium paleolake level generated an overspilling that supplied the caldera with water. The southern portion of the crest shows a deep gap 12-km wide at -1500 m elevation, locating the gap between 500 to 1000 in below the assumed water of Elysium paleolake, thus facilitating the influx of Elysium paleolake water into Orcus Patera. Bathymetric calculations give a floor area of 25,500 sq km at -2000 m elevation, and a water volume of 42,000 cubic km, with a lake-level at -1500 m. A substantial amount of water may have percolated through the fractured lava, and part of the volume may have overspilled the northern crest of Orcus Patera to debouch in the Tartarus Montes region. We envision the formation of a subsurface aqueous environment in basaltic rocks at the contact of the two water-source origins, possibly the percolating surface lake water, and more likely the juvenile water. Similarly to terrestrial calderas, Orcus Patera might be surrounded by ring-fractures caused by the collapse of the magma chamber that followed the release of gases. These ring-fractures may have been covered later by sedimentation in the caldera (lacustrine, aeolian, and volcanic), and by mass wasting. The detumescence of the magma in the caldera, and the vesiculation of the juvenile water may have operated simultaneously. Comparatively to terrestrial melts, Martian iron-rich melts are denser. This greater density implies greater effusion rates (eight-times terrestrial values), and larger fissuration widths (two-times terrestrial ones). With increasing vesiculation of magma, the bubbles interact with one-another because there are of similar pressure. They make a magma froth at the contact with the caldera surface, and on the walls of the fractures. In the saturated magma, froth, where the volume ratio of gases-to-liquid is about 4:1, the bubbles form a huge surface area of interconnected spaces. Bubbles near the caldera surface disrupt the magma, and fragmentation takes place, which moves downward through the magma column. On Earth, the bubbles are likely to grow between 1 and 50 mm in diameter due to the difference between the magma surface tension, and the bubble supersaturation pressure. The Martian low-pressure at surface level is likely to accelerate the expansion of the bubbles, and increase their final diameter and number, creating more voids in the magma. The strong magma froth with enclosed juvenile water bubbles interconnected with exsolved gas bubbles constitute a potential geothermal environment for geochemical energy production from basalt and water that does not require excessive temperatures. This process can start at +20C. Similar types of environments have been shown on Earth as potential energy sources for microbial metabolism, and could have provided deep aqueous basaltic niches for possible Martian microorganisms, even geologically recently. During the Amazonian, combination of volcanism and water activity still existed on Mars. Moreover, this type of potential niches open ways for investigation of possible oases of extinct or extant life, not only on paleolakes, and surface hydrothermalism spring areas, but also all large systems of fossae, which combine hydrologic and volcanic activities, and which provide an energy source, and an underground shelter to prevent surface UV bombardment. Additional information contained in the original.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Mars Surveyor 2001 Landing Site Workshop
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: This document is intended to provide the Mars Surveyor 2001 Project Science Group (PSG) with an overview of all the significant impacts of landing site location on the flight system, mission design, and science return. In order to facilitate the design of the Rover and Lander systems, the Project has requested that the PSG select a 15 latitude band within the 15S to 30N region, at the site selection workshop to be held at NASA Ames Research Center on January 26-27, 1998.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Mars Surveyor 2001 Landing Site Workshop
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2004-12-03
    Description: Our objective is to propose two landing sites that the Mars Surveyor 2001 Lander and Athena Rover could go to on Mars that should meet the safety requirements of the spacecraft landing system and optimize surface operations (chiefly driven by power and communications requirements). An additional site within Argyre Planitia, initially proposed by Parker to the Mars Surveyor Landing Site program, is also proposed for potential consideration for post-2001 missions to Mars, as it is well outside the current latitude limits for the Athena Rover. All three sites are designed to be situated as close to a diversity of geologic units within a few kilometers of the landing site so that diversity can be placed in a geologic context. This objective is very different from the Mars Pathfinder requirement to land at a site with a maximum chance for containing a diversity of rocks within a few tens of meters of the lander. That requirement was driven by the Sojourner mobility limit of a few tens of meters. It can be argued that the Athena project, with its much larger mobility capability, might actually want to avoid such a site, because placing collected samples in geologic context would be difficult. While it has been argued, both before and after the Mars Pathfinder landing, that the provenance for local blocks may be determined by orbiter spectra, primarily from the MGS TES instrument, our ability to do so has yet to be demonstrated. Indeed, several months after conclusion of the Pathfinder mission, we have yet to reach a consensus on the composition of local materials. Our primary data set for selecting a landing site within the latitude and elevation constraints of the 2001 mission is the Viking Orbiter image archive. The site must be selected to place the landing ellipse so as to avoid obvious hazards, such as steep slopes, large or numerous craters, or abundant large knobs. For this purpose, we chose a resolution limit of better than 50 m/pixel. This necessarily excludes from the present study images from current and future orbiter spacecraft, until such data does become readily available. Within each proposed region, it may be possible to identify additional sites once these data become available. Second, the fine-component thermal inertia data, should be greater than about 5 or 6 cgs Units (10(exp -3) cal/sq cm s(exp -0.5)/K). Low thermal inertias imply dusty environments, which could pose a mobility hazard. Similarly, the albedo of the site should not be particularly high, which would also suggest dusty surfaces. Low albedos are preferred, as they often coincide with low Viking red:violet ratios and indicate less dusty surfaces. Next, the Modeled Block Abundance should also not be too high or too low. Based on the Viking Lander and Mars Pathfinder experiences, percentages of blocks should be on the order of 5-25%. Too many blocks could pose a hazard to the landing and mobility. Too few blocks could also indicate a dusty surface. Primary Landing Site: Northern Meridiani Sinus (Proposed by T. J. Parker and K., S. Edgett) Vital Statistics: (1) Latitude, Longitude: 0-3 N, 350-2 W. *Elevation (Viking): about0.5-1.5 Ian. (2) Viking Orbiter Image coverage: Excellent coverage by 15 - 25 m/pixel images (orbits 709A and 410B). Possible stereo coverage in region where two orbits overlap (probably small parallax angle, as these orbits are not listed in NASA Contractor Report 3501) (3) Albedo: about .18 -.26 (4) Block Abundance: 5-26% (5)Fine-Component Thermal Inertia: 5-9 cgs units This region consists of bright deposits similar to those described by Edgett et al, that also lie within a prominent dark albedo region. These deposits are flat-lying, to such a degree that they ramp against topography rather than draping over it. This led Edgett and Parker to suggest that they may be subaqueous sediments, possibly lacustrine or marine evaporites, laid down sometime from the late Noachian to middle Hesperian (age determination pending crater counts). A contact between this material and elevated, dissected highlands to the south was identified , and is described by Edgett et al. Our desire in proposing this landing site is to sample the edge of this deposit where it has been exposed through etching, presumably eolian deflation (the deposit, though in the highlands, is itself only lightly to moderately cratered). This should enable access to in situ stratigraphy. The actual landing site will be selected where slopes are not expected to be steep, such that the rover itself should be able to traverse them and sample layered materials on the way, either up or down the slope. Perhaps due to uncertainties at this time as to the friability or meter-scale roughness of the deposit, it might make sense to place the landing ellipse on the exhumed highland surface adjacent to the deflated margin of the deposit and plan on driving to the deposit rather than landing on it and driving downslope. This should also enable imaging the margin for evidence of layering should it prove too difficult to climb. A target ellipse on the highland surface should also allow Athena access to ancient Noachian highland materials, particularly if placed near crater ejecta or an inlier of knobby material. Secondary Landing Site: Southern Elysium Planitia (Proposed by T. J. Parker) Vital Statistics: (1) Latitude, Longitude: 1.5-3.5 S, 195-198 W. (2) Elevation (Viking): -1.0 km. (3) Viking Orbiter Image coverage: Excellent coverage by 15 - 25 m/pixel images (orbit 725). Possible stereo coverage between images from beginning and end of orbit that overlap (probably small parallax angle) (4) Albedo: about .27-.28 (5) Block Abundance: 4-7% (6) Fine-Component Thermal Inertia: about 3 cgs units This region consists of eroded knobby material, probably of Noachian age, though much of the crater population has been destroyed, that is onlapped at a sharp contact by an extensive plains unit in southern Elysium Planitia that is Amazonian in age. The plains materials have been attributed to unusually low-viscosity flood lavas from fissures south of the Elysium volcanic rise, or to lacustrine materials associated with a large, Amazonian lake at the source of Marte Vallis. Parker and Schenk presented evidence in support of the latter interpretation, though they attributed the putative shore morphology to an embayment of a northern plains ocean into the southern Elysium region. Detailed examination of the margin of the deposit, showing erosion, not simply burial, of small crater rims and fluidized ejecta blankets, also points to lacustrine or marine sedimentation rather than volcanic plains burial. The plains surface exhibits a "crusty" appearance that many researchers have attributed to pressure ridges in lava flows. In a lacustrine context, they also resemble pressure ridges in desiccated evaporite deposits and salt-rimmed pools (now dry) similar in scale and morphology to spectacular, hundred meter-scale pool rims in alkaline Lake Natron, East African Rift. The eroded highland margin surface adjacent to these plains appears to be fairly smooth, even at 15 m/pixel. Isolated knob inliers are scattered from a few kilometers to several tens of "kilometers apart. Heights of the knobs have not been measured yet but, based on experience with similar features in the Pathfinder landing ellipse, are probably typically on the order of several tens of meters high and smaller, though some of the largest knobs in the region are probably up to a few hundred meters high. Two craters larger than a kilometer in diameter, with fluidized deposits, lie nearby the proposed landing site. Very high-resolution images from MOC should help to determine whether a landing site navigable by the Athena rover could be placed in this region. The space between knobs and craters is large enough to enable placement of a target landing ellipse between them but still provide access to one or more of them and to the margin of the Elysium plains material. Post-2001 Mars Surveyor Landing Site: Argyre Planitia (Proposed by T. J. Parker) Vital Statistics: (1) Latitude, Longitude: 55-56 S, 41-43 W. (2) Elevation (Viking): 1.0 km. (3) Viking Orbiter Image coverage: Excellent coverage by 40 m/pixel images (orbits 567B, 568B, and 569B). Excellent stereo coverage with large parallax angles over the entire landing site region, and much of central and southern Argyre. (4) Albedo: about .23-.24 (5) Block Abundance: No data (6) Fine-Component Thermal Inertia: No data The floors of both the Argyre and Hellas basins contain etched layered materials that are probably thick accumulations of channel or lacustrine sediments. The deposits in Hellas are much more eroded than those in Argyre, and Hellas lacks a channel outlet. Argyre is unique in that Uzboi Vallis flowed out of the basin, requiring overflow of a standing body of water within Argyre. This makes it the largest impact basin on Mars with channels both draining into it and flowing out from it. Hellas' channels may be catastrophic flood channels, whereas Argyre was fed by modest-scale valley networks, though the outlet at Uzboi Vallis was a catastrophic flood Highland craters and basins of this kind should be high-priority landing targets for missions intended to focus on the search for either prebiotic organic materials or even simple fossil microorganisms. Basins with internally-draining valley networks should be preferred over flood channels, as they could have provided the long-term influx of water favorable to the origin of life. (Catastrophic floods are not conducive to fossil preservation, due to their very short durations and high transportation energies). They also afford an opportunity to study the evolution of the planet's climate and volatiles during the period of time between the late Noachian and early Hesperian, when a drastic change from a proposed early warm, wet climate to one more closely resembling the modern environment is thought to have occurred. Large basin
    Keywords: Lunar and Planetary Science and Exploration
    Type: Mars Surveyor 2001 Landing Site Workshop
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2004-12-03
    Description: The Mars Surveyor missions that will be launched in April of 2001 will include a highly capable rover that is a successor to the Mars Pathfinder mission's Sojourner rover. The design goals for this rover are a total traverse distance of at least 10 km and a total lifetime of at least one Earth year. The rover's job will be to explore a site in Mars' ancient terrain, searching for materials likely to preserve a record of ancient martian water, climate, and possibly biology. The rover will collect rock and soil samples, and will store them for return to Earth by a subsequent Mars Surveyor mission in 2005. The Athena Mars rover science payload is the suite of scientific instruments and sample collection tools that will be used to perform this job. The specific science objectives that NASA has identified for the '01 rover payload are to: (1) Provide color stereo imaging of martian surface environments, and remotely-sensed point discrimination of mineralogical composition. (2) Determine the elemental and mineralogical composition of martian surface materials. (3) Determine the fine-scale textural properties of these materials. (4) Collect and store samples. The Athena payload has been designed to meet these objectives. The focus of the design is on field operations: making sure the rover can locate, characterize, and collect scientifically important samples in a dusty, dirty, real-world environment. The topography, morphology, and mineralogy of the scene around the rover will be revealed by Pancam/Mini-TES, an integrated imager and IR spectrometer. Pancam views the surface around the rover in stereo and color. It uses two high-resolution cameras that are identical in most respects to the rover's navigation cameras. The detectors are low-power, low-mass active pixel sensors with on-chip 12-bit analog-to-digital conversion. Filters provide 8-12 color spectral bandpasses over the spectral region from 0.4 to 1.1 micron Narrow-angle optics provide an angular resolution of 0.28 mrad/pixel, nearly a factor of four higher than that of the Mars Pathfinder and Mars Surveyor '98 cameras. Image compression will be performed using a wavelet compression algorithm. The Mini-Thermal Emission Spectrometer (Mini-TES) is a point spectrometer operating in -the thermal IR. It produces high spectral resolution (5 /cm) image cubes with a wavelength range of 5-40 gm, a nominal signal/noise ratio of 500:1, and a maximum angular resolution of 7 mrad (7 cm at a distance of 10 in). The wavelength region over which it operates samples the diagnostic fundamental absorption features of rockforming minerals, and also provides some capability to see through dust coatings that could tend to obscure spectral features. The mineralogical information that Mini-TES provides will be used to select from a distance the rocks and soils that will be investigated in more detail and ultimately sampled. Mini-TES is derived from the MO/MGS TES instrument, but is significantly smaller and simpler. The instrument uses an 8-cm Cassegrain telescope, a Michelson interferometer, and uncooled pyroelectric detectors. Along with its mineralogical capabilities, Mini-TES can provide information on the thermophysical properties of rocks and soils. Viewing upward, it can also provide temperature profiles through the martian atmospheric boundary layer. Elemental and Mineralogical Composition: Once promising samples have been identified from a distance using Pancam/Mini-TES, they will be studied in detail using up to three compositional sensors that can be placed directly against them by an Instrument Arm. The two compositional sensors, presently on the payload are an Alpha-Proton-X-Ray Spectrometer (APXS), and a Mossbauer Spectrometer. The APXS is derived closely from the instrument that flew on Mars Pathfinder. Radioactive alpha sources and three detection modes (alpha, proton, and x-ray) provide elemental abundances of rocks and soils to complement and constrain mineralogical data. The Athena APXS will have a revised mechanical design that will cut down significantly on backscattering of alpha particles from martian atmospheric carbon. It will also include a target of known elemental composition that will be used for calibration purposes. The Athena Mossbauer Spectrometer is a diagnostic instrument for the mineralogy and oxidation state of Fe-bearing phases, which are particularly important on Mars. The instrument measures the resonant absorption of gamma rays produced by a Co-57 source to determine splitting of nuclear energy levels in Fe atoms that is related to the electronic environment surrounding them. It has been under development for space flight for many years at the Technical University of Darmstadt. The Mossbauer Spectrometer (and the other arm instruments) will be able to view a small permanent magnet array that will attract magnetic particles in the martian soil. The payload may also include a Raman Spectrometer. If included, the Raman Spectrometer will provide precise identification of major and minor mineral phases. It requires no sample preparation, and is also sensitive to organics. Fine-Scale Texture: The Instrument Arm a also carries a Microscopic Imager that will obtain high-resolution monochromatic images of the same materials for which compositional data will be obtained. Its spatial resolution is 20 micron/pixel over a 1 cm depth of field, and 40 micron/pixel over a 1-cm depth of field. Like Pancam, it uses the same active pixel sensor detectors and electronics as the rover's navigation cameras. The Instrument Arm is a three degree-of-freedom arm that uses designs and components from the Mars Pathfinder and Mars Surveyor '98 projects. Its primary function is instrument positioning. Along with the instruments noted above, it also carries a brush that can be used to remove dust and other loose coatings from rocks. Sample Collection and Storage: Martian rock and soil samples will be collected using a low-power rotary coring drill called the Mini-Corer. An important characteristic of this device is that it can obtain intact samples of rock from up to 5 cm within strong boulders and bedrock, Nominal core dimensions are 8xl7 mm. The Mini-Corer drills a core to the commanded depth in a rock, shears it off, retains it, and extracts it. It can also acquire samples of loose soil, using soil sample cups that are pressed downward into loose material. The Mini-Corer can drill at angles from vertical to 45' off vertical. It has six interchangeable bits for long life. Mechanical damage to the sample during drilling is minimal, and heating is negligible. After acquisition, the sample may be viewed by the arm instruments, and/or placed in one of 104 compartments in the Sample Container. A subset of the acquired samples may be replaced with other samples obtained later if desired. The Sample Container has no moving parts, and is mounted external to the rover for easy removal by the Mars Surveyor 2005 flight system. Operation of the rover will make extensive use of automated onboard navigation and hazard avoidance capabilities. Otherwise, use of onboard autonomy is minimal. Data downlink capability is about 40 Mbit/sol, and the use of the Mars Surveyor '01 orbiter for data relay imposes a limit of at most two command cycles per sol. Because of the significant amount of time available between command cycles, all payload elements will be operated sequentially, rather than in parallel.; this approach also significantly simplifies operations and minimizes peak power usage. The landing site for the '01 rover has not been selected yet. Site selection will make as full use as possible of Mars Global Surveyor data, and will involve substantial input from the broad Mars science community. Summary: The following table describes the mass, power, providers, and key scientific objectives of all the major elements of the Athena payload. Additional Athena payload information may be found at: http://astrosun.tn.cornell.edu/athena/index.html. Additional information contained in the original.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Mars Surveyor 2001 Landing Site Workshop
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2004-12-03
    Description: Utilization of extraterrestrial resources, or In-Situ Resource Utilization (ISRU), is viewed as an enabling technology for the exploration and commercial exploitation of our solar system. It is fundamental to any program of extended human presence and operation on other extraterrestrial bodies that we learn how to utilize the indigenous resources. The chief benefits of ISRU are that it can reduce the mass, cost, and risk of robotic and human exploration while providing capabilities that the enable commercial development of space. A key subset of ISRU which has significant cost and risk reduction benefits for robotic and human exploration, and which requires a minimum of infrastructure, is In-Situ Consumable Production (ISCP). ISCP involves acquiring, manufacturing, and storing propellants for planetary ascent or Earth return vehicles, gases and water for crew and life support, and fuel cell reagents for power generation by using resources available at the site of exploration. Since propellant mass typically makes up 60 to 80% of the ascent or Earth return vehicle mass, In-Situ Propellant Production (ISPP) on the Lunar or Mars surface can significantly reduce the overall mass for the return vehicle needed to be brought from Earth. Systems analyses of human Mars missions have indicated that solely producing propellants on the surface of Mars by processing atmospheric carbon dioxide can reduce the initial mission mass required in low Earth orbit by approximately 20% as compared to carrying all required propellant to the Mars surface from Earth. An even greater leverage can occur for Mars missions when in-situ water can be processed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Space Resources Utilization Roundtable; 31-32; LPI-Contrib-988
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2004-12-03
    Description: Mars 2001 presents an exciting opportunity for advances in radiation risk management of a future human mission to Mars. The mission timing is particularly fortuitous, coming just after solar maxinuun, when there will be a high probability to observe significant solar particle events (SPEs). A major objective of this mission is to characterize the Martian radiation environment to support future human missions to Mars. In addition, the MARIE instruments on the Lander and Orbiter, designed to measure the energetic particle flux at Mars, can be used during the cruise phase to provide multipoint observations of SPEs in the critical region of the heliosphere (1 to 1.5 AU) needed to reduce the in-flight radiation risk to a future Mars-bound crew.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration; 104-106; LPI-Contrib-991
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2004-12-03
    Description: Protection against the hazards from exposure to ionizing radiation remains an unresolved issue in the Human Exploration and Development of Space (HEDS) enterprise [1]. The major uncertainty is the lack of data on biological response to galactic cosmic ray (GCR) exposures but even a full understanding of the physical interaction of GCR with shielding and body tissues is not yet available and has a potentially large impact on mission costs. "The general opinion is that the initial flights should be short-stay missions performed as fast as possible (so-called 'Sprint' missions) to minimize crew exposure to the zero-g and space radiation environment, to ease requirements on system reliability, and to enhance the probability of mission success." The short-stay missions tend to have long transit times and may not be the best option due to the relatively long exposure to zero-g and ionizing radiation. On the other hand the short-transit missions tend to have long stays on the surface requiring an adequate knowledge of the surface radiation environment to estimate risks and to design shield configurations. Our knowledge of the surface environment is theoretically based and suffers from an incomplete understanding of the physical interactions of GCR with the Martian atmosphere, Martian surface, and intervening shield materials. An important component of Mars surface robotic exploration is the opportunity to test our understanding of the Mars surface environment. The Mars surface environment is generated by the interaction of Galactic Cosmic Rays (GCR) and Solar Particle Events (SPEs) with the Mars atmosphere and Mars surface materials. In these interactions, multiple charged ions are reduced in size and secondary particles are generated, including neutrons. Upon impact with the Martian surface, the character of the interactions changes as a result of the differing nuclear constituents of the surface materials. Among the surface environment are many neutrons diffusing from the Martian surface and especially prominent are energetic neutrons with energies up to a few hundred MeV. Testing of these computational results is first supported by ongoing experiments at the Brookhaven National Laboratory but equally important is the validation to the extent possible by measurements on the Martian surface. Such measurements are limited by power and weight requirements of the specific mission and simplified instrumentation by necessity lacks the full discernment of particle type and spectra as is possible with laboratory experimental equipment. Yet, the surface measurements are precise and a necessary requisite to validate our understanding of the surface environment. At the very minimum the surface measurements need to provide some spectral information on the neutron environment. Of absolute necessity is the precise knowledge of the detector response functions for absolute comparisons between the computational model of the surface environment and the detector measurements on the surface.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration; 112-114; LPI-Contrib-991
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2004-12-03
    Description: There are many similarities between the Mars Surveyor '01 (MS '01) landing site selection process and that of Mars Pathfinder. The selection process includes two parallel activities in which engineers define and refine the capabilities of the spacecraft through design, testing and modeling and scientists define a set of landing site constraints based on the spacecraft design and landing scenario. As for Pathfinder, the safety of the site is without question the single most important factor, for the simple reason that failure to land safely yields no science and exposes the mission and program to considerable risk. The selection process must be thorough, defensible and capable of surviving multiple withering reviews similar to the Pathfinder decision. On Pathfinder, this was accomplished by attempting to understand the surface properties of sites using available remote sensing data sets and models based on them. Science objectives are factored into the selection process only after the safety of the site is validated. Finally, as for Pathfinder, the selection process is being done in an open environment with multiple opportunities for community involvement including open workshops, with education and outreach opportunities.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration; 38-40; LPI-Contrib-991
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: Mars Pathfinder, the first low-cost, quick Discovery class mission to be completed, successfully landed on the surface of Mars on July 4, 1997, deployed and navigated a small rover, and collected data from 3 science instruments and 10 technology experiments. The mission operated on Mars for 3 months and returned 2.3 Gbits of new data, including over 16,500 lander and 550 rover images, 16 chemical analyses of rocks and soil, and 8.5 million individual temperature, pressure and wind measurements. The rover traversed 100 m clockwise around the lander, exploring about 200 square meters of the surface. The mission captured the imagination of the public, and garnered front page headlines during the first week. A total of about 566 million internet "hits" were registered during the first month of the mission, with 47 million "hits" on July 8th alone, making the Pathfinder landing by far the largest internet event in history at the time. Pathfinder was the first mission to deploy a rover on Mars. It carried a chemical analysis instrument, to characterize the rocks and soils in a landing area over hundreds of square meters on Mars, which provided a calibration point or "ground truth" for orbital remote sensing observations. The combination of spectral imaging of the landing area by the lander camera, chemical analyses aboard the rover, and close-up imaging of colors, textures and fabrics with the rover cameras offered the potential of identifying rocks (petrology and mineralogy). With this payload, a landing site in Ares Vallis was selected because it appeared acceptably safe and offered the prospect of analyzing a variety of rock types expected to be deposited by catastrophic floods, which enabled addressing first-order scientific questions such as differentiation of the crust, the development of weathering products, and the nature of the early Martian environment and its subsequent evolution. The 3 instruments and rover allowed seven areas of scientific investigation: the geology and geomorphology of the surface, mineralogy and geochemistry of rocks and soils, physical properties of surface materials, magnetic properties of airborne dust, atmospheric science including aerosols, and rotational and orbital dynamics of Mars. Scientists were assembled into 7 Science Operations Groups that were responsible for requesting measurements by the 3 instruments, rover and engineering subsystems for carrying out their scientific investigations and for analyzing the data and reporting on their findings. The spacecraft was launched on December 4, 1996 and had a 7 month cruise to Mars, with four trajectory correction maneuvers. The vehicle entered the atmosphere directly following cruise stage separation. Parachute deployment, heatshield and lander separation, radar ground acquisition, airbag inflation and rocket ignition all occurred before landing at 2:58 AM true local solar time (9:56:55 AM PDT). The lander bounced at least 15 times up to 12 in high without airbag rupture, demonstrating the robustness of this landing system. Reconstruction of the final landing sequence indicates that the parachute/backshel1/1ander was tilted due to a northwest directed wind and wind shear, which resulted in the lander bouncing about I km to the northwest and initially downhill about 20 m from where the solid rockets fired. Two anomalously bright spots located in the lander scene are likely the heatshield, which continued in a ballistic trajectory about 2 km downrange (west southwest), and the backshell/parachute, which stayed nearer to where the rockets fired. Unconnected disturbed soil patches in the scene indicate that the final few bounces of the lander were from the east-southeast and were followed by a gentle roll to the west before coming to rest on the base petal. The location of the lander away from where the solid rockets fired and considerations of the exhaust products used to inflate the airbags and their fate, indicate that the Pathfinder landing system is one of the cleanest designed leaving the local area essentially contaminant free. The radio signal from the low-=gain antenna was received at 11:34 AM PDT indicating a successful landing.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration; 35-37; LPI-Contrib-991
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2004-12-03
    Description: The Pathfinder Sojourner rover successfully acquired images that provided important and exciting information on the geology of Mars. This included the documentation of rock textures, barchan dunes, soil crusts, wind tails, and ventifacts. It is expected that the Marie Curie rover cameras will also successfully return important information on landing site geology. Critical to a proper analysis of these images will be a rigorous determination of rover location and orientation. Here, the methods that were used to compute rover position for Sojourner image analysis are reviewed. Based on this experience, specific recommendations are made that should improve this process on the '01 mission.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration; 21-22; LPI-Contrib-991
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2004-12-03
    Description: Earth-based radar data remain an important part of the information set used to select and certify spacecraft landing sites on Mars. Constraints on robotic landings on Mars include: terrain elevation, radar reflectivity, regional and local slopes, rock distribution and coverage, and surface roughness, all of which are addressed by radar data. Indeed, the usefulness of radar data for Mars exploration has been demonstrated in the past. Radar data were critical in assessing the Viking Lander 1 site, and more recently, the Mars Pathfinder landing site.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Second Mars Surveyor Landing Site Workshop; 51-52
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2004-12-03
    Description: Over its 3,500 km length, Valles Marineris exhibits an enormous range of geologic and environmental diversity. At its western end, the canyon is dominated by the tectonic complex of Noctis Labyrinthus; while in the east it grades into an extensive region of chaos where scoured channels and streamlined islands provide evidence of catastrophic floods that spilled into the northern plains. In the central portion of the system, debris derived from the massive interior layered deposits of Candor and Ophir Chasmas spills into the central trough. In other areas, 6 km-deep exposures of Hesperian and Noachian-age canyon wall stratigraphy have collapsed in massive landslides that extend many tens of kilometers across the canyon floor. Ejecta from interior craters, aeolian sediments, and possible volcanics emanating from structurally controlled vents along the base of the scarps, further contribute to the canyon's geologic complexity. Following the initial rifting that gave birth to Valles Marineris, water appears to have been a principal agent in the canyon's geomorphic development an agent whose significance is given added weight by its potential role in both sustaining and preserving evidence of past life. In this regard, the interior layered deposits of Candor, Ophir, and Hebes Chasmas, have been identified as possible lucustrine sediments that may have been laid down in long-standing ice-covered lakes. The potential survival and growth of native organisms in such an environment, or in the aquifers whose disruption gave birth to the chaotic terrain and outflow channels to the north and east of the canyon, raises the possibility that fossil indicators of life may be present in the local sediment and rock. Because of the enormous distances over which these diverse environments occur, identifying a single landing site that maximizes the opportunity for scientific return is not a simple task. However, given the fluvial history and narrow geometry of the canyon, the presence of a single exit at its eastern end provides an opportunity for sampling that appears unequaled elsewhere in the system.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Second Mars Surveyor Landing Site Workshop; 19-21
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2004-12-03
    Description: It has been demonstrated during the past years that by its configuration, extended history of water ponding and sedimentary deposition, Gusev crater is one of the most favorable sites to consider for the incoming exploration of Mars. It provides exceptional possibilities to document the evolution of water, climate changes, and possibly the evolution of life on Mars through time. Because of all these reasons, it is probably one of the most interesting sites to target for sample return missions and human exploration, but as well, it is by all means an excellent target for the Surveyor '01, in spite of the current imposed mission constraints, as we propose to demonstrate.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Second Mars Surveyor Landing Site Workshop; 12-13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2004-12-03
    Description: The NASA Ames' Center for Mars Exploration (CMEX) serves to coordinate Mars programmatic research at ARC in the sciences, in information technology and in aero-assist and other technologies. Most recently, CMEX has been working with the Institute for Human and Machine Cognition at the University of West Florida to develop a new kind of web browser based on the application of concept maps. These Cmaps, which are demonstrably effective in science teaching, can be used to provide a new kind of information navigation tool that can make web or CD based information more meaningful and more easily navigable. CMEX expects that its 1999 CD-ROM will have this new user interface. CMEX is also engaged with the Mars Surveyor Project Office at JPL in developing an Internet-based source of materials to support the process of selecting landing sites for the next series of Mars landers. This activity -- identifying the most promising sites from which to return samples relevant to the search for evidence of life -- is one that is expected to engage the general public as well as the science community. To make the landing site data easily accessible and meaningful to the public, CMEX is planning to use the IHMC Cmap browser as its user interface.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Second Mars Surveyor Landing Site Workshop; 9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2004-12-03
    Description: The Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) mission has identified an accumulation of crystalline hematite (alpha-Fe2O3) that covers an area with very sharp boundaries approximately 350 by 350-750 km in size centered near 2 S latitude between 0 and 5 W longitude (Sinus Meridiani). The depth and shape of the hematite fundamental bands in the TES spectra show that the hematite is relatively coarse grained (〉 5-10 microns). The spectrally-derived areal abundance of hematite varies with particle size from approx. 10% for particles 〉 30 microns in diameter to 40-60% for unpacked 10 micron powders. The hematite in Sinus Meridiani is thus distinct from the fine-grained (diameter 〈 5-10 microns), red, crystalline hematite considered, on the basis of visible and near-IR data, to be a minor spectral component in Martian bright regions. A map of the hematite index has been constructed using TES data from 11 orbits, including the six in which hematite was detected and five orbits that passed nearby that showed no evidence of hematite. The boundaries of the hematite-rich region are sharp at spatial scales of about 10 km. Within this region there are spatial variations in spectral band depth of a factor of two to three. At the present time the hematite-rich region has not been completely mapped. However, by using the bounding orbits to the east and west in which hematite was not detected, we can establish that this region covers an area that is between 350 and 750 km in length and over -350 km in width (1.2 x 10(exp 5) to 2.6 x 10(exp 5 sq km). The hematite-rich surface discovered by TES closely corresponds with smooth-surfaced unit ('sm') that appears to be the surface of a layered sequence. The presence of small mesas superposed on 'sm' and the degraded nature of the small impact craters suggests that material has been removed from this unit. These layered materials do not appear to be primary volcanic products (i.e., lava flows) because there are no associated lava flow lobes, fronts or pressure ridges; there are no fissures or calderae, nor any other features that can be interpreted as volcanic within 'sm'. Bowl-shaped depressions in 'sm' and the remnant mesas on top of a portion of this unit suggest that deflation has removed material that was once above the present surface of 'sm'. The most likely cause of the deflation is wind, which suggests that the layered materials are relatively friable. In summary, Sinus Meridiani hematite is closely associated with a smooth, layered, friable surface that is interpreted to be sedimentary in origin.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Second Mars Surveyor Landing Site Workshop; 17-18
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2004-12-03
    Description: One of the goals of the Mars Pathfinder mission was to sample a diversity of rocks deposited by the Ares and Tiu Vallis floods. It was hoped that ancient highlands and younger lowlands material could be studied, as well as a diversity of rocks within these regions. Although Pathfinder found rocks that exhibited a number of textures and morphologies, several factors precluded the identification of a petrologic suite of rocks, if it was present. Namely among these were 1) The lack of geologic context for the rocks examined, 2) instrument limitations, and 3) pervasive dust and possible weathering finds. Based on the Pathfinder experience and incorporating recent results from Mars Global Surveyor and previous missions, two landing sites are proposed that can potentially overcome this problem and offer samples of ancient and recent Martian rock. The first site is at the dichotomy boundary, where ancient highlands and more recent lowlands meet. The second site is at the Ares Vallis headlands, where some of the source materials for the Pathfinder landing site may have been derived. Both of these sites meet the remote sensing and elevation constraints of the 2001 Lander mission but exhibit significant slopes and potential hazards in places. However, a properly placed ellipse can alleviate much of the concern, thereby offering two exciting sites that otherwise would not be chosen.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Second Mars Surveyor Landing Site Workshop; 4-5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2004-12-03
    Description: Our Survey area comprises the Sinus Sabeus NW quadrangle that includes most of the Schiaparelli crater and part of the Arabia SW region (3 N to 15 S Lat.) and (0 to 337.5 W long.) and covers all regions that show a potential hydrogeological link with the Schiaparelli impact structure. This area is hereafter defined as the Schiaparelli Crater Region. The Schiaparelli crater region is one of the most documented MOC targets. Up to now, MGS MOC camera took two dozen images at an average of 5m/pxl resolution that not only provide an exceptional insight on the local geology and morphology, but give also key-elements to assess landing safety criteria. In addition, the MOLA topographic profile No. 23 passes through part of the crater basin allowing the adjustment of the elevation as previously known from the Viking mission (USGS I-2125, 1991). Beyond the Mars Polar Lander mission that will land next December, the future missions (2001 APEX, 2003, and 2005) are led by a series of science objectives and engineering constraints that must be considered in order to select landing sites that will fulfill the Surveyor Program's objectives. The search for a sound and safe candidate-site (without ending up with the usual "safe but boring" or "fascinating but too risky" site) is usually limited by the data available to the investigator, by the data accuracy (e.g. poor image resolution, poor altimetry), and the lack of crucial information for science and safety that can be derived from them. The Schiaparelli region provides an exception to this recurrent pattern. We listed the preliminary constraints for landing site selection identified for the Surveyor '01 mission, in terms of safety requirements and data needed and compared them against the existing information and/or data already available for the Schiaparelli region. The engineering constraints of '03 and '05 are not designated yet but, since they are also related to atmospheric density and Lander designs, we will assume that these points will be comparable to '01. The main difference will reside in the rover design, the Rocky-7 class rover being bigger than Marie Curie ('01) will be able to overcome bigger obstacles. We listed then the main objectives of the Surveyor Program and compared them with the potential offered by the Schiaparelli Crater Region to document them. Within the survey area, the Schiaparelli impact crater is 2.5 S/343.3 W (USGS 1-1376, MC-20 NW, 1981) and occupies a significant surface area. The crater has been proposed as a potential candidate-site in the past years. The purpose of this study is to show that, not only the Schiaparelli Crater would be a high-priority target, but that the region where it is located offer several very-high potential back-up sites, all within science and engineering constraints, that make this region probably the most promising candidate area so far.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Second Mars Surveyor Landing Site Workshop; 10-11
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2004-12-03
    Description: The 1998 lander payload consists of a descent imager, the Mars Volatiles and Climate Surveyor (MVACS) instruments (lander stereo camera, arm-mounted close-up imager, meteorology package, thermal and evolved gas analyzer), and a LIDAR instrument. The mission focuses on assessment of near-surface water ice in the south polar region, and the volatile and climate history of Mars. In order to achieve these objectives, the landing site must allow access to polar layered deposits by the robotic arm, which may be able to dig as much as 0.5 m below the surface. Hence, the presence of recent aeolian debris at the landing site may adversely affect the ability of the MVACS instruments to gather the samples and acquire data needed to properly address the science objectives. The studies described here include mapping surface units in the landing region (73S - 77S, 140W - 230W) to infer the distribution of aeolian debris and to identify potential landing sites where mantling is minimal. Because the '98 lander will not be able to survive very low temperature conditions, this study also includes mapping of south polar seasonal frost retreat based on Viking Orbiter images. The results of this work, in conjunction with complementary studies by other investigators, will facilitate the selection of the Mars Surveyor 1998 landing site (and backup) by the summer of 1998.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Mars Surveyor 2001 Landing Site Workshop
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2004-12-03
    Description: The debouche of Ma'adim Vallis in the Elysium Basin generated a transitional transported sediment structure, which planimetric shape is controlled by the enclosing topography of a deep reentrant gulf of the Basin into the highland. We defined it as an estuarine delta. The location and the importance of this estuarine delta is supported by the theoretical model of graded profile constructed for Ma'adim Vallis, and by two approaches: (i) the reconstruction of Ma'adim Vallis downstream course from Gusev to Elysium Basin, and (ii) the survey of the sediment deposit in the alleged estuary. The longitudinal graded profile of Ma'adim Vallis finds its base-level in the Elysium Basin, at a about 1000 m elevation, which is in agreement with the observed Basin shoreline. This model is supported by observational evidence of flow between the northern rim of Gusev crater, and the Elysium Basin shoreline. This downstream course of Ma'adim Vallis can be divided into three hydrogeologic regions. into three hydrogeologic regions. (a) The first region is a flooded plain (Zephiria Mensae), consisting in chaotic terrain formed by highland rocks, and disintegrated lava of the western flank of Apollinaris. Morphologic indicators of the flood process are: (1) the sediment deposit over the Gusev crater northern rim that reflects the overspilling of the crater-lake water through a 40-km wide gap provided by an ancient impact crater, (2) the tear-drop shaped feature on the northeastern flank of Apollinaris Patera, and (3) the chaotic terrain that suggest the emergence of ground water generated by the seepage of the crater lake through high-permeable broken rampart material. This underground water circulation sustained by the hydrostatic pressure of the crater-lake has likely generated a hydrothermal system in the volcanic environment of Apollinaris Patera. The stratigraphy of the flooded area is identified as Hesperian age, with occurrences of Noachian hilly individual features, and as Amazonian flooded plain and chaotic material, (b) The second region is located on the western flank of Apollinaris Patera. It is surrounded by relics of deep valleys that suggest a former downstream course of Ma'adim Vallis. The geologic setting of this region (Lucus Planum) is interpreted to be an Amazonian formation composed by the middle and lower members of the Medusae Formation., c) The third region corresponds to the convergence of the west and east branches of Ma'adirn Vallis into a deep re-entrant wide gulf that penetrates about 100 km into the highland. This topographic depression is delineated by the 1000 in elevation contour. This gulf has formed an estuarine configuration centered at 3S/190W within the Elysium Basin. This configuration has favored the formation of a estuarine sedimentary delta, because of topographically controlled lateral migration. This estuarine structure is strongly dominated by the incoming supply of Ma'adim Vallis fluvial sediment extracted from Zephiria Mensae and Lucus Planum. The obtuse-angle geometry of the estuary increases the sedimentation rate, which is higher than in the course of the channel. The sediment deposition process is governed by the estuarine water circulation. The inflowing loaded fluvial water enters the estuary as a bottom current, and mixes with the relatively less-loaded water of the receiving basin. When they mixed. the inflowing fluvial material, and the landward basin circulating water generate an accumulation of highly-diversified estuarine deposit stratification. This accumulation of material is mostly centered in the transitional zone of the delta. The sediment trapping efficiency of the estuary is function of the energy balance between the inflowing fluvial water, and the ingoing basin current. The submergence of the delta by the rising of the water-level increases the estuary water-depth, and consequently the sediment entrapment is favored. The locus of sediment accumulation moves landward in the zone of inflowing fluvial water. This results in the rising of the channel base-level, thus in the increase of the length of the longitudinal graded-profile. The sediment deposit facies of the zone A shows a generally smooth surface. The longitudinal deposit is bordered by alluvial terraces that reflect the variations of the channel level. The waning of the Elysium Basin caused the erosion of the Basin estuarine zone by small channels, this episode being characterized by dissected tear-drop shaped mesa-like morphologies in the delta. Our estuarine delta model predicts a lithostratigraphic depositional sequence associated with the water submergence and the transgression of Elysium Basin. The thickness of the estuarine sediment corresponds to the Elysium Basin levels changes relatively to the bed floor of the estuary, The depositional sequence of Ma'adim Vallis are described: (1) a pro-current filled region (A), where fluvial are longitudinally accumulated by the inflowing water, (2) inverse current from Elysium Basin (B), where fluvial and lacustrine sediments are accumulated, and (3) zone of current equilibrium (C), where the sediments are distributed as a shoreline at the boundary of the estuarine delta. The estuary sedimentology dynamics collects and keeps the record of the geologic unit material crossed by Ma'adim Vallis, and those of the lakebed deposit of Elysium Basin. The predicted mixed stratigraphic sequence from fluvial and lacustrine sediment makes this site an exceptional environment to concentrate potential multi-origin biologic records. We envision four possible strategies to explore this sedimentologic record: (1) longitudinal surface and subsurface traverses in region A to investigate outcrop levees, (2) exploration of the mesa walls in region B, (3) deep drilling hole lodging of the sequential deposits in the zones A and B, and (4) surface and subsurface exploration of the shoreline delta. The expected results for each of these strategies are: (1) in the deepest layers of region A are predicted frequent and abundant coarse material, sandy lenses lamination grading downward from sand to cobbles. Volcanic debris from the Noachian crustal Plateau unit material, hydrothermal altered rocks, carbonates, Hesperian and possibly Amazonian volcanic material, from Apollinaris Patera, altered rocks and carbonates from Zephiria Mensae are expected. As a favorable environment for inception of life, possible biological records are expected in transported rock, (2) At the surface, and subsurface (〈=100 m), large deposits sandy to silted material from Elysium paleolake basin mixed with fine-grained sediments from Ma'adim Vallis are expected mostly in the upstream part of region B, (3) on the shoreline of the estuarine delta, abundant fine material from Elysium paleolake basin (evaporites, carbonates), mostly Amazonian in age are expected. The Ma'adini estuary is a favorable landing site for all the above mentioned science aspects, and .for its location. The site lies near the equator, which is favorable for the rover solar power supply, and at 1000m elevation, which is a favorable configuration for the descent system braking. Another advantage is the extent of the area of high scientific interest (33,000 sq km), which provides a good ellipse, and potential long study traverses.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Mars Surveyor 2001 Landing Site Workshop
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2004-12-03
    Description: Ancient Martian lakes are sites where the climatological, chemical, and possibly biological history of the planet has been recorded. Their potential to keep this global information in their sedimentary deposits, potential only shared with the polar layered-deposits, designates them as the most promising targets for the ongoing exploration of Mars in terms of science return and global knowledge about Mars evolution. Many of the science priority objectives of the Surveyor Program can be met by exploring ancient Martian lake beds. Among martian paleolakes, lakes in impact craters represent probably the most favorable sites to explore. Though highly destructive events when they occur, impacts may have provided in time a significant energy source for life, by generating heat, and at the contact of water and/or ice, deep hydrothermal systems, which are considered as favorable environments for life. In addition, impact crater lakes are changing environments, from thermally driven systems at the very first stage of their formation, to cold ice-protected potential oases in the more recent Martian geological times. Thus, they are plausible sites to study the progression of diverse microbiologic communities.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Mars Surveyor 2001 Landing Site Workshop
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2004-12-03
    Description: The Athena Precursor Experiment (APEX) is a suite of scientific instruments for the Mars Surveyor Program 2001 (MSP'01) lander. The major elements of the APEX pay load are: (1) Pancam/Mini-TES, a combined stereo color imager and mid-infrared point spectrometer. (2) An Alpha-Proton-X-Ray Spectrometer (APXS) for in-situ elemental analysis. (3) A Mossbauer Spectrometer for in-situ determination of the mineralogy of Fe-bearing rocks and soils. (4) A Magnet Array that can separate magnetic soil particles from non-magnetic ones.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration; 98-100; LPI-Contrib-991
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2004-12-03
    Description: Triboelectric charging of nonconducting materials followed by sudden electrostatic discharge (ESD) can damage electronic equipment and become ignition hazard to combustible materials. Mars atmosphere has near zero humidity and therefore natural charge bleeding to surroundings is anticipated to be limited. Potential mitigation of ESD problems has been conjectured based upon strong extraterrestrial radiation on Mars compared to earth. A hypothesis was formulated that ESD problem is less significant in simulated Mars condition since strong radiation and presence of argon will generate an ionized environment; this will be conducive to rapid bleeding of static charge into the surroundings.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration; 64; LPI-Contrib-991
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2004-12-03
    Description: The Mars Environmental Compatibility Assessment (MECA) will evaluate the Martian environment for soil and dust-related hazards to human exploration as part of the Mars Surveyor Program 2001 Lander. Sponsored by the Human Exploration and Development of Space (HEDS) enterprise, MECA's goal is to evaluate potential geochemical and environmental hazards that may confront future martian explorers, and to guide HEDS scientists in the development of high fidelity Mars soil simulants. In addition to objectives related to human exploration, the MECA data set will be rich in information relevant to basic geology, paleoclimate, and exobiology issues. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatics of the soil and its environment, and arrays of material patches to study the abrasive and adhesive properties of soil grains. MECA is allocated a mass of 10 kg and a peak power usage of 15 W within an enclosure of 35 x 25 x 15 cm (figures I and 2). The Wet Chemistry Laboratory (WCL) consists of four identical cells that will accept samples from surface and subsurface regions accessible to the Lander's robotic arm, mix them with water, and perform extensive analysis of the solution. Using an array of ion-specific electrodes (ISEs), cyclic voltammetry, and electrochemical techniques, the chemistry cells will wet soil samples for measurement of basic soil properties of pH, redox potential, and conductivity. Total dissolved material, as well as targeted ions will be detected to the ppm level, including important exobiological ions such as Na, K+, Ca++, Mg++, NH4+, Cl, S04-, HC03, as well as more toxic ions such as Cu++, Pb++, Cd++, Hg++, and C104-. MECA's microscopy station combines optical and atomic-force microscopy (AFM) to image dust and soil particles from millimeters to nanometers in size. Illumination by red, green, and blue LEDs is augmented by an ultraviolet LED intended to excite fluorescence in the sample. Substrates were chosen to allow experimental study of size distribution, adhesion, abrasion, hardness, color, shape, aggregation, magnetic and other properties. To aid in the detection of potentially dangerous quartz dust, an abrasion tool measures sample hardness relative to quartz and a hard glass (Zerodur).
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration; 74-76; LPI-Contrib-991
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2004-12-03
    Description: Gale is a 140-km diameter impact crater located at the plateau/plain boundary in the Aeolis Northeast subquadrangle of Mars (5S/223W). The crater is bordered in the northward direction by the Elysium Basin, and in eastward direction by Hesperian channels and the Aeolis Mensae 2. The crater displays a rim with two distinct erosion stages: (a) though eroded, the south rim of Gale has an apparent crest line visible from the north to the southwest (b) the west and northwest rims are characterized by a strong erosion that, in some places, partially destroyed the rampart, leaving remnant pits embayed in smooth-like deposits. The same type of deposits is observed north, outside Gale, it also borders the Aeolis Mensae, covers the bottom of the plateau scarp, and the crater floor. The central part of Gale shows a 6400 km2 subround and asymmetrical deposit: (a) the south part is composed of smooth material, (b) the north part shows spectacular terraces, streamlines, and channels. The transition between the two parts of the deposit is characterized by a scarp ranging from 200 to 2000 in high. The highest point of the scarp is at the center of the crater, and probably corresponds to a central peak. Gale crater does not show a major channel directly inflowing. However, several large fluvi systems are bordering the crater, and could be at the origin of the flooding of the crater, or have contributed to. One fluvial system is entering the crater by the southwest rim but cannot be accounted alone for the volume of sediment deposited in the crater. This channel erodes the crater floor deposit, and ends in a irregular-shaped and dark albedo feature. Gale crater shows the morphology of a crater filled during sedimentation episodes, and then eroded Part of the lower sediment deposition contained in Gale might be ancient and not only aqueous in origin. According to the regional geologic history, the sedimentary deposit could be a mixture of aeolian and pyroclastic material, and aqueous sedimentary material that can originate both from drainage of the regional subsurface aquifer, and/or from surface flood. The central deposit shows three main levels: (a) the current crater floor (north of Gale), (b) an ancient level about 200 rn higher (south of Gale), and (c) the massive terraced deposits. A crater statistics on the 15,400 kM2 area of the crater floor and deposit [3,41 gave: 259+/-112.4 craters, most of them partly embayed in the sedimentary deposit, and all inferior to 5-km diameter. For superimposed crater population only, the result is 194+/-112. The deduced relative ages ranges from Early to Middle Amazonian. The population of craters are comparable for the three levels, implying that the last sedimentation/erosion episode on Gale was recent and affected the whole crater. The streamlined morphology of the border of the deposit, the layering, the channels, and the terraces are compatible with a significant fluvio-lacustrine history of the site. Multiple levels may suggest different episodes, but the common statistical age of the three levels shows that the last episode involved the whole crater. The origin of the lake water in Gale may have varied in time. Three major contributions have been proposed: (a) the drainage of the regional underground aquifer by Gale crater over an area of 110-km radius around the crater which would have provided approximately 1,600 cubic km of water, (b), surface drainage entering Gale by the south and north rims. In the south, a 250-km long system originates in the cratered uplands in a Noachian crater material plain (Nc), and crosses Hesperian and Amazonian crater material plains (AHc) northward [1]. Several fluvial systems originate in the Aeolis Mensae, east of Gale. They may had two functions in time: to recharge, the underground aquifer in the region of Gale, and to supply surface water in the crater by overspilling the northern rim, and (c) surface floods that originated from the rising of the water level in the Elysium Basin. According to the Amazonian age of Gale's floor, and the erosion direction in the crater, a flood from Elysium Basin is the most likely event to explain the material observed in Gale, and the formation of the last lake. This last flood may have been important enough to flood the central deposit up to about 1400 m above the crater floor, leaving two islands (non stream lined features) at the center of the deposit. Terrace spacing suggests a regular drop of the lake level in time. Fractures in terraces perpendicular to the shoreline can be interpreted either as: (a) the result of the drainage systems during the waning of the lake, or (b) traces of the pressure of an ice-covered sheet associated with subglacial drainage. The presence of a lake of such volume during the Amazonian period is one more evidence that water was still active on Mars relatively recently. Gale crater offers the rare opportunity to unveil a key-period of the martian history. The Amazonian might proved not as cold and dry as previously thought. The presence of large lakes and basins (Elysium Basin is large as the Mediterranean Sea), reinforces the model of an extensive water activity during the Amazonian that has still to be understood in the context of an assumed cooling and drying planet. The sediments and rocks that were left of this period in Gale keep the record of the climatic conditions of the Amazonian and the clues that are missing to understand the climatic evolution of Mars. In addition, Gale crater presents the advantage to be located at the plateau/plain boundary, which has never been studied and contains information about the two main martian geological units. As a conclusion, we propose a table that summarizes the worthiness of a mission in Gale crater, and the expected science return relative to the objectives to be met by the Surveyor Program. Additional information contained in the original.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Mars Surveyor 2001 Landing Site Workshop
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2004-12-03
    Description: Landing sites near Apollinaris Patera are proposed for the Mars Surveyor 2001 lander/rover mission. Regions near the base of Apollinaris Patera provide a unique opportunity within the proposed -15 deg to 30deg latitude belt to sample outcrop lithologies ranging from highland Noachian basement rocks, to Hesperian aged lava flows, channel and flood plain materials, to Amazonian volcanic, ash flow, and channel deposits. Pristine impact craters exhibiting lobate ejecta blankets are found both on the volcano itself and on the surrounding terrain implying a ground water rich environment well into the Amazonian. Therefore its formation likely induced long-lived volcanic-hydrothermal systems, a high priority target for the mission.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Mars Surveyor 2001 Landing Site Workshop
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2004-12-03
    Description: Mangala Valles is an outflow channel in the Memnonia region of Mars. Although its origin is still under debate, most researchers believe they represent some form of catastrophic flood system which occurred early in the evolutionary history of Mars. The scientific objective of the Mars Surveyor Program 2001 (MSP 01) landed mission is to examine the ancient climatic and geologic history of Mars; to characterized surface materials with respect to elemental and mineral composition of rock and soils; to identify the role water may have played with respect to evolutionary history of the surface; to look for samples which may contain possible evidence of ancient life; and to collect and store unaltered samples which may be eventually returned to Earth during a later mission (MSP 05 - 2005). As with the Mars Pathfinder lander, the landing site will depend on several engineering constraints. Preliminary engineering constraints for MSP 01 landing site is that the landing site lies with 30 N and -15 S of the equator (due to solar power limitations) and below 2 km elevation. Both the scientific objectives and the engineering constraints can be accommodated with a Mangala Valles landing site.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Mars Surveyor 2001 Landing Site Workshop
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2004-12-03
    Description: Human exploration of Mars will consist of a series of long-term missions, with early missions focusing upon establishing the Mars base, and undertaking basic field reconnaissance. A capable laboratory on Mars is an essential element in the exploration strategy. Analytical equipment both in the field and in the laboratory serves to extend the senses of the crew and help them sharpen their sampling skills as they learn to recognize rocks in the field and understand their geologic context and significance. On-site sample analyses allow results to be incorporated into evolving surface exploration plans and strategies, which will be developing in real-time as we learn more about Mars. Early Mars missions will focus on reconnaissance EVAs to collect rock and soil samples, maximizing the amount of Mars material returned to Earth. Later missions will be increasingly devoted to both extensive field campaigns and laboratory analyses. The capabilities and equipment described below will be built up at the Mars base incrementally over many missions, with science payloads and investigative infrastructure being partitioned among launch opportunities. This discussion considers what we require to measure, observe, and explore on a new planetary territory. Alternatively, what do we need to know and how do we equip ourselves to provide ample capabilities to acquire these data? Suggestions follow describing specific instruments that we could use. Appendix 5 lists a strawman science instrument payload, and a feasibility study of equipment transportation into the field on pressurized or unpressurized rovers.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Mars Field Geology, Biology. and Paleontology Workshop: Summary and Recommendations; 15-24; LPI-Contrib-968
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2004-12-03
    Description: The presence of ice in permanently shadowed depressions near the lunar poles and determination of its properties will significantly influence both the near- and long-term prospects for lunar exploration and development. Since data from the Lunar Prospector spacecraft indicate that water ice is likely present (the instrument measures hydrogen strongly suggests the presence of water), it is important to understand how to extract it for beneficial use, as well as how to preserve it for scientific analysis. Two types of processes can be considered for the extraction of water ice from the lunar poles. In the first case, energy is transported into the shadowed regions, ice is constrain models of impacts on the lunar surface and processed in-situ, and water is transported out of the cold trap. In the second case, ice-containing regolith can be mined in the cold trap, transported outside the cold trap, and the ice extracted in a location with abundant solar energy. A series of conceptual implementations has been examined and criteria have been developed for the selection of systems and subsystems for further study.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Space Resources Utilization Roundtable; 9-10; LPI-Contrib-988
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2004-12-03
    Description: The first microscopic sedimentological studies of the Martian surface will commence with the landing of the Mars Polar Lander (MPL) December 3, 1999. The Robotic Arm Camera (RAC) has a resolution of 25 um/p which will permit detailed micromorphological analysis of surface and subsurface materials. The Robotic Ann will be able to dig up to 50 cm below the surface. The walls of the trench will also be inspected by RAC to look for evidence of stratigraphic and / or sedimentological relationships. The 2001 Mars Lander will build upon and expand the sedimentological research begun by the RAC on MPL. This will be accomplished by: (1) Macroscopic (dm to cm): Descent Imager, Pancam, RAC; (2) Microscopic (mm to um RAC, MECA Optical Microscope (Figure 2), AFM This paper will focus on investigations that can be conducted by the RAC and MECA Optical Microscope.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration; 90-91; LPI-Contrib-991
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2004-12-03
    Description: The '03-05 mission to Mars will include many of the elements already discussed for the '0 1 mission. The Athena payload has been adopted for the analysis and selection of samples, and the will include many of the same measurements to be performed during the '01 mission. In addition, the missions will include yet to be determined experiments to be done on or from the lander. Several groups are now competing for instruments and science to be done on the lander for both '03 and '05.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration; 80; LPI-Contrib-991
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2004-12-03
    Description: The DART ("Dust Accumulation and Removal Test") package is an experiment which will fly as part of the MIP experiment on the Mars-2001 Surveyor Lander. Dust deposition could be a significant problem for photovoltaic array operation for long duration emissions on the surface of Mars. Measurements made by Pathfinder showed 0.3% loss of solar array performance per day due to dust obscuration. The DART experiment is designed to quantify dust deposition from the Mars atmosphere, measure the properties of settled dust, measure the effect of dust deposition on the array performance, and test several methods of mitigating the effect of settled dust on a solar array. Although the purpose of DART (along with its sister experiment, MATE) is to gather information critical to the design of future power systems on the surface of Mars, the dust characterization instrumentation on DART will also provide significant scientific data on the properties of settled atmospheric dust.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration; 62-63; LPI-Contrib-991
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2004-12-03
    Description: The Mars Environmental Compatibility Assessment (MECA) is an instrument suite that will fly on the Mars Surveyor 2001 Lander Spacecraft. MECA is sponsored by the Human Exploration and Development of Space (HEDS) program and will evaluate potential hazards that the dust and soil of Mars might present to astronauts and their equipment on a future human mission to Mars. Four elements constitute the integrated MECA payload: a microscopy station, patch plates, an electrometer, and the wet chemistry laboratory (WCL). The WCL consists of four identical cells, each of which will evaluate a sample of Martian soil in water to determine conductivity, pH, redox potential, dissolved C02 and 02 levels, and concentrations of many soluble ions including sodium, potassium, magnesium, calcium and the halides. In addition, cyclic voltammetry will be used to evaluate reversible and irreversible oxidants present in the water/soil solution. Anodic stripping voltammetry will be used to measure concentrations of trace metals including lead, copper, and cadmium at ppb levels. Voltammetry is a general electrochemical technique that involves controlling the potential of an electrode while simultaneously measuring the current flowing at that electrode. The WCL experiments will provide information on the corrosivity and reactivity of the Martian soil, as well as on soluble components of the soil which might be toxic to human explorers. They will also guide HEDS scientists in the development of high fidelity Martian soil simulants. In the process of acquiring information relevant to HEDS, the WCL will assess the chemical composition and properties of the salts present in the Martian soil.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration; 41-42; LPI-Contrib-991
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2004-12-03
    Description: Martian surface composition and processes are under study through analysis of spectral, magnetic and chemical data from Mars and analysis of laboratory analog materials. The focus of this study is on potential lander/rover measurements of weathered volcanic tephra and hydrothermal rocks because these samples resulted from processes that may have occurred on Mars. Fine-grained particles from these sources may be responsible for origination of the dust/soil on Mars that is shaping the planet's surface character. Alteration on the surface of Mars likely includes both chemical and physical interactions of soil particles and rock surfaces. Many of the minerals present in hydrothermal samples may be associated with organisms and may be useful as indicators of life or environments supportive of life on Mars. Characterization of the spectroscopic properties in the visible/near-infrared (VIS/NIR) and mid-infrared (IR) regions using reflectance, emittance and Raman, as well as the thermal properties of minerals thought to be present on Mars are being performed in order to identify them remotely. Particular interest is directed toward locating minerals, and hence landing sites, important to Astrobiology.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration; 18-20; LPI-Contrib-991
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The Mars Surveyor 2001 mission to Mars was initially a key element in the Mars sample return sequence of missions. A capable rover, carrying the Cornell Athena instruments would be placed on Mars to roam over several kilometers, select samples, and place them in a cache for return by a subsequent mission. Inevitably, budget constraints forced descopes. At one critical point, the landed payload consisted only of the HEDS (Human Exploration and Development of Space) payloads selected for testing environmental properties of the surface for future human exploration. Then Congress intervened and put back some of the funding that had been deleted. NASA next redefined the payload to include as many of the Athena instruments as possible, to be distributed between the lander deck and a Sojourner class rover. This payload would then be placed on a modified version of the Mars Polar Lander rather than on the much larger, and more expensive, lander that had been originally designed for the mission. With this functionality restored the '01 mission remains an important and pivotal element of the Mars Surveyor program. It completes the Mars Observer objectives with the gamma ray spectrometer mapping. This mission will largely complete the global characterization phase of Mars exploration and mark the beginning of focused surface exploration leading to return of the first samples and the search for evidence of past Martian life. MSP'01 also is the first mission in the combined Mars exploration strategy of the HEDS and Space Science Enterprises of NASA. This mission, and those to follow, will demonstrate technologies and collect environmental data that will provide the basis for a decision to send humans to Mars. The NASA exploration strategy for Mars includes orbiters, landers and rovers launched in 2001 and 2003 and a sample return mission to be launched in 2005, returning a sample by 2008. The purpose of the rovers is to explore and characterize sites on Mars. The 2003 and 2005 missions will select rocks, soil, and atmosphere for return to earth.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration; 94-95; LPI-Contrib-991
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2004-12-03
    Description: We have selected four areas in Valles Marineris as potential landing sites for the 2001 mission. After 20 years of analyses, the formation of the Valles Marineris system of troughs and its associated deposits still has not been sufficiently explained. They could have formed by collapse, as tectonic grabens, or in two stages involving ancestral collapse basins later cut by grabens. Understanding all aspects of the Valles Marineris, in particular the interior layered deposits, would significantly contribute to deciphering the internal and external history of Mars. The deposits have been postulated to be remnants of wall rock, lacustrine deposits, mass wasting deposits, eolian deposits, carbonate deposits, or volcanic deposits. Because an understanding of the formation of Valles Marineris and its interior deposits is so important to deciphering the history of Mars, we have proposed landing sites for the 2001 mission on flat shelves of interior deposits in Melas Chasma.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Second Mars Surveyor Landing Site Workshop; 90-91
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2004-12-03
    Description: Our objective is to propose a landing site that the Mars Surveyor 2001 Lander and Curie Rover could go to on Mars that should meet the safety requirements of the spacecraft landing system and optimize surface operations (chiefly driven by power and communications requirements). This site lies between 1.5-3.5 deg S latitude, 195-198 deg W longitude, along a sharp albedo contact between the low-viscosity flow units of southern Elysium Planitia and the eroded highlands margin east of Aeolis Mensae. A relatively-bright "peninsula-like" protrusion of the eroded highlands into the south Elysium plains in this area reminds us of the head of an Ibis, and so we nickname this site "Ibishead Peninsula". This site is designed to be situated as close to a diversity of geologic units within view of the lander instruments. Based on our experience with the visibility of horizon details from the Mars Pathfinder and Viking landing sites, we stipulate that for horizon features to be resolved suitably for detailed study from the lander, they must be no more than several kilometers distant. This is so that diversity can be placed in a geologic context in a region that we feel has some exciting science potential. This objective is different from the Mars Pathfinder requirement to land at a site with a maximum chance for containing a diversity of rocks within a few tens of meters of the lander, which resulted in the selection of a "grab bag" site.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Second Mars Surveyor Landing Site Workshop; 74-76
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2004-12-03
    Description: One of the greatest unresolved issues concerns the evolution of Mars early in its history; during the time period that accretion was winding down but the frequency of impacting debris was still heavy. Ancient cratered terrain that has only been moderately modified since the period of heavy bombardment covers about a quarter of the planet's surface but the environment during its formation is still uncertain. This terrain was dominantly formed by cratering. But unlike on the airless Moon, the impacting craters were strongly modified by other contemporary surface processes that have produced distinctive features such as 1) dendritic channel networks, 2) rimless, flatfloored craters, 3) obliteration of most craters smaller than a few kilometers in diameter (except for post heavy-bombardment impacts), and 4) smooth intercrater plains. The involvement of water in these modification processes seems unavoidable, but interpretations of the surface conditions on early Mars range from the extremes of 1) the "cold" model which envisions a thin atmosphere and surface temperatures below freezing except for local hydrothermal springs; and 2) the "warm" model, which invokes a thick atmosphere, seasonal temperatures above freezing in temperate and equatorial regions, and at least occasional precipitation as part of an active hydrological cycle. The nature of hydrologic cycles, if they occurred on Mars, would have been critically dependent on the environment. The resolution of where along this spectrum the actual environment of early Mars occurred is clearly a major issue, particularly because the alternate scenarios have much different implications about the possibility that life might have evolved on Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Second Mars Surveyor Landing Site Workshop; 67-68
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2004-12-03
    Description: Regions near Apollinaris Patera are proposed for consideration as Mars Surveyor landing sites. Gulick (1998) proposed this region at the First Mars Surveyor Landing Site workshop; Bulmer and Gregg (1998) provided additional support. Apollinaris Patera is situated on the highlands/lowlands boundary at 8.5S, 186W. The volcano itself has been mapped as Hesperian in age. The regions surrounding Apollinaris show evidence for volcanism, volcano-ice interactions, and erosion by water. Numerous valleys modified by fluvial processes dissect a large fan structure emanating from the southern flank of the volcano. Sapping valleys have formed along the southern terminus of the fan structure. Regions near Apollinaris Patera provide a unique opportunity to sample outcrop lithologies ranging from highland Noachian basement rocks, to Hesperian aged lava flows, channel and flood plain materials, to Amazonian volcanic, ash and channel deposits.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Second Mars Surveyor Landing Site Workshop; 45-46
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2004-12-03
    Description: Over the past year and a half, the Center for Mars Exploration (CMEX) at NASA Ames Research Center (ARC) has been working with the Mars Surveyor Project Office at JPL to promote interactions among the planetary community and to coordinate landing site activities for the Mars Surveyor Project Office. To date, CMEX has been responsible for organizing the first two Mars Surveyor Landing Site workshops, web-archiving resulting information from these workshops, aiding in science evaluations of candidate landing sites, and serving as a liaison between the community and the Project. Most recently, CMEX has also been working with information technologists at Ames to develop a state-of-the-art collaborative web site environment to foster interaction of interested members of the planetary community with the Mars Surveyor Program and the Project Office. The web site will continue to evolve over the next several years as new tools and features are added to support the ongoing Mars Surveyor missions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Second Mars Surveyor Landing Site Workshop; 47-48
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2004-12-03
    Description: The Isidis basin rim may be key to understanding Mars' past with future lander missions: this area enables the mission objective to explore Mars' climatic and geologic history, including the search for liquid water and evidence of prior or extant life in ancient terrains. While two safe candidate landing sites for Mars Pathfinder were identified in Isidis Planitia, and one is being pursued for the Mars Surveyor 2001 Lander [Crumpler: 3.4 N, 277.8 W], the region around Isidis Planitia, in contrast to Tharsis for example, has only been lightly studied. The advent of new high resolution data sets provides an opportunity to reassess the geologic context of this impact basin and its rim within the Martian geologic sequence as a candidate site for studying Mars' ancient cratered terrain and ancient hydrosphere. This reexamination is warranted by the various hypotheses that Isidis was once filled with ice or water.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Second Mars Surveyor Landing Site Workshop; 49-50
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2004-12-03
    Description: There are many similarities between the Mars Surveyor '01 (MS '01) landing site selection process and that of Mars Pathfinder. The selection process includes two parallel activities in which engineers define and refine the capabilities of the spacecraft through design, testing and modeling and scientists define a set of landing site constraints based on the spacecraft design and landing scenario. As for Pathfinder, the safety of the site is without question the single most important factor, for the simple reason that failure to land safely yields no science and exposes the mission and program to considerable risk. The selection process must be thorough and defensible and capable of surviving multiple withering reviews similar to the Pathfinder decision. On Pathfinder, this was accomplished by attempting to understand the surface properties of sites using available remote sensing data sets and models based on them. Science objectives are factored into the selection process only after the safety of the site is validated. Finally, as for Pathfinder, the selection process is being done in an open environment with multiple opportunities for community involvement including open workshops, with education and outreach opportunities.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Second Mars Surveyor Landing Site Workshop; 37-38
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2004-12-03
    Description: Of the areas that meet the engineering criteria for MSP 01, only two are coincident with magnetic anomalies measured by the MAG/ER instrument on MGS. Area A is centered on about 10 deg S, 202 deg W and extends from about 7.5 deg S to 15 S. This area is associated with three bands of magnetic anomalies, two with positive values surrounding an area with negative values. Area B corresponds with a circular high positive magnetic anomaly and is centered at 13.5 deg S, 166 deg W. In addition to magnetic anomalies, the proposed sites have other attributes that make then attractive from of standpoint of meeting the objectives of the Mars Program. The landing site candidates meet the engineering requirements outlined on the Mars '01 landing site page htip://mars.jpl.nasa.gov/2001/landingsite. These are (source of data in parentheses): latitude between 3 deg N and 12 deg S, rock abundance between 5-10% (IRTM), fine-component thermal inertia 〉 4 cgs units (IRTM), topography 〈 2.5 km (MOLA). There are three exceptions: 1) Area B contains sites that lie up to about 15 deg S, 2) some sites are considered that have rock abundance values of 3-13%. 3) High resolution Viking coverage may not be available. These exceptions will be noted.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Second Mars Surveyor Landing Site Workshop; 35-36
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2004-12-03
    Description: The two major constraints for selecting the Mars Surveyor Program (MSP) 2001 landing site at the time of this meeting are latitude (30'N to 15S) and elevation (〈 2.5 km). The latitude belt will be narrowed down to a 15' sector after this workshop. This mission will demonstrate the capability to perform a precision landing, with the goal of achieving an accuracy of approximately 10 km, 3-sigma. There will be at least two different landing sites ('01 and '03) selected in the MSP. However, there should be an option of having the '05 sample return mission land in a different site and the '05 mission should be equipped with a rover for two reasons. The reasoning behind this follows: '05 lander/rover package should have the option of going to an independent site from either '01 or '03 because predecessor missions (orbital) may locate the "Ultimate Site"; '05 needs a rover to either: (A) explore and sample this "ultimate site" for sample return; (B) retrieve samples from '01 or '03 rovers, as a contingency, in case these rovers malfunction and cannot negotiate the trek back to the sample return vehicle.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Mars Surveyor 2001 Landing Site Workshop
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The microbial fossil record encompasses a wide range of information, including cellular remains, stromatolites, biofabrics, trace fossils, biominerals and chemofossils. The preservation of fossils is strongly influenced by the physical, chemical and biological factors of the environment which, acting together, ultimately determine the types of information that will be captured and retained in the rock record. The critical factor in assessing the suitability of a site for a microbial fossil record is the paleoenvironment. The reconstruction of ancient sedimentary environments usually requires the integration of a wide variety of geological information, including the shape, geometry and internal structure of sedimentary deposits, their mineralogy, and geochemistry. For Mars, much of our knowledge about past environments is based on orbital imaging of geomorphic features. This evidence provides an important context and starting point for site selection. However, our knowledge of the martian surface is quite limited, and a major goal of the upcoming exploration effort is to reconstruct the history of Martian volatiles, climate, and hydrology as a context for the exploration for past or present life. Mineralogical mapping from orbit will be an important key in this effort. In exploring for evidence of past life, terrestrial experience suggests that the long-term preservation of biological information as fossils occurs under a fairly narrow range of geological conditions that are well known to paleontologists (1). In detrital sedimentary systems, microbial fossilization is favored by rapid burial in fine-grained, clay-rich sediments. In chemical sedimentary systems, preservation is enhanced by rapid entombment in fine-grained chemical precipitates. For long term preservation, host rocks must be composed of stable minerals that resist chemical weathering, and which form an impermeable matrix and closed chemical system that can protect biosignatures from alteration during subsequent diagenetic change or metamorphism. In this context, host rocks composed of highly ordered, chemically-stable mineral phases, like silica (forming cherts) or phosphate (forming phosphorites), are especially favored. Such lithologies tend to have very long crustal residence times and (along with carbonates and shales), are the most common host rocks for the Precambrian microfossil record on Earth. If we assume that a subsurface hydrosphere has been present throughout martian history, then life could have originated there at any time, perhaps emerging at the surface periodically when climate changes, induced by external forcing or endogenous processes (e.g. volcanism), allowed liquid water to exist at the surface. The recent discovery of subsurface chemolithoautotrophic organisms which are capable of synthesizing organic substrates from C02 and H2 liberated from the aqueous weathering of basalt, is especially. relevant as a model for martian life. While a subsurface habitable zone may yet exist on Mars, access to such environments will likely require drilling to depths of several kilometers. Given the technological challenge of deep drilling, this is unlikely to occur prior to human missions. So, even if there is extant life on Mars today in subsurface habitats, it may be much easier to find its fossil counterparts in ancient deposits exposed at the surface. In exploring for a fossil record in subsurface environments on Mars there are several geological situations that may provide access to the appropriate materials. These include 1) ejecta from impact craters, 2) talus slopes, debris flows or alluvial fans developed below the walls of deep canyons, and 3) the deposits of outflood channels. Examples of aqueous mineral deposits of formed in subsurface environments that could harbor a microbial fossil record include such things as cements in detrital sedimentary rocks, low temperature diagenetic minerals deposited in veins, or filling vesicles in volcanic rocks, and hydrothermal deposits formed below the upper temperature limit for life (about 160 degrees C). There are many sites within the present latitudinal constraints for the 2001 mission (15 deg S to 30 deg N) that meet these requirements. But the practical problem with these kinds of deposits is that they tend to be disseminated, making up only a small percentage of a host rock. Even with mineralogical information provided by the Thermal Emission Spectrometer (TES) presently in orbit around Mars, predicting their occurrence ahead of time may be quite difficult. The deposits of surficial aqueous sedimentary systems are likely to provide the largest targets for site selection in 2001. Of these, the deposits of hydrothermal systems (subaerial and subaqueous thermal springs) have been discussed previously. It is likely that hydrothermal systems were widespread on Mars early in its history and a number of common geo-tectonic settings on Mars are likely to have hosted hydrothermal activity. Most of these are represented within the latitudinal constraints presently identified for 2001. However, the deposits of surface spring systems are likely to be difficult to find as well. On Earth, exposure areas for hydrothermal spring mounds are typically a few square kms, less than a single TES pixel. But such deposits may be quite abundant within some volcanic terrains, It is estimated, for example, that between 15-20% of the floor of Yellowstone caldera is covered by thermal spring deposits. In such abundances, subaerial sinters could well be detected by TES. Where exposed, the shallow subsurface portions of these systems may be quite a lot larger (perhaps tens of square kms), although (as noted above) mineralization may be finely disseminated in the basement rock, making remote detection more difficult. Paleolake Basins. There are a large number of potential paleolake basins on Mars (inclusive of impact craters and volcanic calderas) that have been previously identified using Viking images. Most of these lie in the southern highlands beyond the l5 deg S constraint for 2001. However, deposits of paleolakes may offer the largest and most easily identified exopaleontological targets from orbit. Based on a variety of arguments, some workers have suggested that there was once an ancient ocean on the northern plains, and some sites of interest (potential shoreline terraces) fall within the 30 deg N constraint. From a paleontological standpoint the most interesting places of this type are terminal paleolake basins which are likely to have been both saline and alkaline. Models by Schaefer suggest such environments could be widespread on Mars. The conditions in terminal lake basin settings favor widespread chemical sedimentation, an important condition for microbial fossilization. Important lithological targets for a microbial fossil record in terminal lake basins include spring-deposited carbonates, shoreline cements, a wide variety of evaporite minerals and fine-grained detrital sediments including shales, marls, and water-lain volcanic ash deposits. In developing a strategy to explore for ancient hydrothermal deposits on Mars, we can learn from the methods that have been developed by explorationists to explore for economic mineral deposits on Earth. Due to their simple mineralogy, hydrothermal deposits can often be detected using remote sensing methods. Common thermal spring mineral assemblages include silica, carbonate, and various metallic oxides and sulfides. But there are also a number of diagnostic silicate minerals, including clays, formed by the hydrothermal alteration of country rocks. These hydrothermal minerals have characteristic spectral signatures that could be detected from Mars orbit using high resolution infrared remote sensing methods. In playa lake settings, evaporite deposits often form a predictable "bull's eye" pattern with carbonates being deposited in marginal basin areas, and sulfates and halides occurring progressively more basinward. The floors of some impact craters on Mars, such as "White Rock" and Bequeral Crater (see Oxia Palus NE, Site 148), have floor deposits that could be evaporites, inclusive of carbonates. Evaporite minerals possess characteristic spectral signatures in the infrared and could similarly be identified from Mars orbit using high resolution remote sensing methods. Clearly, utilization of TES data will be important for optimizing site selection for Exopaleontology, and every effort should be made to benefit from that data before a final decision is made.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Mars Surveyor 2001 Landing Site Workshop
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2004-12-03
    Description: The successful landing of the Mars Pathfinder spacecraft on Mars allows the review of the process of selecting the landing site and assessing predictions made for the site based on Viking and Earth-based data. Selection of the landing site for Mars Pathfinder was a two-phase process. The first phase took place from October 1993 to June 1994 and involved: initial identification of engineering constraints, definition of environmental conditions at the site for spacecraft design, and evaluation of the scientific potential of different landing sites. This phase culminated with the first "Mars Pathfinder Landing Site Workshop", held at the Lunar and Planetary Institute in Houston, Texas on April 18-19, 1994, in which suggested approaches and landing sites were solicited from the entire scientific community. A preliminary site was selected by the project for design purposes in June 1994. The second phase took place from July 1994 to March 1996 and involved: developing criteria for evaluating site safety using images and remote sensing data, testing of the spacecraft and landing subsystems (with design improvements) to establish quantitative engineering constraints on landing site characteristics, evaluating all potential landing sites on Mars, and certification of the site by the project. This phase included a second open workshop, "Mars Pathfinder Landing Site Workshop II: Characteristics of the Ares Vallis Region and Field Trips in the Channeled Scabland, Washington" held in Spokane and Moses Lake September 24-30, 1995 and formal acceptance of the site by NASA Headquarters. Engineering constraints on Pathfinder landing sites were developed from the initial design of the spacecraft and the entry, descent and landing scenario. The site must be within 5 degrees of the subsolar latitude at the time of landing (15N for maximum solar power and flexible communications with Earth. It also must be below 0 km elevation to enable enough time for the parachute to bring the lander to the proper terminal velocity for landing. The entire landing ellipse, which is 70 km by 200 km due to navigational, ephemeris and atmospheric uncertainties, must be free of steep slopes, scarps and obvious hazards in Viking orbiter images, have acceptable radar reflectivity, moderate rock abundances and have little or no dust. Scientific considerations of the Mars Pathfinder payload and mission indicate that analyses of "grab bag" samples at the mouths of outflow channels can offer a first order assessment of a variety of rock types on Mars. Highland sites offer the advantage of in situ analysis of ancient rocks on Mars that record crustal differentiation and the nature of the early environment. Dark gray sites offer the potential of analyzing unweathered and unoxidized materials. Following a general assessment of the safety of different sites, a preliminary selection of a "grab bag" site was made. This site, Ares Vallis, is near the mouth of an outflow channel that may contain ancient Noachian terrain, Hesperian ridged plains, and reworked channel materials. All potential landing sites on Mars that met basic safety criteria were analyzed in detail. Sites (100 by 200 km target ellipses) were considered safe if they were below 0 km elevation, were free of obvious hazards (high relief surface features) in high-resolution (〈 50 m/pixel) Viking orbiter images and had acceptable reflectivity and roughness at radar wavelengths, high thermal inertia, moderate rock abundance, low red to violet ratio, and low albedo. Only 4 sites on Mars met all the above criteria, which included 1995 opposition 3.5 cm delay-Doppler radar data. Complete data were evaluated for 7 sites and the Viking landing sites for comparison for all the above criteria as well as crater abundance, hill and mesa abundance, slopes over meter to kilometer scales, low altitude winds (from global circulation models and slopes), the size-frequency distribution of large rocks, as well as rover trafficability and science potential. Discussion of potential hazards at Ares Vallis using a variety of data sets (including radar) at a second open workshop, indicated this site cannot be shown to be any more hazardous than the Viking landing sites. Field trips to the Channeled Scabland and the Ephrata Fan, analogs for Ares Vallis and the landing site, respectively, provided valuable insight into possible geologic processes and potential surface characteristics. Three sites met all the data requirements and safety criteria for landing Pathfinder. Ares Vallis was selected by the project because it appeared acceptably safe (although it appeared to have greater rock abundances than other sites, its elevation was likely the best known) and offered the prospect of analyzing a variety of rock types expected to be deposited by catastrophic floods, which would enable addressing first-order scientific questions such as differentiation of the crust, the development of weathering products, and the nature of the early martian environment and its subsequent evolution. The selection was reviewed by an external board at a number of meetings and accepted, and the site was approved by NASA Headquarters. Data gathered by the Pathfinder lander' and rover provides the opportunity to test the predictions made for the site in the selection process based on remote observations from Earth, orbit, and the surface. The discussion below is taken from Golombek et al. to which the reader is referred for a more complete discussion and a complete list of references, which are omitted here for brevity. Many characteristics of the landing site are consistent with its being shaped and deposited by the Ares and Tiu catastrophic floods. The rocky surface is consistent a depositional plain comprising semi-rounded pebbles, cobbles and tabular boulders (some of which appear imbricated and/or inclined in the direction of flow) that appear similar to depositional plains in terrestrial catastrophic floods. The Twin Peaks appear to be streamlined hills in lander images, which is consistent with interpretations of larger hills in Viking orbiter images of the region that suggest the lander is on the flank of a broad, gentle ridge trending northeast from Twin Peaks. This ridge, which is the rise to the north of the lander, is aligned in the downstream direction from the Ares and Tiu Valles floods, and may be a debris tail deposited in the wake of the Twin Peaks. Channels visible throughout the scene may be a result of late stage drainage. As predicted by delay-Doppler radar measurements and tracking results, the average elevation of the center of the site was about the same as Viking Lander I relative to the 6.1 mbar geoid. The Doppler tracking and two-way ranging estimate for the elevation of the spacecraft is only 45 in lower than the Viking I Lander and within 100 in of that expected, which is within the uncertainties of the measurements. After landing, surface pressures and winds (5-10 m/s) were found to be similar to expectations based on Viking data, although temperatures were about 10 K warmer. The temperature profile below 50 km was also roughly 20 K warmer. As a result, predicted densities were 5% higher near the surface and up to 40% lower at 50 km but within the entry, descent and landing design margins. The populations of craters and small hills and the slopes of the hills measured in high-resolution (38 m/pixel) Viking orbiter images and the radar derived slopes of the landing site are all consistent with observations of these properties in the lander images. A rocky surface was expected from Viking Infra-Red Thermal Mapper (IRTM) observations and comparisons with the Viking landing sites. The observed cumulative fraction of area covered by rocks with diameters greater than 3 cm and heights greater than 0.5 in (potentially hazardous to landing) at Ares is similar to that predicted by IRTM observations and models of Viking lander and Earth analog rock size-frequency distributions. The IRTM prediction postulated an effective thermal inertia of 30 (10(exp -3) cgs units - cal/cubic cm/s(exp 0.5)/K) for the rock population, but we obtain a slightly different effective thermal inertia for the actual rock population. The validity of interpretations of radar echoes prior to landing are supported by a simple radar echo model, an estimate of the reflectivity of the soil from its bulk density, and the fraction of area covered by rocks. In the calculations, the soil produces the quasi-specular echo and the rocks produce the diffuse echo. The derived quasispecular cross section is comparable to the cross-sections and reflectivities reported for 3.5-cm wavelength observations. The model yields a diffuse echo that is modestly larger than the polarized diffuse echo reported for 3.5-cm wavelength observations. At 12.5-cm wavelength, similar rock populations at Ares and the Viking I site were expected because the diffuse echoes are comparable, but the large normal reflectivities suggests that bulk densities of the soils at depth are greater than those at the surface. We also obtain a fine-component inertia near 8.4 which agrees with the fine-component inertia of 8.7 (in 10(exp -3) cgs units) estimated from thermal observations from orbit by the IRTM; for this estimate, we used a bulk thermal inertia of 10.4 for the landing site, an effective thermal inertia near 40 (10(exp -3) cgs units) for the rock population, and a graphical representation of Kieffer's model. Color and albedo data for Ares suggested surfaces of materials at Ares Vallis would be relatively dust free or unweathered prior to landing compared with the materials at the Viking landing sites. This suggestion is supported by the abundance of relatively dark-gray rocks at Ares and their relative rarity at the Viking landing sites, where rocks are commonly coated with bright red dust. Finally, the 40 km long Ephrata Fan of the Channeled Scabland in Washington state, which was deposited where c
    Keywords: Lunar and Planetary Science and Exploration
    Type: Mars Surveyor 2001 Landing Site Workshop
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2004-12-03
    Description: The goals of field study on Mars are nothing less than to understand the processes and history of the planet at whatever level of detail is necessary. A manned mission gives us an unprecedented opportunity to use the immense power of the human mind to comprehend Mars in extraordinary detail. To take advantage of this opportunity, it is important to examine how we should approach the field study of Mars. In this effort, we are guided by over 200 years of field exploration experience on Earth as well as six manned missions exploring the Moon.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Mars Field Geology, Biology. and Paleontology Workshop: Summary and Recommendations; 5-13; LPI-Contrib-968
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2004-12-03
    Description: The rationale for looking for prokaryote fossils in Martian materials is based on our present understanding of the environmental evolution of that planet in comparison to the history of the terrestrial environments and the development and evolution of life on Earth. On Earth we have clear, albeit indirect, evidence of life in 3.8 b.y.-old rocks from Greenland and the first morphological fossils in 3.3-3.5 b.y.-old cherts from South Africa and Australia. In comparison, Mars, being smaller, probably cooled down after initial aggregation faster than the Earth. Consequently, there could have been liquid water on its surface earlier than on Earth. With a similar exogenous and endogenous input of organics and life-sustaining nutrients as is proposed for the Earth, life could have arisen on that planet, possibly slightly earlier dm it did on Earth. Whereas on Earth liquid water has remained at the surface of the planet since about 4.4 b.y. (with some possible interregnums caused by planet-sterilising impacts before 3.8. b.y. and perhaps a number of periods of a totally frozen Earth, this was not the case with Mars. Although it is not known exactly when surficial water disappeared from the surface, there would have been sufficient time for life to have developed into something similar to the terrestrial prokaryote stage. However, given the earlier environmental deterioration, it is unlikely that it evolved into the eukaryote stage and even evolution of oxygenic photosynthesis may not have been reached. Thus, the impetus of research is on single celled life simnilar to prokaryotes. We are investigating a number of methods of trace element analysis with respect to the Early Archaean microbial fossils. Preliminary neutron activation analysis of carbonaceous layers in the Early Archaean cherts from South Africa and Australia shows some partitioning of elements such as As, Sb, Cr with an especial enrichment of lanthanides in a carbonaceous-rich banded iron sediment . More significantly, preliminary TOF-SIMS investigations of organics in the cherts reveals the presence of a biomarker, which appears to be a derivative of bacterial polymer, in the carbonaceous parts of the rocks. We conclude that a combination of morphological, isotope and biogeochemical methods can be used to successfully identify signs of life in terrestrial material, and that these methods will be useful in searching for signs of life in extraterrestrial materials.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration; 109-111; LPI-Contrib-991
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2004-12-03
    Description: The 13 samples from Mars identified in the terrestrial meteorite collections vary from dunite to pyroxenite to microgabbro or basalt. All of these rocks appear to have formed from primitive melts with similar major element compositional characteristics; i.e., FeO-rich and Al2O3-Poor melts relative to terrestrial basalt compositions. Although all of the SNC rocks can be derived by melting of the same Al-depleted mantle, contamination of SNC's by a Rb-enriched mantle or crustal source is required to explain the different REE characteristics of SNC rocks. Thus, there are indications of an old crustal rocktype on Mars, and this rock does not appear to have been sampled. This paper focuses primarily on the composition of the SNC basalts, however, and on the compositions of rocks which could be derived from SNC basaltic melt by magmatic processes. In particular, we consider the possible compositions which could be achieved through accumulation of early-formed crystals in the SNC primitive magma. Through a set of experiments we have determined (1) melt (magma) compositions which could be produced by melt evolution as crystals are removed from batches of this magma cooling at depth, and (2) which evolved (Si02enriched, MgO-depleted) rock compositions could be produced from the SNC magma, and how these compare with the Pathfinder andesite composition. Finally, we compare the SNC magma compositions to the Mars soil composition in order to determine whether any source other than SNC is required.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration; 92-93; LPI-Contrib-991
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2004-12-03
    Description: The Mars Surveyor 2001 Project consists of two missions to Mars, an Orbiter and a Lander, both to be launched in the spring of 2001 for October 2001 (Orbiter) and January 2002 (Lander) arrival at Mars. The Orbiter will support the Lander mission primarily as a communications relay system; the Lander will not have direct-to-Earth communications capability. Science data collected from the Orbiter will also be used to aid in the geologic interpretation of the landing site, along with data from past missions. Combining the Orbiter and Lander missions into a single Project has enabled the streamlining of many activities and an efficient use of personnel and other resources at the Jet Propulsion Laboratory and at the spacecraft contractor, Lockheed Martin Astronautics.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration; 83; LPI-Contrib-991
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2004-12-03
    Description: The MINUTES instrument of the Athena Precursor Experiment (APEX) on the Mars Surveyor 2001 lander mission will perform the first thermal infrared remote sensing observations from the surface of another planet. Experience gained from this experiment will be used to guide observations from identical instruments mounted on the Athena rovers, to be launched in 2003 and 2005. The utility of infrared spectrometers in determining the mineralogic composition of geologic surfaces from airborne and spaceborne platforms has been amply demonstrated. However, relatively little experience exists in using functionally similar instruments on the ground in the context of planetary science. What work has been done on this problem has mostly utilized field spectrometers that are designed to look down on nearby target rocks. While many Mini-TES observations will be made with this type of geometry, it is likely that other observations will be made looking horizontally at the more vertically-oriented facets of rock targets, to avoid spectral contamination from dust mantles. On rover missions, the Mini-TES may also be pointed horizontally at rocks several meters away, to determine if they are worthy of approaching for in situ observations and possible sample cacheing. While these observations will undoubtedly prove useful, there are important, and perhaps unappreciated, differences between horizontal-viewing, surface-based spectroscopy and the more traditional nadir-viewing, orbit or aircraft-based observations. Plans also exist to step the Mini-TES in a rastering motion to build hyperspectral scenes. Horizontal viewing hyperspectral cubes also possess unique qualities that call for innovative analysis techniques. The effect of viewing geometry: In thermal emission spectroscopy, regardless of whether an instrument is looking down on or horizontally at a target, the same basic equation governs the radiance reaching the sensor .
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration; 77-79; LPI-Contrib-991
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2004-12-03
    Description: In a previous publication, we proposed the formation of caves at mega and microscale on Mars and emphasized their potential for the exobiology exploration. The recent MOC images have shown promising indicators that caves are actually existing on Mars. In the first section, we develop the theoretical potential formation of martian caves. Then, we show how MOC is supporting this hypothesis of their formation and the new types of environments it suggests. The existence of caves on Mars from microscale to microscale structures can be predicted according to the Mars geological and climatic history. A first global approach is to consider caves as a result of underground water activity combined with tectonic movement. They can be formed by: (1) diversion of channel courses in underground conduits; (2) fractures of surface drainage patterns; chaotic terrain and collapsed areas in general; (4) seepage face in valley walls and/or headwaters; (5) inactive hydrothermal vents and lava tubes.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration; 43-44; LPI-Contrib-991
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2004-12-03
    Description: The primary objective of the Thermal Emission Imaging System (THEMIS) on the Mars Surveyor '01 Orbiter is to study the composition of the Martian surface at high spatial resolution. THEMIS will map the surface mineralogy using multi-spectral thermal infrared images in 8 spectral bands from 6.5 to 14.5 microns. In addition, a band centered at 15 microns will be used to map atmospheric temperatures and provide an important aid in separating the surface and atmospheric components. The entire planet will be mapped at 100 m resolution within the available data volume using a multi-spectral, rather than hyperspectral, imaging approach. THEMIS will also acquire 20 m resolution visible images in up to 5 spectral bands using a replica of the Mars 98 Orbiter (MARCI) and Lander (MARDI) cameras. Over 15,000 panchromatic (3,000 5-color), 20 x 20 km images will be acquired for morphology studies and landing site selection. The thermal-infrared spectral region contains the fundamental vibrational absorption bands of most minerals which provide diagnostic information on mineral composition. All geologic materials, including carbonates, hydrothermal silica, sulfates, phosphates, hydroxides, silicates, and oxides have strong absorptions in the 6.5-14.5 micron region. Silica and carbonates, which are key diagnostic minerals in thermal spring deposits, are readily identified using thermal-IR spectra. In addition, the ability to identify all minerals allows the presence of aqueous minerals to be interpreted in the proper geologic context. An extensive suite of studies over the past 35 years has demonstrated the utility of vibrational spectroscopy for the quantitative determination of mineralogy and petrology. The fundamental vibrations within different anion groups, such as C03, S04, P04, and SiO4, produce unique, well separated spectral bands that allow carbonates, sulfates, phosphates, silicates, oxides, and hydroxides to be readily identified. Additional stretching and bending modes involving major cations, such as Mg, Fe, Ca, and Na, allow Further mineral identification, such as the excellent discriminability of minerals within the silicate and carbonate groups.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration; 28-30; LPI-Contrib-991
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2005-04-13
    Description: One of the original objectives of the Mars Orbiter Camera (MOC), as proposed in 1985, was to acquire observations to be used in assessing future spacecraft landing sites. Images obtained by the Mars Global Surveyor MOC since March 1999 provide the highest resolution views (1.5-4.5 m/pixel) of the planet ever seen. We have been examining these new data to develop a general view of what Mars is like at meter-scale within the latitudes and elevations that are accessible to the Mars Surveyor 2001 lander. Our goal is to provide guidance to the 2001 landing site selection process, rather than to use MOC images to recommend a specific landing site.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Second Mars Surveyor Landing Site Workshop; 63-64
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: Proceedings of the National Academy of Sciences of the United States of America (ISSN 0027-8424); Volume 95; 19; 11028-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2011-08-24
    Description: Elevations from the Mars Orbiter Laser Altimeter (MOLA) have been used to construct a precise topographic map of the martian north polar region. The northern ice cap has a maximum elevation of 3 kilometers above its surroundings but lies within a 5-kilometer-deep hemispheric depression that is contiguous with the area into which most outflow channels emptied. Polar cap topography displays evidence of modification by ablation, flow, and wind and is consistent with a primarily H2O composition. Correlation of topography with images suggests that the cap was more spatially extensive in the past. The cap volume of 1.2 x 10(6) to 1.7 x 10(6) cubic kilometers is about half that of the Greenland ice cap. Clouds observed over the polar cap are likely composed of CO2 that condensed out of the atmosphere during northern hemisphere winter. Many clouds exhibit dynamical structure likely caused by the interaction of propagating wave fronts with surface topography.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 282; 5396; 2053-60
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2011-08-24
    Description: Elevations measured by the Mars Orbiter Laser Altimeter have yielded a high-accuracy global map of the topography of Mars. Dominant features include the low northern hemisphere, the Tharsis province, and the Hellas impact basin. The northern hemisphere depression is primarily a long-wavelength effect that has been shaped by an internal mechanism. The topography of Tharsis consists of two broad rises. Material excavated from Hellas contributes to the high elevation of the southern hemisphere and to the scarp along the hemispheric boundary. The present topography has three major drainage centers, with the northern lowlands being the largest. The two polar cap volumes yield an upper limit of the present surface water inventory of 3.2 to 4.7 million cubic kilometers.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 284; 5419; 1495-503
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Artificial gravity (AG), as a means of preventing physiological deconditioning of astronauts during long-duration space flights, presents certain special challenges to the otolith organs and the adaptive capabilities of the CNS. The key issues regarding the choice of AG acceleration, radius, and rotation rate are reviewed from the viewpoints of physiological requirements and human factors disturbances. Head movements and resultant Coriolis forces on the rotating platform may limit the usefulness of economical short centrifuges for other than brief periods of intermittent stimulation.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Annals of the New York Academy of Sciences (ISSN 0077-8923); Volume 871; 367-78
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2011-08-24
    Description: A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, beta-alanine, and gamma-amino-n-butyric acid (gamma-ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from 〈0.1 to 0.5), is similar to what is found in bacterially degraded organic matter. The amino acids in Nakhla appear to be derived from terrestrial organic matter that infiltrated the meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Proceedings of the National Academy of Sciences of the United States of America (ISSN 0027-8424); Volume 96; 16; 8835-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: As the twentieth century closes, retrospectives cite the Apollo moon missions as one of the important events of the past 100 years. A trip to Mars, however, would be even more challenging and significant. A round-trip Mars journey would require nearly three years away from Earth, a significant leap in complexity compared to the two week long Moon trips or the record-breaking fourteen-month flight on Mir. What would be the physiologic and medical challenges of a Mars flight? Two key areas of physiology present the greatest potential problems--calcium metabolism and radiation exposure. Data from Mir missions show that bone loss continues in space despite an aggressive countermeasure program. Average losses were 0.35% per month, but some load bearing areas lost 〉1% per month. A 1% loss rate, if it continued unabated for 30 months, could produce osteoporosis. Smaller losses could still increase fracture risk. Some bone loss can be well tolerated, particularly if the bone can be regained after the mission. But the effectiveness of post-flight rehabilitation to restore the density and quality of bone after spaceflight is not well known. Bone loss estimates are based on continuous weightlessness exposure, but this is not a requirement for a Mars trip. Most of the time on a Mars trip will be spent in the 1/3 Earth's gravity environment on Mars, and either intermittent or continuous artificial gravity can be provided for the transit between planets (although at an engineering cost). The dosing of the gravity exposure (e.g. the level and duration), however, has not been established. Radiation protection also requires a balance between engineering cost and human health. Excessive shielding could add billions of dollars to the cost of a mission. Trips in interplanetary space, however, expose the crew to heavy high-energy particles from cosmic rays (HZE particles), which have a high linear energy transfer. This high energy leads to significant biological damage (e.g. chromosomal aberrations, cancer induction). A recent report from the Committee on Space Biology and Medicine notes that only one systematic study of cancer induction from high-energy particles has been conducted (using the mouse Harderian gland). Predictions of cancer risk and acceptable radiation exposure in space are extrapolated from minimal data. Other areas of physiology also present problems, such as muscle loss, cardiovascular deconditioning, and vestibular adaptation. Despite all the issues, however, a focussed, aggressive research program that uses the resources of the International Space Station should pave the way for mankind's greatest adventure--a trip to Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: European journal of medical research (ISSN 0949-2321); Volume 4; 9; 353-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2011-08-24
    Description: Observations of the gravity field of Mars reveal a planet that has responded differently in its northern and southern hemispheres to major impacts and volcanic processes. The rough, elevated southern hemisphere has a relatively featureless gravitational signature indicating a state of near-isostatic compensation, whereas the smooth, low northern plains display a wider range of gravitational anomalies that indicates a thinner but stronger surface layer than in the south. The northern hemisphere shows evidence for buried impact basins, although none large enough to explain the hemispheric elevation difference. The gravitational potential signature of Tharsis is approximately axisymmetric and contains the Tharsis Montes but not the Olympus Mons or Alba Patera volcanoes. The gravity signature of Valles Marineris extends into Chryse and provides an estimate of material removed by early fluvial activity.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 286; 5437; 94-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2011-08-24
    Description: A comparison of laboratory spectra with Galileo data indicates that hydrated sulfuric acid is present and is a major component of Europa's surface. In addition, this moon's visually dark surface material, which spatially correlates with the sulfuric acid concentration, is identified as radiolytically altered sulfur polymers. Radiolysis of the surface by magnetospheric plasma bombardment continuously cycles sulfur between three forms: sulfuric acid, sulfur dioxide, and sulfur polymers, with sulfuric acid being about 50 times as abundant as the other forms. Enhanced sulfuric acid concentrations are found in Europa's geologically young terrains, suggesting that low-temperature, liquid sulfuric acid may influence geological processes.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 286; 5437; 97-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2011-08-24
    Description: The ability of living organisms to survive on the smaller bodies in our solar system is examined. The three most significant sterilizing effects include ionizing radiation, prolonged extreme vacuum, and relentless thermal inactivation. Each could be effectively lethal, and even more so in combination, if organisms at some time resided in the surfaces of airless small bodies located near or in the inner solar system. Deep within volatile-rich bodies, certain environments theoretically might provide protection of dormant organisms against these sterilizing factors. Sterility of surface materials to tens or hundreds of centimeters of depth appears inevitable, and to greater depths for bodies which have resided for long periods sunward of about 2 A.U.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Origins of life and evolution of the biosphere : the journal of the International Society for the Study of the Origin of Life (ISSN 0169-6149); Volume 29; 5; 521-45
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2011-08-24
    Description: Ongoing studies of the evolution of the Martian cratered highlands, the nature of the planet's early climate, and the recent announcement of possible evidence of ancient life in the ALH 84001 meteorite have reinvigorated interest in the conditions that prevailed on Mars during its first billion years of geologic history. To address this interest and assess our current understanding of these issues, the Lunar and Planetary Institute hosted a 4-day Conference on Early Mars in Houston in April of 1997. The papers contained in this special section are a product of that meeting. The purpose of the conference was twofold: (1) to consider how impacts, volcanism, and the presence of abundant water affected the physical and chemical environment that existed on Mars 4 Gyr ago, particularly as it related to the nature of the global climate, the origin of the valley networks, the geologic and mineralogic evolution of the surface, the aqueous geochemistry of groundwater, and the existence of local environments that may have been conducive to the development of indigenous life and the preservation of its signature in the geologic record; and (2) to discuss what observations or experiments might he included in future spacecraft missions to test the ideas and expectations arising from purpose 1. While pertinent issues of early atmospheric and solar evolution were also addressed, the primary discussion at the conference focused on the evidence and constraints provided by the geologic records of Earth, the Moon, and Mars and analysis of the SNC meteorites. The papers contained in this special section span the full range of these topics, including the stability of the early atmosphere to erosion by the solar wind, the geologic environment from which the SNC meteorites originated, geomorphic evidence regarding the nature of the early Martian climate and hydrologic cycle, the potential impact of the past and present environment on the preserved signature of ancient life, and a discussion of the capabilities of a lander-based X ray diffraction and fluorescence instrument to assess the potential for past fossilization from the mineralogy of the current local surface environment. The issues raised at the conference, and by the papers included in this special section, will be the focus of ongoing attention as the intensity and scope of Mars exploration increases over the next decade.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Journal of geophysical research (ISSN 0148-0227); Volume 103; E13; 31405
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-08-31
    Description: The rotation of the Moon is influenced by solid-body tides and interaction at a liquid-core/solid-mantle boundary. The Lunar Laser Ranging (LLR) data are sensitive to variations in lunar rotation. Analysis of those ranges reveals four dissipation periodicities in the rotation. These signatures can be explained with the combined effects of tide plus core, but not with either alone. The fluid core detection exceeds three times its uncertainty. The inferred core radius has a 1 -sigma upper limit of 352 km for iron and up to 374 km if sulfur is present. The tidal dissipation is strong, Q at one month is 37 +/- 5 .Q increases for longer periods and is 60 (-15, +40) at one year.Dynamical evidence for a fluid lunar core has previously been presented. These-earlier solutions included three dissipation parameters. New solutions benefit from additional LLR data and an improved gravity field from Doppler tracking of Lunar Prospector. Five dissipation parameters are now solved for. There are several options for dissipation parameters: a core coupling parameter, a time delay for tidal distortion of the moments of inertia, and five periodic terms in the rotation angles. Solutions with different combinations of these are compatible (a theory relates K/C and time delay to a series of periodic terms). The solutions used K/C, time delay, and one periodic term. When dissipation signatures at five rotation frequencies are solved for, four amplitudes (4 to 263 milliarcseconds) are detected above the noise. Attempts to explain these results using either tides alone or core alone fail (less than 3(sigma) discrepancy for the former and 9(sigma), for the latter). A combination of tides and liquid core matches the results well.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-08-31
    Description: Over the course of this award we have: 1) Completed and published the results of a study of the effects of hyperfine particles on reflectance spectra of olivine and quartz, which included the development of scattering codes. Research has also progressed in the analysis of the effects of fine particle sizes on clay spectra. 2) Completed the analysis of the mineralogy of dark regions, showed the insitu compositions are highly correlated to the SNC meteorites, and determined that the martian mantle was depleted in aluminum prior to 2-3 GA ago; Studies of the mineralogic heterogeneity of surficial materials on Mars have also been conducted. and 3) Performed initial work on the study of the physical and chemical processes likely to form and modify duricrust. This includes assessments of erosion rates, solubility and transport of iron in soil environments, and models of pedogenic crust formation.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-08-31
    Description: The Mars Pathfinder mission illustrated the benefits of including a mobile robotic explorer on a planetary mission. However, for future Mars rover missions, significantly increased autonomy in navigation is required in order to meet demanding mission criteria. To address these requirements, we have developed new path planning and localisation capabilities that allow a rover to navigate robustly to a distant landmark. These algorithms have been implemented on the JPL Rocky 7 prototype microrover and have been tested extensively in the JPL MarsYard, as well as in natural terrain.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-08-31
    Description: The paper presents two path planners suitable for planetary rovers. The first is based on fuzzy description of the terrain, and genetic algorithm to find a traversable path in a rugged terrain. The second planner uses a global optimization method with a cost function that is the path distance divided by the velocity limit obtained from the consideration of the rover static and dynamic stability. A description of both methods is provided, and the results of paths produced are given which show the effectiveness of the path planners in finding near optimal paths. The features of the methods and their suitability and application for rover path planning are compared
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-08-31
    Description: Future Mars exploration missions will perform two types of experiments: science instrument placement for close-up measurement, and sample acquisition for return to Earth. In this paper we describe algorithms we developed for these tasks, and demonstrate them in field experiments using a self-contained Mars Rover prototype, the Rocky 7 rover. Our algorithms perform visual servoing on an elevation map instead of image features, because the latter are subject to abrupt scale changes during the approach. 'This allows us to compensate for the poor odometry that results from motion on loose terrain. We demonstrate the successful grasp of a 5 cm long rock over 1m away using 103-degree field-of-view stereo cameras, and placement of a flexible mast on a rock outcropping over 5m away using 43 degree FOV stereo cameras.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-08-29
    Description: Between September 1997, when the Mars Global Surveyor spacecraft arrived at Mars, and September 1998 when the final aerobraking phase of the mission began, the Thermal Emission Spectrometer (TES) has acquired an extensive data set spanning approximately half of a Martian year. Nadir-viewing spectral measurements from this data set within the 15-micrometers CO2 absorption band are inverted to obtain atmospheric temperature profiles from the surface up to about the 0.1 mbar level. The computational procedure used to retrieve the temperatures is presented. Mean meridional cross sections of thermal structure are calculated for periods of time near northern hemisphere fall equinox, winter solstice, and spring equinox, as well as for a time interval immediately following the onset of the Noachis Terra dust storm. Gradient thermal wind cross sections are calculated from the thermal structure. Regions of possible wave activity are identified using cross sections of rms temperature deviations from the mean. Results from both near-equinox periods show some hemispheric asymmetry with peak eastward thermal winds in the north about twice the magnitude of those in the south. The results near solstice show an intense circumpolar vortex at high northern latitudes and waves associated with the vortex jet core. Warming of the atmosphere aloft at mid-northern latitudes suggests the presence of a strong cross-equatorial Hadley circulation. Although the Noachis dust storm did not become global in scale, strong perturbations to the atmospheric structure are found, including an enhanced temperature maximum aloft at high northern latitudes resulting from intensification of the Hadley circulation. TES results for the various seasonal conditions are compared with published results from Mars general circulation models, and generally good qualitative agreement is found.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-08-29
    Description: The accurate determination of the Mars pole vector derived from Pathfinder and Viking Lander radio data, together with the VSOP87 representation of planetary orbits, have been applied to a new evaluation of the right ascension of the "fictitious mean sun" (FMS) at Mars. With DELTA t (sub J2000) the elapsed time in days from the J2000 epoch (J.D.2451545.0 (sup TT), alpha FMS = 270 degrees.3863 + 0.52403840(degrees/d) (raised dot) DELTA T (sub j2000) - 4 x 10 (exp -13) (degrees/d (sup 2)) (raised dot) DELTA t (sup 2) (sub J2000) represents a best least-squares quadratic fit of the FMS, including aberration, to each instance of the four equinox and solstice passages for each of 134 Mars orbits spanning the calendar years 1874-2127. The implied tropical orbit period for Mars, 686.9726 (sup d), closely agrees with the recent evaluations. Together with the Pathfinder radio determination of the Mars sidereal rotation, the derived FMS rate corresponds to a mean solar day (or "sol") of 1.027491251 (sup d). The new FMS determination would serve to define the Mean Solar Time at Mars to the nearest tenth-second, according to historical conventions originally established for terrestrial time keeping, once the Mars prime meridian defined by the crater Airy-O is navigated to the same accuracy. For convenient reference to current epochs, 2000 Jan 06 00:00 UTC (= MJD 51549.000 (sup UTC)) corresponds to a coincidence of (alpha (sub FMS)) and the rotation angle of the crater Airy-O measured with respect to the Mars equinox (i.e. "mean solar midnight" on the planet's prime meridian), to within the current uncertainty of several seconds in the locational definition of the planet's cartographic grid. As a further result of the analysis, the consistently derived Mars obliquity of date is epsilon = 25 degrees.192 + 3.45 x l0 (exp -7)(degrees/d)(raised dot) DELTA t (sub J2000). An improved analytic recipe for the calculation of the solar areocentric longitude (L (sub s)) of Mars to an accuracy of 0 degrees.01 is also provided, accounting for the primary perturbations of Earth, Jupiter, and Venus, which may in turn be applied to an efficient evaluation of Mars local true solar time (LTST) to within the uncertainty of the inertial position of the Mars prime meridian. For specific applications to the data archives for landed Mars spacecraft, simple conversion formulae are given for the determination of the Viking "Local Lander Time" and the Pathfinder "Local True Solar Time" in terms of the terrestrial calendar date and UTC.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-08-29
    Description: The Mars Global Surveyor (MGS) arrived at Mars in September 1997 near Mars southern spring equinox and has now provided monitoring of conditions in the Mars atmosphere for more than half a Mars year. The large majority of the spectra taken by the Thermal Emission Spectrometer (TES) are in a nadir geometry (downward looking mode) where Mars is observed through the atmosphere. Most of these contain the distinct spectral signature of atmospheric dust. For these nadir-geometry spectra we retrieve column-integrated infrared aerosol (dust) opacities. TES observations during the aerobraking and science-phasing portions of the MGS mission cover the seasonal range L(sub s)=184 deg - 28 deg. Excellent spatial coverage was obtained in the southern hemisphere. Northern hemisphere coverage is generally limited to narrow strips taken during the periapsis pass but is still very valuable. At the beginning of the mission the 9-(micron)meter dust opacity at midsouthern latitudes was low (0.15-0.25). As the season advanced through southern spring and into summer, TES observed several regional dust storms (including the Noachis dust storm of November 1997) where peak 9-(micron)meter dust opacities approached or exceeded unity, as well as numerous smaller local storms. Both large and small dust storms exhibited significant changes in both spatial coverage and intensity over a timescale of a day. Throughout southern spring and summer the region at the edge of the retreating southern seasonal polar ice cap was observed to be consistently more dusty than other latitudes.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-08-29
    Description: During the past two field seasons, July 1988 and 1999, we have conducted research about the field practices of scientists and engineers at Haughton Crater on Devon Island in the Canadian Arctic, with the objective of determining how people will live and work on Mars. This broad investigation of field life and work practice, part of the Haughton-Mars Project lead by Pascal Lee, spans social and cognitive anthropology, psychology, and computer science. Our approach involves systematic observation and description of activities, places, and concepts, constituting an ethnography of field science at Haughton. Our focus is on human behaviors-what people do, where, when, with whom, and why. By locating behavior in time and place-in contrast with a purely functional or "task oriented" description of work-we find patterns constituting the choreography of interaction between people, their habitat, and their tools. As such, we view the exploration process in terms of a total system comprising a social organization, facilities, terrain/climate, personal identities, artifacts, and computer tools. Because we are computer scientists seeking to develop new kinds of tools for living and working on Mars, we focus on the existing representational tools (such as documents and measuring devices), learning and improvization (such as use of the internet or informal assistance), and prototype computational systems brought to the field. Our research is based on partnership, by which field scientists and engineers actively contribute to our findings, just as we participate in their work and life.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-08-31
    Description: Thermal emission spectra of the largest asteroid, 1 Ceres, obtained from the Kuiper Airborne Observatory display features that may provide information about its surface mineralogy. The emissivity, obtained by dividing the spectra by a standard thermal model, is compared with emissivity spectra of olivines and phyllosilicates deduced via Kirchoff's law from reflectivity measurements. The spectra provide a fairly good match to fine grained olivines (0 to 5 micrometer size range). The smoothness of the spectrum beyond 18 micrometers is an indication of particles smaller than 50 micrometers. While the abrupt rise in emissivity near 8 micrometers matches many silicates, the distinct emissivity minimum centered near 12.8 micrometers is consistant with iron-poor olivines, but not with phyllosilicates. It suggests the presence of opaques and does not exclude a mixture with organics and fine-grained phyllosilicates.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-08-31
    Description: A mission to return a sample to Earth from the surface of Venus faces a multitude of multidisciplinary challenges. In addition to the complications inherent in any sample return mission, Venus presents the additional difficulties of a deep gravity well essentially equivalent to Earth's and a hot-house atmosphere which generates extremes of high temperature, density, and pressure unmatched at any other known surface in the solar system. The Jet Propulsion Laboratory of the California Institute of Technology recently conducted a study to develop an architecture for such a mission; a major goal of this study was to identify technology developments which would need to be pursued in order to make such a mission feasible at a cost much less than estimated in previous. The final design of this mission is years away but the study results presented here show our current mission architecture as it applies to a particular mission opportunity, give a summary of the engineering and science trades which were made in the process of developing it, and identify the main technology development efforts needed.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2013-08-31
    Description: The primary objective of the Mars 2003/2005 Sample Return Project is to return Martian surface materials to Earth from two different sites by the year 2008. The baseline mission plan relies heavily on the use of a Mars orbit rendezvous strategy similar to the lunar orbit rendezvous scheme used for the Apollo missions. The 2003 mission consists of a single spacecraft comprised of a Lander, Rover, and Mars ascent vehicle (MAV). The 2003 mission will be launched on a Delta-III-class launch vehicle in May/June 2003 and arrive at Mars in December 2003/January 2004. The Lander deploys the Rover to collect surface samples from several sites and return them to the Lander where they are transferred to a sample canister onboard the MAV. The MAV is launched into a low Mars orbit (targeted for 600 km circular, 45 deg inclination) and releases the sample canister to await retrieval by an Orbiter launched in 2005. (The sample canister is a passive vehicle with no maneuvering capability.) The duration of Mars surface operations is at most about 90 days. The 2005 mission consists of two separate spacecraft: a Lander/Rover/MAV spacecraft identical to that used for the 2003 mission and an Orbiter carrying an Earth Entry Vehicle (EEV). Both spacecraft will be launched on a single Ariane-5 in August 2005 and arrive at Mars in July/August 2006. A second sample canister is delivered to Mars orbit using the same scenario as was used for the 2003 mission. The Orbiter uses aerocapture for insertion into Mars orbit (targeted for 250 x 1400 km, 45 deg inclination). During its approximately one-year stay at Mars, the Orbiter will search for and attempt to rendezvous first with the 2003 sample canister and then with the 2005 sample canister. After retrieval, each sample canister is transferred to the EEV. The Orbiter departs Mars in July 2007 and returns to Earth in October 2008 on a trajectory targeted for landing at the Utah Test and Training Range (UTTR). After deploying the EEV, the Orbiter performs a deflection maneuver to avoid reentry into Earth's atmosphere.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...