ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (591)
  • AERODYNAMICS  (366)
  • FLUID MECHANICS AND HEAT TRANSFER  (225)
  • Animals
  • 1980-1984  (591)
  • 1925-1929
  • 1981  (591)
  • 1
    Publication Date: 2011-10-14
    Description: The test capabilities of the Stability Wind Tunnel of the Virginia Polytechnic Institute and State University are described, and calibrations for curved and rolling flow techniques are given. Oscillatory snaking tests to determine pure yawing derivatives are considered. Representative aerodynamic data obtained for a current fighter configuration using the curved and rolling flow techniques are presented. The application of dynamic derivatives obtained in such tests to the analysis of airplane motions in general, and to high angle of attack flight conditions in particular, is discussed.
    Keywords: AERODYNAMICS
    Type: AGARD Dyn. Stability Parameters; 13 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-02-14
    Description: Anchorage dependent cell cultures in fluidized beds are tested. Feasibility calculations indicate the allowed parameters and estimate the shear stresses therein. In addition, the diffusion equation with first order reaction is solved for the spherical shell (double bubble) reactor with various constraints.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Houston Univ. The 1981 NASA ASEE Summer Fac. Fellowship Program, Vol. 2; 19 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-02-14
    Description: Technical improvements of a long life heat rejection system, suitable for long duration high power missions, that can be constructed and deployed in orbit is discussed. A mathematical model is formulated and a computer program developed which describes the transient priming characteristics of a dual passage heat pipe. An experimental test package is described for flight in the KC-135 Zero-g Aircraft, to be used to verify the modeling predictions.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Houston Univ. The 1981 NASA ASEE Summer Fac. Fellowship Program, Vol. 2; 50 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2006-02-14
    Description: Spacelab experiment to investigate two-phase flow patterns under gravity uses a water-air mixture experiment. Air and water are circulated through the system. The quality or the mixture or air-water is controlled. Photographs of the test section are made and at the same time pressure drop across the test section is measured. The data establishes a flow regime map under reduced gravity conditions with corresponding pressure drop correlations. The test section is also equipped with an electrical resistance heater in order to allow a flow boiling experiment to be carried out using Freon II. High-speed photographs of the test section are used to determine flow patterns. The temperature gradient and pressure drop along the duct can be measured. Thus, quality change can be measured, and heat transfer calculated.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Marshall Space Flight Center Spacecraft Dyn. as Related to Lab. Expt. in Space; p 43-57
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2006-02-14
    Description: The equations of motion governing an incompressible fluid contained in an orbiting laboratory were examined to isolate various fictitious forces and their relative influence on the fluid. The forces are divided into those arising from the orbital motions and those arising from small local motions of the spacecraft about its center of mass. The latter dominate the nonrotating experiments. Both are important for rotating experiments. A brief discussion of the onset of time-dependence and violent instability in earth-based rotating and processing systems is given.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Marshall Space Flight Center Spacecraft Dyn. as Related to Lab. Expt. in Space; p 96-102
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2006-02-14
    Description: Natural convection is not always harmful and, therefore, to be avoided. In some situations it may be desirable to have fluid flows in space processes, e.g., to stir the fluid phase for mixing and cooling or to help maintain concentration gradients. In may event, it is important to know the extent and nature of convection in space and the factors on which it depends, in order either to minimize the effects to convection, or to utilize the convection to advantage. The information needed to assess both conventional and unstable convection includes: (1) the magnitude and direction of accelerations; (2) geometric configuration; (3) imposed boundary conditions; and (4) material properties.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Marshall Space Flight Center Spacecraft Dyn. as Related to Lab. Expt. in Space; p 69-95
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2006-02-14
    Description: Systematic scaling or dimensional analysis reveals that certain scales of geophysical fluid flows (such as stellar, ocean, and planetary atmosphere circulations) can be accurately modeled in the laboratory using a procedure which differs from conventional engineering modeling. Rather than building a model to obtain numbers for a specific design problem, the relative effects of the significant forces are systematically varied in an attempt to deepen understanding of the effects of these forces. Topics covered include: (1) modeling a large-scale planetary atmospheric flow in a rotating cylindrical annulus; (2) achieving a radial dielectric body force; (3) spherical geophysical fluid dynamics experiments for Spacelab flights; (4) measuring flow and temperature; and (5) the possible effect of rotational or precessional disturbances on the flow in the rotating spherical containers.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Spacecraft Dyn. as Related to Lab. Expt. in Space; p 25-31
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-02-14
    Description: The two body problem was analyzed with a specific drag model. The model treats drag as a force proportional to the vector velocity and inversely proportional to the distance to the center of attraction. The solution is expressed in terms of known functions and is of a simple and compact form. The time of flight is expressed as a quadrature in the true anomaly. The results are: (1) development of a vector differential equation which allows analysis of an infinite number of gravitational and drag models; and (2) obtaining the solution of a linear differential equation using the inverse method of laplace transforms.
    Keywords: AERODYNAMICS
    Type: Houston Univ. The 1981 NASA ASEE Summer Fac. Fellowship Program, Vol. 2; 22 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-02-14
    Description: To determine the low speed performance characteristics of a representative high aspect ratio supercritical wing, two low speed jet transport models were fabricated. A 12-ft. span model was used for low Reynolds number tests in the Langley 4- by 7-Meter Tunnel and the second, a 7.5-ft. span model, was used for high Reynolds number tests in the Ames 12-foot Pressure Tunnel. A brief summary of the results of the tests of these two models is presented and comparisons are made between the data obtained on these two models and other similar models. Follow-on two and three dimensional research efforts related to the EET high-lift configurations are also presented and discussed.
    Keywords: AERODYNAMICS
    Type: Advan. Aerodyn.: Selected NASA Res.; p 55-77
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-02-14
    Description: Highlight results are presented from subsonic and transonic pressure measurement studies conducted in the Langley Transonic Dynamics Tunnel on a supercritical wing model representative of an energy efficient transport design. Steady- and unsteady-pressure data were acquired on the upper and lower wing surface at an off-design Mach number of 0.60 and at the design Mach number of 0.78, for a Reynolds number of 2.2 x 10(6) (based on the wing average chord). The model configuration consisted of a sidewall-Mounted half-body fuselage and a semi-span wing with an aspect ratio of 10.76, a leading-edge sweepback angle of 28.8 degrees, and supercritical airfoil sections. The wing is instrumented with 252 static pressure orifices and 164 dynamic pressure gages. Model test variables included wing angle of attack, control-surface mean deflection angle, control-surface oscillating deflection angle and frequency, and phasing between oscillating leading-edge and trailing-edge controls when used together.
    Keywords: AERODYNAMICS
    Type: Advan. Aerodyn.: Selected NASA Res.; p 21-36
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2006-02-14
    Description: After the external tank separates from the Orbiter about 2000 pounds of residual liquid oxygen remain in the main propulsion system lines. The pressurization of liquid oxygen from a subcritical to a supercritical state by the use of the heaters of the PRSA tanks while in a low-g environment is investigated. The performance of the heaters while bringing the state of the substance from the subcritical state to the supercritical one is studied, with particular emphasis on the time the pressurization process takes, and the temperature of the heater as the process proceeds.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Houston Univ. The 1981 NASA ASEE Summer Fac. Fellowship Program, Vol. 2; 38 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-08-18
    Description: The problem of forced fluid vibrations in a partially filled spinning spherical tank is solved numerically by using the finite element method. The governing equations include Coriolis acceleration and spatially homogeneous vorticity. An exponential instability is detected in the present simulation for fill ratios below 0.5 and centrifugal acceleration to thrust ratios less than 1.7. This fictitious instability appears in the model as a result of the homogeneous vortex assumption since the free slosh equations are neutrally stable in the Liapunov sense.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Sound and Vibration; 76; May 8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: Promising current theoretical and simulational developments in the field of leading edge vortex-generating delta, arrow ogival wings are reported, along with the history of theory and experiment leading to them. The effects of wing slenderness, leading edge nose radius, Mach number and incidence variations, and planform on the onset of vortex generation and redistribution of aerodynamic loads are considered. The range of design possibilities in this field are consequential for the future development of strategic aircraft, supersonic transports and commercial cargo aircraft which will possess low-speed, high-lift capability by virtue of leading edge vortex generation and control without recourse to heavy and expensive leading edge high-lift devices and compound airfoils. Attention is given to interactive graphics simulation devices recently developed.
    Keywords: AERODYNAMICS
    Type: Astronautics and Aeronautics; 19; May 1981
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-08-18
    Description: Wind tunnel test results are presented for four axisymmetric bluff body configurations in order to determine their effect on form and pressure drag. It was found that drag reductions on the order of 40% are obtainable with an afterbody incorporating four longitudinal 'V' grooves. Although this effect may be due to the functioning of the grooves as longitudinal, continuous vortex generators, it is concluded that further research is needed to elucidate the physical basis of the test results. Optimization of the effect will be useful in base drag reduction for such vehicles as automobiles and cargo aircraft with sharply upswept afterbodies.
    Keywords: AERODYNAMICS
    Type: AIAA Journal; 19; Apr. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-18
    Description: A fundamental analysis of two-dimensional supersonic boundary layer flow, both laminar and turbulent, is presented for a wide range of normal and nonnormal mass-transfer velocities. The analysis is based on the numerical solution of the Navier-Stokes equations, and results are compared with available theoretical and experimental data. Certain cases of practical importance, for which results are not presently available, are referred to.
    Keywords: AERODYNAMICS
    Type: Computer Methods in Applied Mechanics and Engineering; 25; Jan. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: Interactions between theoretical aerodynamics and the NTF are discussed. The development and validation of computational fluid dynamics computer codes, the determination of Reynolds number scaling laws, and extension of the data bases of entrainment type turbulence models to include high Reynolds number data are recommended areas of study. The major benefit theoretical aerodynamics could have on the NTF is in the quantitative description of wind tunnel wall interference effects.
    Keywords: AERODYNAMICS
    Type: High Reynolds Number Res. - 1980; p 277-286
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-08-18
    Description: Requirements of entry vehicle design requiring high Reynolds number wind tunnel testing are discussed. The space shuttle orbiter, development of future space transportation systems, and planetary entry data analysis are considered.
    Keywords: AERODYNAMICS
    Type: High Reynolds Number Res. - 1980; p 265-274
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: The status of recommended areas of study for the NTF are reviewed. Transonic and control surface unsteady aerodynamics, and buffet onset and loads are considered. Testing of dynamically scaled flutter models is discussed.
    Keywords: AERODYNAMICS
    Type: High Reynolds Number Res. - 1980; p 237-246
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-08-18
    Description: The model building, development, and testing experience gained during 8 years of operation of the 0.3-m Transonic Cryogenic Tunnel (TCT) is summarized. The summary is divided into four portions: (1) models tested in the 0.3-m TCT's original octagonal test section; (2) models tested in the present two dimensional test section; (3) models tested as a part of tunnel calibration and the development of advanced technology airfoils; and (4) development of a new way to construct two dimensional airfoil models. Design requirements imposed on the models by high Reynolds number testing at cryogenic temperatures are reviewed.
    Keywords: AERODYNAMICS
    Type: High Reynolds Number Res. - 1980; p 53-73
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-08-18
    Description: Heat transfer characteristics are analyzed for a cooled two-dimensional porous medium having a curved boundary. A general analytical procedure is given in combination with a numerical conformal mapping method used to transform the porous region into an upper half plane. To illustrate the method, results are evaluated for a cosine shaped boundary subjected to uniform external heating. The results show the effects of coolant starvation in the thick regions of the medium, and the extent that internal heat conduction causes the heated surface to have a more uniform temperature.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2011-08-18
    Description: An interactive method is proposed for the solution of two-dimensional, laminar flow fields with identifiable regions of recirculation, such as the shear-layer-driven cavity flow. The method treats the flow field as composed of two regions, with an appropriate mathematical model adopted for each region. The shear layer is computed by the compressible boundary layer equations, and the slowly recirculating flow by the incompressible Navier-Stokes equations. The flow field is solved iteratively by matching the local solutions in the two regions. For this purpose a new matching method utilizing an overlap between the two computational regions is developed, and shown to be most satisfactory. Matching of the two velocity components, as well as the change in velocity with respect to depth is amply accomplished using the present approach, and the stagnation points corresponding to separation and reattachment of the dividing streamline are computed as part of the interactive solution. The interactive method is applied to the test problem of a shear layer driven cavity. The computational results are used to show the validity and applicability of the present approach.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Computational Physics; 40; Apr. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2011-08-18
    Description: A series of wind tunnel tests were run on 60 and 75 deg sweep delta wings to examine the effectiveness of leading-edge vortex flaps. Tests results showed that leading-edge vortex flaps are effective in giving large increases in lift-to-drag ratio and decreases in drag over a wide range of angle of attack. Tests on inverted flaps on the 60 deg delta wing showed substantial increases in lift and drag and may indicate a possibility of using inverted flaps on delta wings in the landing portion of flight. The 60 deg data were compared with that for a 75 deg sweep delta wing confirming that leading-edge vortex flap effectiveness is stronger as sweep is increased. Pitching moment effects due to vortex flaps use were also examined.
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft; 18; Apr. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2011-08-18
    Description: Results of hot-wire measurements in an incompressible partially confined jet issuing from an array of rectangular nozzles, equally spaced with their small dimensions aligned are presented. The quantities measured include mean velocity and the Reynolds stress in the two central planes of the jet at stations covering up to 115 widths (small dimension of a nozzle) downstream of the nozzle exit. For downstream distances greater than 60 widths, the flowfield is observed to be nearly homogenous and the turbulence appears to be quite similar to that of a grid generated turbulence.
    Keywords: AERODYNAMICS
    Type: AIAA Journal; 19; Mar. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: Newtonian flow theory for unsteady flow at very high Mach numbers is completed by the addition of a centrifugal force correction to the impact pressures. The correction term is the unsteady counterpart of Busemann's centrifugal force correction to impact pressures in steady flow. For airfoils of arbitary shape, exact formulas for the unsteady pressure and stiffness and damping-in-pitch derivatives are obtained in closed form, which require only numerical quadratures of terms involving the airfoil shape. They are applicable to airfoils of arbitrary thickness having sharp or blunt leading edges. For wedges and thin airfoils these formulas are greatly simplified, and it is proved that the pitching motions of thin airfoils of convex shape and of wedges of arbitrary thickness are always dynamically stable according to Newton-Busemann theory. Leading-edge bluntness is shown to have a favorable effect on the dynamic stability; on the other hand, airfoils of concave shape tend toward dynamic instability over a range of axis positions if the surface curvature exceeds a certain limit. As a byproduct, it is also shown that a pressure formula recently given by Barron and Mandl for unsteady Newtonian flow over a pitching power-law shaped airfoil is erroneous and that their conclusion regarding the effect of pivot position on the dynamic stability is misleading.
    Keywords: AERODYNAMICS
    Type: AIAA Journal; 19; Mar. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-08-18
    Description: Vortex phenomena encountered in an investigation of the streamwise development of the three-dimensional wake region behind the tip of a three-dimensional wedge model are reported. Pressure profiles were measured by pitot probes downstream of a tip with a nearly constant surface pressure level and a nearly continuous surface curvature in a blowdown air tunnel operating at Mach 6. Rather than the simple three-dimensional quasi-parallel shear flow expected, the measurements indicated the presence of a flow with large deficits in longitudinal pitot pressure, which are usually associated with the core region of quasi-steady longitudinal vortices. Vapor screen flow visualizations also support the presence of longitudinal vortices located primarily in the tip region and evidently forming in the vicinity of the wake neck. An increase in overall wake thickness by 100% is also observed. The origin of the vortices as quasi-steady Taylor-Gortler vortices generated in the concavely curved shear layer near the wake neck is considered. It is pointed out that the existence of longitudinal vortexes suggests that three-dimensional turbulence modeling may be much more difficult than previously supposed.
    Keywords: AERODYNAMICS
    Type: AIAA Journal; 19; Mar. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-08-18
    Description: The shear-free turbulent boundary layer is calculated by the large-eddy simulation technique. The filtered Navier-Stokes equations are used; the method of integration employs Fourier expansions in the homogeneous directions and finite differences in the cross-stream direction. Results indicate that the simulation is capable of predicting the primary Reynolds-number effects.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Fluid Mechanics; 103; Feb. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2011-08-18
    Description: The quantum mechanical technique is used to study ionic, configurational, and impurity defects in the ice surface. In addition to static calculations of the energetics of the water monomer-ice surface interactions, molecular dynamics studies were initiated. The calculations of the monomer-ice surface interaction, molecular dynamics studies were initiated. The calculations of monomer-ice surface interactions indicate that many adsorption sites exist on the ice surfaces and that the barriers between bonding sites are relatively low. Bonding on the prism face of ice is preferentially above lattice sites.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: A Mol. Model for Ice Nucleation and Growth; 27 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: The central field empirical pair potential model is applied to studying the effects of kinks, ledges, and vacancies on the absorption of water molecules from the vapor. Molecular dynamics simulations indicate that cluster and/or surface modes play a primary role in the absorption process, the flexibility of the hydrogen bond serves to decrease the energy required for structural interconversion, and the rapid distribution of added energy in a hydrogen bonded system lead to aggregate stability which greatly exceeds that predicted by static energy calculations.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: A Mol. Model for Ice Nucleation and Growth; 22 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-08-18
    Description: Tests that can exploit the capability of the NTF and the transonic cryogenic tunnel, or lead to improvements that could enhance testing in the NTF are discussed. Shock induced oscillation, supersonic single degree control surface flutter, and transonic flutter speed as a function of the Reynolds number are considered. Honeycombs versus screens to smooth the tunnel flow and a rapid tunnel dynamic pressure reducer are recommended to improve tunnel performance.
    Keywords: AERODYNAMICS
    Type: NASA. Langley Research Center High Reynolds Number Res. - 1980; p 153-161
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: Basic calibration of the tunnel prior to conducting any tests, the areas requiring wind tunnel/flight test correlation for validating the NTF, and recommendations for achieving validation of the NTF are discussed.
    Keywords: AERODYNAMICS
    Type: NASA. Langley Research Center High Reynolds Number Res. - 1980; p 249-262
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: The NASA Langley high lift technology program is reviewed and elements of the program which are considered Reynolds number sensitive are discussed. The Energy Efficient Transport (EET) and Supersonic Cruise Research (SCR) models proposed for high lift studies in the National Transonic Facility (NTF) are described. Recommendations regarding the NTF facility and test techniques are presented.
    Keywords: AERODYNAMICS
    Type: High Reynolds Number Res. - 1980; p 197-213
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: Areas of investigation in fluid dynamics, recommended experiments, and use of the facility for theory evaluation are discussed. Tunnel flow quality and calibration of the NTF are considered. Recent technological advances affecting tunnel design are surveyed.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: High Reynolds Number Res. - 1980; p 169-195
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: The interference technology incorporated into the NTF design (hardware) and the emerging transonic wall interference assessment correction procedures (software) to be employed when the NTF becomes operational was reviewed. It is anticipated that the early experiments will provide data relevant to wall interference effects.
    Keywords: AERODYNAMICS
    Type: High Reynolds Number Res. - 1980; p 123-241
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: Static aerodynamic research related to aircraft configurations in their cruise or combat modes is discussed. Subsonic transport aircraft, transonic tactical aircraft, and slender wing aircraft are considered. The status and plans of Langley's NTF configuration research program are reviewed. Recommendations for near term configuration research are made.
    Keywords: AERODYNAMICS
    Type: High Reynolds Number Res. - 1980; p 217-234
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-08-18
    Description: The National Transonic Facility (NTF) capability to match the full scale Reynolds numbers of all but the largest airplanes is discussed. Conversion factors to enable calculation of Sl-unit equivalents for all U.S. units are listed. Using data from several facilities, analytic methods, and flight test data, a competetive aircraft in the relatively low Reynolds number was developed. The NTF offers the capability to obtain data at full scale Reynolds numbers in the cruise condition for most of the products, and will be much closer than previous tunnels to full scale Reynolds number for the operating envelopes. It is primarily on the operating envelope that Reynolds number effects are most important and least predictable.
    Keywords: AERODYNAMICS
    Type: NASA. Langley Research Center High Reynolds Number Res. - 1980; p 143-148
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2011-08-18
    Description: The conservation-law form of the inviscid gasdynamic equations has the remarkable property that the nonlinear flux vectors are homogeneous functions of degree one. This property readily permits the splitting of flux vectors into subvectors by similarity transformations so that each subvector has associated with it a specified eigenvalue spectrum. As a consequence of flux vector splitting, new explicit and implicit dissipative finite-difference schemes are developed for first-order hyperbolic systems of equations. Appropriate one-sided spatial differences for each split flux vector are used throughout the computational field even if the flow is locally subsonic. The results of some preliminary numerical computations are included.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Computational Physics; 40; Apr. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2011-08-18
    Description: The paper presents numerical solutions of the full potential equation in conservative form. The iteration scheme used is a fully implicit approximate factorization technique and provides a significant improvement in convergence speed relative to standard successive line overrelaxation algorithms. The spatial differencing algorithm is centrally differenced in both subsonic and supersonic regions to maintain stability. This effectively approximates rotated differencing, thereby greatly improving the reliability of the algorithm.
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: The ILLIAC IV computer has been programmed with an implicit, finite-difference code for solving the thin layer compressible Navier-Stokes equation. Results presented for the case of the buffet boundaries of a conventional and a supercritical airfoil section at high Reynolds numbers are found to be in agreement with experimentally determined buffet boundaries, especially at the higher freestream Mach numbers and lower lift coefficients where the onset of unsteady flows is associated with shock wave-induced boundary layer separation.
    Keywords: AERODYNAMICS
    Type: AIAA Journal; 19; Nov. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: It is noted that several terms in the two-point spectral equation for homogeneous turbulence can be interpreted as spectral-transfer terms; that is, they represent the net rate of energy transfer into a wavenumber region from all other wavenumbers. This holds for terms associated with both turbulence and self-interaction and interaction between turbulence and mean gradients. It is not seen as obvious, however, that similar interpretations apply when the turbulence is not homogeneous. In particular, one might question the interpretation for the terms associated with turbulence self-interaction because the condition of homegeneity is generally used in making the interpretation. It is the purpose here to consider whether terms interpretable as transfer terms exist in the equations for inhomogeneous turbulence. It is found that certain terms in the two-point spectral equation can be interpreted as transfer terms.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Physics of Fluids; 24; Oct. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: A solution to the rapid-distortion theory for small-scale turbulence in flow round an axisymmetric obstacle is derived. General formulae for velocity covariances and Eulerian time scales are obtained and are evaluated for the particular case of flow round a sphere. The large-scale limit for this flow is also discussed.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Quarterly Journal of Mechanics and Applied Mathematics; 34; Nov. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: The considered study is based on new theoretical concepts regarding a post-instability model of a fluid discussed by Zak (1980). The model permits the completion of the governing equations of turbulence by introducing multivalued fields of velocities. Attention is given to the mechanism of energy dissipation, the characteristic wave propagation, a simplified model, the formation of turbulence around stagnation points, the formulation of boundary conditions, and the mechanism of turbulence formation. The mechanism of turbulence formation can be understood as propagation of initial discontinuities from the boundaries into a flow with the characteristic velocity which is defined by the normal (to the boundary) velocity components. These components emerge at the boundary as a result of jumps in the tangential components due to the continuity equation.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Mechanics Research Communications; 8; 2, 19; 1981
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: Hot-wire measurements in an incompressible rectangular jet, issuing into a quiet environment at ambient conditions, are presented. A blow-down-type air supply system was used to provide the airflow to a cylindrical settling chamber 1.75 m in length and 0.6 m in diameter. The measurements were made with constant-temperature anemometers in conjunction with linearizers. The two signals from the linearizers were sent through a sum and difference unit which was calibrated from dc to 100 kHz. The distributions of mean velocity and the turbulence shear stresses were measured in the two central planes of the jet stations up to 115 widths downstream of the nozzle exit. Three distinct regions characterized the jet flow field: a potential core origin, a two-dimensional-type region, and an axisymmetric type region. The onset of the second region appeared to be at a location where the shear layers separated by the short dimension of the nozzle meet; and the third region occurred at a downstream location where the two shear layers from the short edges of the nozzle meet. In the central plane, similarity was found both in the mean velocity and shear stress profiles beyond 30 widths downstream of the nozzle exit; profiles of rms velocity showed similarity in the second, but not the third region.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Fluid Mechanics; 107; June 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2011-08-18
    Description: A clarification is presented on recent work concerning the application of unsteady airfoil theory to rotary wings. The application of this theory may be seen as consisting of four steps: (1) the selection of an appropriate unsteady airfoil theory; (2) the resolution of that velocity which is the resultant of aerodynamic and dynamic velocities at a point on the elastic axis into radial, tangential and perpendicular components, and the angular velocity of a blade section about the deformed axis; (3) the expression of lift and pitching moments in terms of the three components; and (4) the derivation of explicit expressions for the components in terms of flight velocity, induced flow, rotor rotational speed, blade motion variables, etc.
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft; 18; July 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2011-08-18
    Description: It is now generally agreed that an external disturbance field, such as an incident acoustic wave, can effectively couple to instabilities of a flow past a trailing edge. One purpose of the present paper is to show that there are situations where a similar coupling can occur at a leading edge. The process is analyzed and the effects of experimentally controllable parameters are assessed. It is important to account for such phenomena when evaluating the effect of external disturbances on transition.
    Keywords: AERODYNAMICS
    Type: Journal of Fluid Mechanics; 104; Mar. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2011-08-18
    Description: A discrete vortex method was used to analyze the separated non-steady flow about a cambered airfoil. The foil flow modelling is based on the thin lifting-surface approach, where the chordwise location of the separation point is assumed to be known from experiments or flow-visualization data. Calculated results provided good agreement when compared with the post-stall aerodynamic data of two airfoils. Those airfoil sections differed in the extent of travel of the separation point with increasing angle of attack. Furthermore, the periodic wake shedding was analyzed and its time-dependent influence on the airfoil was investigated.
    Keywords: AERODYNAMICS
    Type: Journal of Fluid Mechanics; 102; Jan. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: An overview of the Pathfinder Models Program is presented. The Pathfinder program is a major research and development activity in support of the National Transonic Facility Activation Plan. The program scope, models design approach, and Pathfinder model configurations are presented along with a discussion of major supportive program activities. The anticipated design criteria for NTF models are presented.
    Keywords: AERODYNAMICS
    Type: High Reynolds Number Res. - 1980; p 37-52
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: Governing equations are developed for a simple capacitive heat exchanger. This type of heat exchanger consists of hot spherical particles falling through an ascending cold gas stream. The assumptions made in deriving the continuity, momentum and energy equations are clearly stated. The analysis yields a system of first order, ordinary, nonlinear equations which form a complex boundary value problem. The method of solution is presented together with a comparison between the performance of capacitive heat exchangers and conventional counter flow ones.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: The Telecommun. and Data Acquisition Progr. Rept. 42-64; p 207-221
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: Amiet's (1976, 1978) solution to the problem of airfoil trailing edge noise prediction is discussed in light of the results of evanescent wave theory's application to the measured surface pressure behavior near the trailing edge of an airfoil with a turbulent boundary layer. The method employed by Amiet has the advantage of incorporating the effect of finite chord in its solution. The assumed form of the pressure distribution is examined as well as the constant turbulent boundary layer convection assumption, which is found to be unnecessarily restrictive.
    Keywords: AERODYNAMICS
    Type: Journal of Sound and Vibration; 77; Aug. 8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: It is shown that the mechanisms of forebody drag reduction by means of either a spike or a forward-facing jet are similar, with the maximum achievable drag reduction being of the same order. Because the jet may be a relatively cool gas, however, the forward facing jet has the additional capability of reducing the aerodynamic heating that is so severe at high Mach numbers. By means of the correlation presented, jet ejection parameters may be chosen to achieve maximum permissible forebody drag reduction. The correlation method uses a momentum coefficient that characterizes jet efflux and freestream conditions.
    Keywords: AERODYNAMICS
    Type: AIAA Journal; 19; Oct. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2011-08-18
    Description: A complete Newtonian flow theory is presented for unsteady flow past oscillating bodies of revolution of general shape at very high Mach numbers, consideration being given to a centrifugal force correction to the impact pressures. Expressions are obtained for the unsteady pressure and the stability derivatives are presented in closed form. It is stressed that the correction for the centrifugal force, which arises because of the curved trajectories that fluid particles follow along the surface subsequent to their impact, must not be neglected. If the correction is included, the theory is shown to be in excellent agreement with experimental results for relatively sharp cones. Theoretical results are in poor agreement with experimental results in air for bodies having moderate or large-nose bluntness.
    Keywords: AERODYNAMICS
    Type: AIAA Journal; 19; Oct. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: A definition for the large-scale coherent structure is presented, and the nature and role of coherent structures in turbulent shear flows are examined. The equations governing the coherent motions and the experimental considerations as well as constraints in the investigations of coherent structures in wall-bounded and free turbulent shear flows are discussed. Results from a few of our recent and on-going studies of coherent structures in excited and unexcited free turbulent shear flows are reviewed. These results show that coherent structures are dominant in transport in the early stages of their formation, but not in the self-preserving regions of turbulent shear flows.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: vol. 4; Aug. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2011-08-18
    Description: Accurate heat transfer results are provided for the case of nonisothermal objects. A steady, laminar, free convection boundary layer flow over two-dimensional or rotationally symmetrical bodies of nonuniform surface temperature situated in an ambient fluid of undisturbed temperature is considered analytically. The surface heat flux is given in terms of the Nusselt number and wall derivatives of universal functions for Prandtl numbers of 0.72 and 100 are provided. The method is shown to be valid up to a temperature/radius ratio of 130 deg.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2017-10-02
    Description: To inlet flow field and engine inlet performance data for an advanced fighter aircraft configuration were obtained over the Mach 0.6 to 2.0 range. The studies not only provided extensive data for the baseline arrangement, but also evaluated the effects of key aircraft configuration variables (inlet location, canopy-dorsal integration, wing leading-edge extension planform area, and variable incidence canards) on top inlet performance. In order to set these data in the context of practical aircraft systems top inlet performance is compared with that of more conventional inlet/airframe integrations. The results of these evaluations show that, for the top inlet configuration tested, relatively good inlet performance and compatibility characteristics are maintained during subsonic and transonic maneuver. However, at supersonic speeds, flow expansion over the forebody and wings causes an increase in local inlet Mach number subsequently reduces inlet performance levels. These characteristics infer that although top inlets many not pose a viable design option for aircraft requiring a high degree of supersonic maneuverability, they have distinct promise for vehicles with subsonic and transonic maneuver capabilities.
    Keywords: AERODYNAMICS
    Type: AGARD Aerodyn. of Power Plant Installation; 17 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2017-10-02
    Description: The aerodynamic phenomena associated with high angles of attack and their effects on the dynamic stability characteristics of airplane and missile configurations are examined. Information on dynamic effects is limited. Steady flow phenomena and their effects on the forces and moments are reviewed. The effects of asymmetric vortices and of vortex bursting on the dynamic response of flight vehicles are reviewed with respect to their influence on: (1) nonlinearity of aerodynamic coefficients with attitude, rates, and accelerations; (2) cross coupling between longitudinal and lateral directional models of motion; (3) time dependence and hysteresis effects; (4) configuration dependencey; and (5) mathematical modeling of the aerodynamics.
    Keywords: AERODYNAMICS
    Type: AGARD Dyn. Stability Parameters; 18 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2017-10-02
    Description: A viscous-inviscid interaction model for predicting jet entrainment effects on axisymmetric, nozzle afterbodies at subsonic speeds is presented. The model is based on a displacement thickness correction to the inviscid jet boundary that accounts for mixing-induced streamline deflections in the inviscid region. The displacement correction is shown to be related to the local mass entrainment rate and, for thin mixing layers, the model is shown to be analogous to displacement models used in conventional boundary-layer interaction theory. A method is presented for computing the entrainment rate by an overlaid mixing layer model that accounts for the nonsimilar behavior and pressure gradients occurring in the near field region. An iterative scheme for coupling the model to analyses for the external inviscid flow, the external boundary layer, and the inviscid jet exhaust is also given. Results are presented that illustrate the qualitative behavior of the entrainment interaction under various flow conditions and that demonstrate the validity of the model by comparisons with experiment.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AGARD Computation of Viscous-Inviscid Interactions; 15 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2017-10-02
    Description: Topics discussed include shear flow models, simplified models for treating separation, classical linear theory, a local linearization theory, a transonic linear theory, a transonic nonlinear theory, the experiment of Davis, and the experiment of Tijdeman. It is concluded that shear flow models, which have proven very accurate in taking into account boundary layer effects for panel flutter, are likely to be less so for lifting surface flutter. For many applications in transonic flow, transonic linear theory will be adequate.
    Keywords: AERODYNAMICS
    Type: AGARD Boundary Layer Effects on Unsteady Airloads; 28 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2017-10-02
    Description: Scale effects are discussed with reference to a conventional airfoil (NACA 64A010) and a supercritical airfoil (NLR 7301) at mean flow conditions that support both weak and strong shock waves. During the experiment the Reynolds number was varied from 3 x 10 to the sixth power at time history data are presented over the range of reduced frequencies that are important in aeroelastic applications. The experimental data show that viscous effects are important in the case of the supercritical airfoil at all flow conditions and in the case of the conventional airfoil under strong shock wave conditions. Some frequency dependent viscous effects were also observed.
    Keywords: AERODYNAMICS
    Type: AGARD Boundary Layer Effects on Unsteady Airfoils; 13 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-12-01
    Description: Experimental results obtained at NASA Langley during studies of natural laminar flow (NLF) over commercially produced aircraft surfaces are reported. The general aviation aircraft examined were light aircraft, yet displayed NLF extents close to the maximum available and equivalent to high performance business aircraft flying envelopes. Sublimating chemicals and acoustic detection techniques were employed to measure the boundary layer transition. Theoretical predictions of boundary layer stability were found to match well with the experimental data, with consideration given to both swept wings and the amplitudes of allowable waves on the airfoil surfaces. The presence of the NLF on the airfoil surfaces confirmed the benefits available from use of composite materials for airfoil surfaces.
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: A supercritical airfoil section was designed with favorable pressure gradients on both the upper and lower surfaces. Wind tunnel tests were conducted in the Langley 8 Foot Transonic Pressure Tunnel. The outer wing panels of the F-111 TACT airplane were modified to incorporate partial span test gloves having the natural laminar, flow profile. Instrumentation was installed to provide surface pressure data as well as to determine transition location and boundary layer characteristics. The flight experiment encompassed 19 flights conducted with and without transition fixed at several locations for wing leading edge sweep angles which varied from 10 to 26 at Mach numbers from 0.80 to 0.85 and altitudes of 7620 meters and 9144 meters. Preliminary results indicate that a large portion of the test chord experienced laminar flow.
    Keywords: AERODYNAMICS
    Type: NASA. Langley Research Center Advan. Aerodyn. and Active Controls; p 135-144
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-06-28
    Description: The intent of the present experiment is to define a near optimum value of drag coefficient for a high volume type of vehicle through the use of a boattail, on a vehicle already having rounded front corners and an underbody seal, or fairing. The results of these tests will constitute a baseline for later follow-on studies to evaluate candidate methods of obtaining afterbody drag coefficients approaching the boattail values, but without resorting to such impractical afterbody extensions. The current modifications to the box-shaped vehicle consisted of a full and truncated boattail in conjunction with the faired and sealed underbody. Drag results from these configurations are compared with corresponding wind tunnel results of a 1/10 scale model. Test velocities ranged up to 96.6 km/h (60 mph) and the corresponding Reynolds numbers ranged up to 1.3 x 10 to the 7th power based on the vehicles length which includes the boattail. A simple coast-down technique was used to define drag.
    Keywords: AERODYNAMICS
    Type: NASA-CR-176982 , NAS 1.26:176982
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2016-06-07
    Description: Method which present a student with a more challenging and true to life situation of needing to conduct research in a problem solving context--and not thinking about organization of format until research and thinking are complete are investigated. Simulation-gaming techniques which attempt to teach initiative and creativity that library research are used for this purpose. However, it is shown case studies provide the greatest opportunities to engage the students in problem solving situations in which they develop skills as researchers and writers.
    Keywords: AERODYNAMICS
    Type: NASA. Langley Research Center Tech. Commun., Pt. 1; p 99-103
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-01-25
    Description: Dynamic stall and its consequences which are important to aircraft design and operation are discussed. A certain degree of unsteadyness always accompanies the flow over streamlined bodies at high angle of attack, however, the stall of lifting surface undergoing unsteady motion is more complex than static stall. Dynamic stall remains a major unsolved problem with a variety of applications in aeronautics, hydrodynamics and wind engineering.
    Keywords: AERODYNAMICS
    Type: Von Karman Inst. for Fluid Dynamics Unsteady Airloads and Aeroelastic Probl. in Separated and Transonic Flow; 28 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-01-25
    Description: The impulsive nature of noise due to the interaction of a rotor blade with a tip vortex is studied. The time signature of this noise is calculated theoretically based on the measured blade surface pressure fluctuation of an operational load survey rotor in slow descending flight and is compared with the simultaneous microphone measurement. Particularly, the physical understanding of the characteristic features of a waveform is extensively studied in order to understand the generating mechanism and to identify the important parameters. The interaction trajectory of a tip vortex on an acoustic planform is shown to be a very important parameter for the impulsive shape of the noise. The unsteady nature of the pressure distribution at the very leading edge is also important to the pulse shape. The theoretical model using noncompact linear acoustics predicts the general shape of interaction impulse pretty well except for peak amplitude which requires more continuous pressure information along the span at the leading edge.
    Keywords: AERODYNAMICS
    Type: DGLR Seventh European Rotorcraft and Powered Lift Aircraft Forum; 20 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-06-28
    Description: A new combination of a finite volume discretization in conjunction with carefully designed dissipative terms of third order, and a Runge Kutta time stepping scheme, is shown to yield an effective method for solving the Euler equations in arbitrary geometric domains. The method has been used to determine the steady transonic flow past an airfoil using an O mesh. Convergence to a steady state is accelerated by the use of a variable time step determined by the local Courant member, and the introduction of a forcing term proportional to the difference between the local total enthalpy and its free stream value.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 81-1259
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-06-28
    Description: A computer program was developed to predict the trajectory, ground deposition, and drift of liquid sprays injected into the wake of an agricultural aircraft in ground effect. The program uses a horseshoe vortex wake model and includes the effects of liquid droplet evaporation, crosswind, the propeller slipstream, ground effect, and tunnel walls on small scale models. This user's guide includes several case examples demonstrating user options. A complete listing of the FORTRAN program is provided.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-CR-165816 , NAS 1.26:165816 , AARL-TR-81-0
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-06-28
    Description: An airfoil designed for helicopter rotor application is investigated. The airfoil is designed to increase maximum normal force coefficient while maintaining favorable drag divergence and pitching moment characteristics. Two modifications are also tested. Maximum normal force coefficient varies from 1.14 to 0.90 at Mach numbers from about 0.35 to 0.65. Both modifications decreased drag coefficient at zero normal force coefficient for Mach numbers near drag divergence, but were less beneficial at a normal force coefficient of -0.2.
    Keywords: AERODYNAMICS
    Type: NASA-TP-1965 , L-14825 , NAS 1.60:1965 , AVRADCOM-TR-81-B-6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-06-28
    Description: A task for the Energy Efficient Transport program conducted: (1) The design and wind tunnel development of high-aspect-ratio supercritical wings, investigating the cruise speed regime and also high-lift. (2) The preliminary design and evaluation of an aircraft combining a high-aspect-ratio supercritical wing with a winglet. (3) Active Controls: The determination of criteria, configuration, and flying qualities associated with augmented longitudinal stability of a level likely to be acceptable for the next generation transport; and the design of a practical augmentation system. The baseline against which the work was performed and evaluated was the Douglas DC-X-200 twin engine derivative of the DC-10 transport. The supercritical wing development showed that the cruise and buffet requirements could be achieved and that the wing could be designed to realize a sizable advantage over today's technology. Important advances in high lift performance were shown. The design study of an aircraft with supercritical wing and winglet suggested advantages in weight and fuel economy could be realized. The study of augmented stability, conducted with the aid of a motion base simulator, concluded that a negative static margin was acceptable for the baseline unaugmented aircraft.
    Keywords: AERODYNAMICS
    Type: NASA-CR-3469 , NAS 1.26:3469
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-06-28
    Description: A high aspect ratio supercritical wing with oscillating control surfaces is described. The semispan wing model was instrumented with 252 static orifices and 164 in situ dynamic pressure gases for studying the effects of control surface position and sinusoidal motion on steady and unsteady pressures. Data from the present test (this is the second in a series of tests on this model) were obtained in the Langley Transonic Dynamics Tunnel at Mach numbers of 0.60 and 0.78 and are presented in tabular form.
    Keywords: AERODYNAMICS
    Type: NASA-TM-83201 , L-14831 , NAS 1.15:83201
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-06-28
    Description: A laser-induced fluorescence technique based on the pulsed two-photon excitation of NO is presented which is especially suited for the measurement of fluctuating temperatures in cold turbulent flows. The technique uses the fluorescence from the UV gamma bands of NO produced by two-photon excitation of NO (A 2 Sigma +, nu-prime = 0 - X 2 Pi, nu-double prime = 0) to obtain a rotational temperature. An analysis is presented of relevant aspects of the two-photon absorption process including microphysical processes, spectral intensities as a function of transition and laser spectral widths, line-shape integrals, the nonequilibrium response of the medium to a laser pulse, fluorescence energies, signal to noise ratio, and focusing effects. An analysis of absolute two-photon absorptivity measured in a nonflowing cell is then presented and used to predict signal to noise ratios greater than 50 for supersonic flows at temperatures below 300 K.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Applied Optics; 20; June 15
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-06-28
    Description: The Galerkin equations for convection in a sphere are examined to determine which physical processes are neglected by the severe truncation of the equations of motion. It is demonstrated that the gross features of the flow are affected by truncation in the horizontal direction, with all of the models considered being well resolved in the vertical direction. One of the effects of truncation is to enhance the high-wave number end of the kinetic energy and thermal variance spectra. The examples cited indicate that as long as the kinetic energy spectrum decreases with wave number, a truncation gives a qualitatively correct solution. Conclusions are tested by calculating solutions to the equations of motion for several values of the Rayleigh number and the limit of horizontal spatial resolution.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Fluid Mechanics; 103; Feb. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-06-28
    Description: Starting from the first principles, and with one experimentally obtained parameter, an expression for stagnation heat transfer is derived, applicable to round, impinging jets. The results obtained with a row of air jets impinging on an electrically-heated surface in a small-scale setup characteristic of a typical turbine blade have been found compatible with the average heat transfer from a geometrically similar, steam-heated surface scaled up ten times, and comparable with the results of other investigators. These findings were linked to the flow fields likely to exist in the gas turbine blades, internally cooled by a row of round jets or a single jet of equivalent width. The magnitude of heat-transfer coefficients obtained here with impinging jets approaches that normally associated with forced convection of water and evaporative cooling.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: International Journal of Heat and Mass Transfer; 24; Mar. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-06-28
    Description: Magnetic clouds are defined as regions with a radial dimension approximately 0.25 AU (at 1 AU) in which the magnetic field strength is high and the magnetic field direction changes appreciably by means of rotation of one component of B nearly parallel to a plane. The magnetic field geometry in such a magnetic cloud is consistent with that of a magnetic loop, but it cannot be determined uniquely. Forty-five clouds were identified in interplanetary data obtained near Earth between 1967 and 1978; at least one cloud passed the Earth every three months. Three classes of clouds were identified, corresponding to the association of a cloud with a shock, a stream interface, or a CME. There are approximately equal numbers of clouds in each class, and the three types of clouds might be different manifestations of a coronal transient. The magnetic pressure inside the clouds is higher than the ion pressure and the sum is higher than the pressure of the material outside of the cloud.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-TM-82114
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-06-28
    Description: Newtonian flow theory for unsteady flow past oscillating bodies of revolution at very high Mach numbers is completed by adding a centrifugal force correction to the impact pressures. Exact formulas for the unsteady pressure and the stability derivatives are obtained in closed form and are applicable to bodies of revolution that have arbitrary shapes, arbitrary thicknesses, and either sharp or blunt noses. The centrifugal force correction arising from the curved trajectories followed by the fluid particles in unsteady flow cannot be neglected even for the case of a circular cone. With this correction, the present theory is in excellent agreement with experimental results for sharp cones and for cones with small nose bluntness; gives poor agreement with the results of experiments in air for bodies with moderate or large nose bluntness. The pitching motions of slender power-law bodies of revulution are shown to be always dynamically stable according to Newton-Busemann theory.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-TM-80459 , LOG-J12130-PT-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-06-28
    Description: An experimental investigation was conducted in the Ames 12-Foot Pressure Wind Tunnel to determine the unpowered aerodynamic characteristics of a 15-percent-scale model of a twin-engine commuter aircraft. Model longitudinal aerodynamic characteristics were examined at discrete flap deflections for various angle-of-attack and wind-tunnel-velocity ranges with the empennage on and off. Data are presented for the basic model configuration consisting of the fuselage, wing, basic wing leading edge, double slotted flaps, midengine nacelles, and empennage. Other configurations tested include a particle-span drooped leading edge (dropped outboard of the engine nacelles), a full-span drooped leading edge, low- and high-mounted engine nacelles, and a single-slotted flap. An evaluation was made of the model mounting system by comparing data obtained with the model mounted conventionally on the wind-tunnel model-support struts and the model inverted.
    Keywords: AERODYNAMICS
    Type: NASA-TM-81284 , A-8552
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-06-28
    Description: Calculations of the model frequency and damping for a hingeless rotor on a gimballed support in hover are compared with measured results for two configurations (differing in blade flap stiffness). Good correlation is obtaned when an inflow dynamics model is used to account for the influence of the unsteady aerodynamics. The effect of the unsteady aerodynamics is significant for this rotor system. The inflow dynamics model introduces additional states corresponding to perturbations of the wake-induced velocity at the rotor disk. The calculations confirm the experimental observation that the inflow mode introduced by these additional states is measurable for one configuration but not for the other.
    Keywords: AERODYNAMICS
    Type: NASA-TM-81302 , A-8635 , USAAVRADCOM-TR-81-B-16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-06-28
    Description: The aerodynamic performance of the inlet manifold and stator assembly of the compressor drive turbine was experimentally determined with cold air as the working fluid. The investigation included measurements of mass flow and stator-exit fluid torque as well as radial surveys of total pressure and flow angle at the stator inlet and annulus surveys of total pressure and flow angle at the stator exit. The stator-exit aftermixed flow conditions and overall stator efficiency were obtained and compared with their design values and the experimental results from three other stators. In addition, an analysis was made to determine the constituent aerodynamic losses that made up the stator kinetic energy loss.
    Keywords: AERODYNAMICS
    Type: NASA-TM-82682 , DOE/NASA/1011-34 , E-572 , AVRADCOM-TR-80-C-20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-06-28
    Description: A flight-test based research program was performed to investigate the aerodynamics and cooling of a horizontally-opposed engine installation. Specific areas investigated were the internal aerodynamics and cooling mechanics of the installation, inlet aerodynamics, and exit aerodynamics. The applicable theory and current state of the art are discussed for each area. Flight-test and ground-test techniques for the development of the cooling installation and the solution of cooling problems are presented. The results show that much of the internal aerodynamics and cooling technology developed for radial engines are applicable to horizontally opposed engines. Correlation is established between engine manufacturer's cooling design data and flight measurements of the particular installation. Also, a flight-test method for the development of cooling requirements in terms of easily measurable parameters is presented. The impact of inlet and exit design on cooling and cooling drag is shown to be of major significance.
    Keywords: AERODYNAMICS
    Type: NASA-CR-3405
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-06-28
    Description: The goal of this research is the assessment of the validity of existing three dimensional numerical programs in the prediction of the flow fields about general three dimensional hypersonic bodies. A detailed experimental research program was performed in which surface and flow field pressures were mapped. The results of the experimental work were compared with existing inviscid programs. Improvements were made on the existing numerical methods to include angle of attack. A summary of this work is presented.
    Keywords: AERODYNAMICS
    Type: NASA-CR-164133
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-06-28
    Description: An aerodynamic analysis system based on potential theory at subsonic/supersonic speeds and impact type finite element solutions at hypersonic conditions is described. Three dimensional configurations having multiple nonplanar surfaces of arbitrary planform and bodies of noncircular contour may be analyzed. Static, rotary, and control longitudinal and lateral directional chracteristics may be generated. The analysis has been implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. Typical simulation indicates that program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.
    Keywords: AERODYNAMICS
    Type: NASA-CR-165628 , NA-80-374-PT-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-06-28
    Description: An investigation of approximate theoretical techniques for predicting aerodynamic characteristics and surface pressures for relatively slender vehicles at moderate hypersonic speeds was performed. Emphasis was placed on approaches that would be responsive to preliminary configuration design level of effort. Potential theory was examined in detail to meet this objective. Numerical pilot codes were developed for relatively simple three dimensional geometries to evaluate the capability of the approximate equations of motion considered. Results from the computations indicate good agreement with higher order solutions and experimental results for a variety of wing, body, and wing-body shapes for values of the hypersonic similarity parameter M delta approaching one.
    Keywords: AERODYNAMICS
    Type: NASA-CR-165651 , NA-80-611
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: The general features of dynamic stall on oscillating airfoils are explained in terms of the vortex shedding phenomenon, and the important differences between static stall, light dynamic stall, and deep stall are described. An overview of experimentation and prediction techniques is given.
    Keywords: AERODYNAMICS
    Type: NASA-TM-81264 , A-8464
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-06-28
    Description: Experiments were performed to determine how boundary layer turbulence is affected by strong convex curvature. The data gathered on the behavior of the Reynolds stress suggested the formulation of a simple turbulence model. Data were taken on two separate facilities. Both rigs had flow from a flat surface, over a convex surface with 90 deg of turning and then onto a flat recovery surface. The geometry was adjusted so that, for both rigs, the pressure gradient along the test surface was zero. Two experiments were performed at delta/R approximately 0.10, and one at weaker curvature with delta/R approximately 0.05. Results show that after a sudden introduction of curvature the shear stress in the outer part of the boundary layer is sharply diminished and is even slightly negative near the edge. The wall shear also drops off quickly downstream. When the surface suddenly becomes flat again, the wall shear and shear stress profiles recover very slowly towards flat wall conditions. A simple turbulence model, which was based on the theory that the Prandtl mixing length in the outer layer should scale on the velocity gradient layer, was shown to account for the slow recovery.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-CR-3391 , HMT-31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-06-28
    Description: An investigation was conducted in the Langley 16 Foot Transonic Tunnel to determine the aeropropulsive characteristics of a single expansion ramp nozzle (SERN) and a two dimensional convergent divergent nozzle (2-D C-D) installed with both an aft swept and a forward swept wing. The SERN was tested in both an upright and an inverted position. The effects of thrust vectoring at nozzle vector angles from -5 deg to 20 deg were studied. This investigation was conducted at Mach numbers from 0.40 to 1.20 and angles of attack from -2.0 deg to 16 deg. Nozzle pressure ratio was varied from 1.0 (jet off) to about 9.0. Reynolds number based on the wing mean geometric chord varied from about 3 million to 4.8 million, depending upon free stream number.
    Keywords: AERODYNAMICS
    Type: NASA-TP-1778 , L-13902
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-06-28
    Description: Laser Doppler velocimetry was used to measure the laminar and turbulent flow in a 90 deg square bend of strong curvature. The boundary layers at the inlet to the bend were approximately 25 percent and 15 percent of the hydraulic diameter for the laminar and turbulent flows, respectively. The development of the pressure driven secondary motion is more rapid for laminar flow: the maximum cross stream component measured was 60 percent of the bulk velocity in contrast to 40 percent for turbulent flow. The streamwise isotachs show that, for laminar flow, large velocities are found progressively nearer to the outer radius of the bend and along the sidewalls. For turbulent flow, the isotachs move towards the inner radius until about 60 deg around the bend where strong secondary motion results in a similar redistribution. Turbulence level and shear stress measurements are also presented.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-CR-3367 , FS-80-29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-06-28
    Description: Forty-six different fins, which were members of twelve plan-form families, were tested. A two dimensional Boeing single element airfoil at an angle of attack of eight degrees and a sweepback angle of thirty-two was used to simulate a portion of the wing of a generator aircraft. Various free stream velocities were used to test any individual fin at its particular angle of attack. While the fin itself was mounted on the upper surface of the generator model, the angle of attack of each fin was varied until stall was reached and/or passed. The relative fin vortex strengths were measured in two ways. First, the maximum angular velocity of a four blade rotor placed in the fin vortex center was measured with the use of a stroboscope. Second, the maximum rolling moment on a following wing model placed in the fin vortex center was measured by a force balance.
    Keywords: AERODYNAMICS
    Type: NASA-CR-163874 , ISU-ERI-AMES-81112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-06-28
    Description: Problems of applying the classical kinetic theory to the growth of small droplets from vapor are examined. A solution for the droplet growth equation is derived which is based on the assumption of a diffusive field extending to the drop surface. The method accounts for partial thermal and mass accommodation at the interface and the kinetic limit to the mass and heat fluxes, and it avoids introducing the artifact of a discontinuity in the thermal and vapor field near the droplet. Consideration of the environmental fields in spherical geometry utilizing directional fluxes yields boundary values in terms of known parameters and a new Laplace transform integral.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-TM-82392
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-06-28
    Description: Natural convection in a spherical container with cooling at the center was numerically simulated using a numerical fluid dynamics computer program. The numerical analysis was simplified by assuming axisymmetric flow in the spherical container, with the symmetry axis being a sphere diagonal parallel to the gravity vector. This axisymmetric spherical geometry was intended as an idealization of the proposed Lal/Kroes crystal growing experiment to be performed on Spacelab. Results were obtained for a range of Rayleigh numbers from 25 to 10,000. The computed velocities were found to be approximately proportional to the Rayleigh number over the range of Rayleigh numbers investigated.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-CR-163955 , LMSC-HREC-TR-D784100
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-06-28
    Description: Five classes of problems are addressed: (1) the extension of the SALLY stability analysis code to the full eighth order compressible stability equations for three dimensional boundary layer; (2) a comparison of methods for prediction of transition using SALLY for incompressible flows; (3) a study of instability and transition in rotating disk flows in which the effects of Coriolis forces and streamline curvature are included; (4) a new linear three dimensional instability mechanism that predicts Reynolds numbers for transition to turbulence in planar shear flows in good agreement with experiment; and (5) a study of the stability of finite amplitude disturbances in axisymmetric pipe flow showing the stability of this flow to all nonlinear axisymmetric disturbances.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-CR-165661 , CHI-43
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-06-28
    Description: The effect of the specific heat ratio gamma of the incoming ideal gas on the flow properties, especially on pressure distributions along the base and sting surfaces and on reattachment distance, was investigated. The specific heat ratios considered were gamma = 1.2, 1.4, and 1.667. Also, effects of other major parameters, such as eddy-viscosity coefficient (or effective Reynolds number) and Mach number, on the afterbody pressure and reattachment distance were studied and are discussed. Evolution of shock induced flow and stabilization time were examined and are discussed for a transient problem. The important influence of the flow-field geometry, pressure distributions, and reattachment distance on the aerodynamics radiative heat transfer for an atmosphere entry probe in high speed flight are briefly described.
    Keywords: AERODYNAMICS
    Type: NASA-TP-1769 , A-8271
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-06-28
    Description: The analysis is based on a primary secondary velocity decomposition in a given coordinate system, and leads to approximate governing equations which correct an a priori inviscid solution for viscous effects, secondary flows, total pressure distortion, heat transfer, and internal flow blockage and losses. Solution of the correction equations is accomplished as an initial value problem in space using an implicit forward marching technique. The overall solution procedure requires significantly less computational effort than Navier-Stokes algorithms. The solution procedure is effective even with the extreme local mesh resolution which is necessary to solve near wall sublayer regions in turbulent flow calculations. Computed solutions for both laminar and turbulent flow compared very favorably with available analytical and experimental results. The overall method appears very promising as an economical procedure for making detailed predictions of viscous primary and secondary flows in highly curved passages.
    Keywords: AERODYNAMICS
    Type: NASA-CR-3388 , R80-900007-12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-06-28
    Description: The clustering algorithm is controlled by a second-order, ordinary differential equation which uses the airfoil surface density gradient as a forcing function. The solution to this differential equation produces a surface grid distribution which is automatically clustered in regions with large gradients. The interior grid points are established from this surface distribution by using an interpolation scheme which is fast and retains the desirable properties of the original grid generated from the standard elliptic equation approach.
    Keywords: AERODYNAMICS
    Type: NASA-TM-81330 , A-8733
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: Goertler instability for boundary-layer flows over generally curved walls is considered. The full-linearized disturbance equations are obtained in an orthogonal curvilinear coordinate system. A perturbation procedure to account for second-order effects is used to determine the effects of the displacement thickness and the variation of the streamline curvature on the neutral stability of the Blasius flow. The streamwise pressure gradient in the mean flow is accounted for by solving the nonsimilar boundary-layer equations. Growth rates are obtained for the actual mean flow and compared with those for the Blasius flow and the Falkner-Skan flows. The results demonstrate the strong influence of the streamwise pressure gradient and the nonsimilarity of the basic flow on the stability characteristics.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Physics of Fluids; 24; Aug. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-06-28
    Description: The effect of leading-edge vortex flaps on the aerodynamic characteristics of highly swept-back wings is analytically investigated, using the free vortex sheet method. The method, based on a three-dimensional inviscid flow model, is an advanced panel type employing quadratic doublet distributions to represent the wing surface, rolled-up vortex sheet and wake and is capable of computing forces, moments and surface pressures.
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft; 18; Sept
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-06-28
    Description: The stability of three-dimensional rotating disk flow is investigated, including the effects of Coriolis forces and streamline curvature. The numerical results show that the critical Reynolds number for establishment of stationary vortex flow is 287. These vortices spiral outward at an angle of about 11.2 deg, and transition to turbulence occurs when their total amplification is about e to the 11th. New experimental results are also reported on the spatial growth rates of the stationary vortices. It is shown that the analysis gives growth rates that compare much better with the experimental results than do results obtained using the Orr-Sommerfeld equation. The experimental results tend to support the numerical prediction that the number of stationary vortices varies directly with the Reynolds number. The calculations also indicate the existence of weakly unstable propagating (type II) modes at low Reynolds numbers (Critical Reynolds Number being approximately equal to 49).
    Keywords: AERODYNAMICS
    Type: AIAA Journal; 19; Sept
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-06-28
    Description: Hybrid wing planforms are studied for adoption on supersonic transport and fighter aircraft. The free vortex sheet method is used to determine effects of the leading-edge sweep angles on the aerodynamic performance of a double arrow wing with a strake. Results show lift and drag increase with the increase of the inboard and outboard leading-edge sweep angles. However, the lift-to-drag ratio is little influenced by the changes in these sweep angles. Spanwise surface pressure distributions on the aft region are influenced by the inboard sweep angle while the outboard sweep angle has no effect on these pressures. Finally, the experimental data and predicted results are compared to show good agreement.
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft; 18; Aug. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-06-28
    Description: A method for analyzing the viscous nonadiabatic flow within turbomachine rotors is presented. The field analysis is based upon the numerical integration of the incompressible Navier-Stokes equations together with the energy equation over the rotors blade-to-blade stream channels. The numerical code used to solve the governing equations employs a nonorthogonal boundary fitted coordinate system that suits the most complicated blade geometries. Effects of turbulence are modeled with two equations; one expressing the development of the turbulence kinetic energy and the other its dissipation rate. The method of analysis is applied to a radial inflow turbine. The solution obtained indicates the severity of the complex interaction mechanism that occurs between different flow regimes (i.e., boundary layers, recirculating eddies, separation zones, etc.). Comparison with nonviscous flow solutions tend to justify strongly the inadequacy of using the latter with standard boundary layer techniques to obtain viscous flow details within turbomachine rotors. Capabilities and limitations of the present method of analysis are discussed.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-06-28
    Description: An analysis and measurement of the effects of the streamwise velocity gradients partial derivative of U with respect to y and partial derivative of U with respect to z, on the velocity components, U, v, and w, and the streamwise vorticity component, omega sub x measured in turbulent flow with a pair of orthogonal hot-wire X arrays, is presented. It is shown that these gradients, which can have the same order of magnitude instantaneously as the mean shear stress at the wall, cause extremely large errors in the measured instantaneous cross-stream velocity and streamwise vorticity components.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Review of Scientific Instruments; 52; June 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-06-28
    Description: Heat transfer in cavity flow is numerically analyzed by a new numerical method called the finite-analytic method. The basic idea of the finite-analytic method is the incorporation of local analytic solutions in the numerical solutions of linear or nonlinear partial differential equations. In the present investigation, the local analytic solutions for temperature, stream function, and vorticity distributions are derived. When the local analytic solution is evaluated at a given nodal point, it gives an algebraic relationship between a nodal value in a subregion and its neighboring nodal points. A system of algebraic equations is solved to provide the numerical solution of the problem. The finite-analytic method is used to solve heat transfer in the cavity flow at high Reynolds number (1000) for Prandtl numbers of 0.1, 1, and 10.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Numerical Heat Transfer; 4; Apr
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-06-28
    Description: The tests were conducted at Mach numbers from 0.40 to 0.90, at angles of attack up to 45 deg for the lower Mach numbers, and at angles of sideslip up to 15 deg. The model variations under study included adding a canard surface and deflecting horizontal tails, ailerons, and rudders.
    Keywords: AERODYNAMICS
    Type: NASA-TM-83171 , L-14433
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-06-28
    Description: A simplified physical model is constructed which simulates the viscous crossflow in a fluid layer near the slots at a fixed streamwise location in a slotted wind tunnel. For low to moderate Reynolds numbers, numerical solutions of the two-dimensional, incompressible Navier-Stokes equations in stream function and vorticity, which govern the model flow, are obtained. Fairly general slot geometry is incorporated by means of the Thompson-Thames-Mastin transformation. An approximate factorization scheme with cyclic acceleration parameters is employed to solve a finite difference analog of the stream function equation. The vorticity equation is numerically solved with a modified version of the classical alternating direction implicit (ADI) scheme. Although no quantitative assessment of solution accuracy can be made, numerical results for variations in incremental wall pressure around the slot are at least qualitatively similar to some experimental results of Berndt and Sorenson.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Computers and Fluids; 9; Mar. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...