ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-12
    Description: Since early 2006, NASA s Marshall Space Flight Center has been routinely monitoring the Moon for impact flashes produced by meteoroids striking the lunar surface. During this time, several meteor showers have produced multiple impact flashes on the Moon. The 2006 Geminids, 2007 Lyrids, and 2008 Taurids were observed with average rates of 5.5, 1.2, and 1.5 meteors/hr, respectively, for a total of 12 Geminid, 12 Lyrid, and 12 Taurid lunar impacts. These showers produced a sufficient, albeit small sample of impact flashes with which to perform a luminous efficiency analysis similar to that outlined in Bellot Rubio et al. (2000a, b) for the 1999 Leonids. An analysis of the Geminid, Lyrid, and Taurid lunar impacts is carried out herein in order to determine the luminous efficiency in the 400-800 nm wavelength range for each shower. Using the luminous efficiency, the kinetic energies and masses of these lunar impactors can be calculated from the observed flash intensity.
    Keywords: Space Sciences (General)
    Type: Meteoroids: The Smallest Solar System Bodies; 142-154; NASA/CP-2011-216469
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-12
    Description: Lunar impact monitoring provides useful information about the flux of meteoroids in the hundreds of grams to kilograms size range. The large collecting area of the night side of the lunar disk, approximately 3.8 10(exp 6)sq km in our camera field-of-view, provides statistically significant counts of the meteoroids striking the lunar surface. Over 200 lunar impacts have been observed by our program in roughly 4 years. Photometric calibration of the flashes observed in the first 3 years along with the luminous efficiency determined using meteor showers and hypervelocity impact tests (Bellot Rubio et al. 2000; Ortiz et al. 2006; Moser et al. 2010; Swift et al. 2010) provide their impact kinetic energies. The asymmetry in the flux on the evening and morning hemispheres of the Moon is compared with sporadic and shower sources to determine their most likely origin. These measurements are consistent with other observations of large meteoroid fluxes.
    Keywords: Space Sciences (General)
    Type: Meteoroids: The Smallest Solar System Bodies; 116-124; NASA/CP-2011-216469
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Since early 2006, NASA's Marshall Space Flight Center (MSFC) has observed over 330 impact flashes on the Moon, produced by meteoroids striking the lunar surface. On 17 March 2013 at 03:50:54.312 UTC, the brightest flash of a 9-year routine observing campaign was observed by two 0.35 m telescopes at MSFC. The camera onboard the Lunar Reconnaissance Orbiter (LRO), a NASA spacecraft mapping the Moon from lunar orbit, discovered the fresh crater associated with this impact [1] approximately 3 km from the location predicted by a newly developed geolocation technique [2]. The meteoroid impactor responsible for this event may have been part of a stream of large particles encountered by the Earth/Moon associated with the Virginid Meteor Complex, as evidenced by a cluster of five fireballs seen in Earth's atmosphere on the same night by the NASA All Sky Fireball Network [3] and the Southern Ontario Meteor Network [4]. Crater size calculations based on assumptions derived from fireball measurements yielded an estimated crater diameter of 10-23 m rim-to-rim using the Holsapple [5] and Gault [6] models, a result consistent with the observed crater measured to be 18 m across. This is the first time a lunar impact flash has been associated with fireballs in Earth's atmosphere and an observed crater.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M15-4672 , Stanford Meteor Environments and Effects (SMEE) Workshop; Jul 14, 2015 - Jul 16, 2015; Stanford, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Astronomy
    Type: M15-4567 , Lunar Impact Workshop; Jun 02, 2015 - Jun 03, 2015; Noordwijk; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: Meteoroids are natural particles with origins from comets, asteroids, and planets from within the solar system. On average, 33 metric tons (73,000 lb) of meteoroids hit Earth everyday with velocities ranging between 20 and 72 km/s. However, the vast majority of these meteoroids disintegrate in the atmosphere and never make it to the ground. The Moon also encounters the same meteoroid flux, but has no atmosphere to stop them from striking the surface. At such speeds even a small meteoroid has incredible energy. A meteoroid with a mass of only 5 kg can excavate a crater over 9 m across, hurling 75 metric tons (165,000 lb) of lunar soil and rock on ballistic trajectories above the lunar surface. Meteoroids with particle sizes as small as 100 micrometer (1 Microgram) can do considerable damage to spacecraft in Earth's orbit and beyond. Impacts can damage thermal protection systems, radiators, windows, and pressurized containers. Secondary effects might include partial penetration or pitting, local deformation, and surface degradation that can cause a failure upon reentry. The speed, mass, density, and flux of meteoroids are important factors for design considerations and mitigation during operations. Lunar operations (unmanned and manned) are also adversely affected by the meteoroid flux. Ejecta from meteoroid impacts is also part of the lunar environment and must be characterized. Understanding meteoroid fluxes and the associated risk of meteoroids impacting spacecraft traveling in and beyond Earth's orbit is the objective of the Meteoroid Environment Office (MEO) located at Marshall Space Flight Center (MSFC). One of the MEO's programs is meteoroid impact monitoring of the Moon. The large collecting area of the night side of the lunar disk provides statistically significant counts of meteoroids that can provide useful information about the flux of meteoroids in the hundreds of grams to kilograms size range. This information is not only important for characterizing the lunar environment associated with larger lunar impactors, but also provides statistical data for verification and improving meteoroid prediction models. Current meteoroid models indicate that the Moon is struck by a sporadic meteoroid with a mass greater than 1 kg over 260 times per year. This number is very uncertain since observations for objects in this mass range are few. Factors of several times, higher or lower, are easily possible. Meteor showers are also present to varying degrees at certain times of the year. The Earth experiences meteor showers when encountering the debris left behind by comets, which is also the case with 2 the Moon. During such times, the rate of shower meteoroids can greatly exceed that of the sporadic background rate for larger meteoroids. Looking for meteor shower impacts on the Moon at about the same time as they occur on Earth will yield important data that can be fed into meteor shower forecasting models, which can then be used to predict times of greater meteoroid hazard on the Moon. The Geminids are one such meteor shower of interest. The Geminids are a major meteor shower that occur in December with a peak intensity occurring usually during the 13th and 14th of the month and appearing to come from a radiant in the constellation Gemini. The Geminids are interesting in that the parent body of the debris stream is an asteroid, which along with the Quadrantids, are the only major meteor showers not originating from a comet. The Geminids parent body, 3200 Phaethon, is about 5 km in diameter and has an orbit that has a 22deg inclination which intersects the main asteroid belt and has a perihelion less than half of Mercury's perihelion distance. Thus, its orbit crosses those of Mars, Earth, Venus, and Mercury. The Geminid debris stream is by far the most massive as compared to the others. When the Earth passes through the stream in mid-December, a peak intensity of approx. equal 120 meteors per hour can be seen. Because of the Geminids' relatively large intensity and unique origin, it is important to monitor and gain information about the Geminids so as to improve their forecasts and understand their contribution to the meteoroid environment in Earth's orbit and at the Moon. It is the purpose of this Technical Memorandum (TM) to document two lunar observing periods coinciding with the Geminid meteor showers that occurred in 2006 and 2010.
    Keywords: Astronomy; Lunar and Planetary Science and Exploration
    Type: NASA/TM-2015-218209 , M-1398
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: The region of the Earth's atmosphere between about 90 and 500 km altitude is known as the thermosphere, while the region above about 500 km is known as the exosphere. For space vehicle operations, the neutral atmosphere in these regions is significant. Even at its low density, it produces torques and drags on vehicles and affects orbital lifetimes. The thermosphere density above 100 km altitude also modulates the flux of trapped radiation and orbital debris. Atomic oxygen at orbital altitudes is important because it can erode and chemically change exposed vehicle surfaces.
    Keywords: Geophysics; Numerical Analysis
    Type: NASA/TM-2017-218238 , M-1430
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: Since early 2006 the Meteoroid Environment Office at NASA's Marshall Space Flight Center has been consistently monitoring the Moon for impact flashes produced by meteoroids striking the lunar surface. During this time, several meteor showers have produced multiple impact flashes on the Moon. The 2006 Geminids, 2007 Lyrids, and 2008 Taurids were observed with average rates of 5.5, 1.2, and 1.5 meteors/hr, respectively, for a total of 12 Geminid, 11 Lyrid, and 12 Taurid lunar impacts. These showers produced a sufficient, albeit small sample of impact flashes with which to perform a luminous efficiency analysis similar to that outlined in Bellot Rubio et al. for the 1999 Leonids. An analysis of the Geminid, Lyrid, and Taurid lunar impacts is carried out herein in order to determine the luminous efficiency in the 400-900 nm wavelength range for each shower. Using the luminous efficiency, the kinetic energies and masses of these lunar impactors can be calculated.
    Keywords: Astrophysics
    Type: M10-0221 , Meteroids 2010; May 24, 2010 - May 28, 2010; Breckenridge, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Astronomy
    Type: M14-3829 , Asteroids Comets Meteors (ACM) 2014; Jun 30, 2014 - Jul 04, 2014; Helsinki; Finland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: On 17 March 2013 at 03:50:54 UTC, NASA detected a bright impact flash on the Moon caused by a meteoroid impacting the lunar surface. There was meteor activity in Earth's atmosphere the same night from the Virginid Meteor Complex. The impact crater associated with the impact flash was found and imaged by Lunar Reconnaissance Orbiter (LRO). Goal: Monitor the Moon for impact flashes produced by meteoroids striking the lunar surface. Determine meteoroid flux in the 10's gram to kilogram size range.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M15-4718 , Stanford Meteor Environments and Effects (SMEE) Workshop; Jul 14, 2015 - Jul 16, 2015; Stanford, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: The flux of large meteoroids is not well determined due to relatively low number statistics, due mainly to the lack of collecting area available to meteor camera systems (10(2)-10(5) km2). Larger collecting areas are needed to provide reasonable statistics for flux calculations. The Moon, with millions of square kilometers of lunar surface, can be used as a detector for observing the population of large meteoroids in the tens of grams to kilogram mass range. This is accomplished by observing the flash of light produced when a meteoroid impacts the lunar surface, converting a portion of its kinetic energy to visible light detectable from Earth. A routine monitoring program at NASA's Marshall Space Flight Center has recorded over 300 impact flashes since early 2006. The program utilizes multiple 0.35 m (14 inch) Schmidt-Cassegrain telescopes, outfitted with video cameras using the 1/2 inch Sony EXview HAD CCDTM chip, to perform simultaneous observations of the earthshine hemisphere of the Moon when the lunar phase is between 0.1 and 0.5. This optical arrangement permits monitoring of approximately 3.8x10(6) km2 of lunar surface. A selection of 126 flashes recorded in 266.88 hours of photometric skies was analyzed, creating the largest and most homogeneous dataset of lunar impact flashes to date. Standard CCD photometric techniques outlined in [1] were applied to the video to determine the luminous energy, kinetic energy, and mass for each impactor, considering a range of luminous efficiencies. The flux to a limiting energy of 2.5x10(-6) kT TNT or 1.0510(7) J is 1.0310(-7) km(-2) hr(-1) and the flux to a limiting mass of 30 g is 6.1410(-10) m(-2) yr(-1). Comparisons made with measurements and models of the meteoroid population indicate that the flux of objects in this size range is slightly lower (but within the error bars) than the power law distribution determined for the near Earth object population by [2].
    Keywords: Lunar and Planetary Science and Exploration; Astronomy
    Type: M14-3493 , Asteroids Comets Meteors (ACM) 2014; Jun 30, 2014 - Jul 04, 2014; Helsinki; Finland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...