ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1980-11-13
    Description: Hydrodynamic measurements were made with a triaxial hot wire in the full-coverage region and the recovery region following an array of injection holes inclined downstream, at 30° to the surface. The data were taken under isothermal conditions at ambient temperature and pressure for two blowing ratios: M = 0·9 and M = 0·4. (The ratio M = ρjet Ujet/ρ∞U∞, where U is the mean velocity and ρ is the density. Subscripts jet and ∞ stand for injectant and free stream, respectively.) Profiles of the three mean-velocity components and the six Reynolds stresses were obtained at several spanwise positions at each of five locations down the test plate. In the full-coverage region, high levels of turbulence kinetic energy (TKE) were found for low blowing and low TKE levels for high blowing. This observation is especially significant when coupled with the fact that the heat transfer coefficient is high for high blowing, and low for low blowing. This apparent paradox can be resolved by the hypothesis that entrainment of the mainstream fluid must be more important than turbulent mixing in determining the heat transfer behaviour at high blowing ratios (close to unity). In the recovery region, the flow can be described in terms of a two-layer model: an outer boundary layer and a two-dimensional inner boundary layer. The inner layer governs the heat transfer. © 1980, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1980-11-13
    Description: Hydrodynamic data are reported in the companion paper (Yavuzkurt, Moffat & Kays 1980) for a full-coverage film-cooling situation, both for the blown and the recovery regions. Values of the mean velocity, the turbulent shear stress, and the turbulence kinetic energy were measured at various locations, both within the blown region and in the recovery region. The present paper is concerned with an analysis of the recovery region only. Examination of the data suggested that the recovery-region hydrodynamics could be modelled by considering that a new boundary layer began to grow immediately after the cessation of blowing. Distributions of the Prandtl mixing length were calculated from the data using the measured values of mean velocity and turbulent shear stresses. The mixing-length distributions were consistent with the notion of a dual boundary-layer structure in the recovery region. The measured distributions of mixing length were described by using a piecewise continuous but heuristic fit, consistent with the concept of two quasi-independent layers suggested by the general appearance of the data. This distribution of mixing length, together with a set of otherwise normal constants for a two-dimensional boundary layer, successfully predicted all of the observed features of the flow. The program used in these predictions contains a one-equation model of turbulence, using turbulence kinetic energy with an algebraic mixing length. The program is a two-dimensional, finite-difference program capable of predicting the mean velocity and turbulence kinetic energy profiles based upon initial values, boundary conditions, and a closure condition. © 1980, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1975-05-27
    Description: An experimental investigation of the fluid mechanics of the transpired turbulent boundary layer in zero and adverse pressure gradients was carried out on the Stanford Heat and Mass Transfer Apparatus. Profiles of (a) the mean velocity, (b) the intensities of the three components of the turbulent velocity fluctuations and (c) the Reynolds stress were obtained by hot-wire anemometry. The wall shear stress was measured by using an integrated form of the boundary-layer equation to ‘extrapolate’ the measured shear-stress profiles to the wall. The two experimental adverse pressure gradients corresponded to free-stream velocity distributions of the type u∞ ∞ xm, where m = −0·15 and −0·20, x being the streamwise co-ordinate. Equilibrium boundary layers (i.e. flows with velocity defect profile similarity) were obtained when the transpiration velocity v0 was varied such that the blowing parameter B = pv0u∞/τ0 and the Clauser pressure-gradient parameter [formula omitted] were held constant. (τ0 is the shear stress at the wall and δ1 is the displacement thickness.) Tabular and graphical results are presented. © 1975, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-19
    Description: For the past 25 years, there has existed in the Thermosciences Laboratory of the Mechanical Engineering Department of Stanford University a research program, primarily experimental, concerned with heat transfer through turbulent boundary layers. In the early phases of the program, the topics considered were the simple zero-pressure-gradient turbulent boundary layer with constant and with varying surface temperature, and the accelerated boundary layer. Later equilibrium boundary layers were considered along with factors affecting the boundary layer, taking into account transpired flows, flows with axial pressure gradients, transpiration, acceleration, deceleration, roughness, full-coverage film cooling, surface curvature, free convection, and mixed convection. A description is provided of the apparatus and techniques used, giving attention to the smooth plate rig, the rough plate rig, the full-coverage film cooling rig, the curvature rig, the concave wall rig, the mixed convection tunnel, and aspects of data reduction and uncertainty analysis.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-10
    Description: Laminar flow heat transfer in annulus, simultaneous development of velocity and temperature fields and constant wall heat flux
    Keywords: GEOPHYSICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-16
    Description: This paper contains a summarization of five years work on an investigation on heat transfer to the transpired turbulent boundary layer. Experimental results are presented for friction coefficient and Stanton number over a wide range of blowing and suction for the case of constant free-stream velocity, holding certain blowing parameters constant. The problem of the accelerated turbulent boundary layer with transpiration is considered, experimental data are presented and discussed, and theoretical models for solution of the momentum equation under these conditions are presented. Data on turbulent Prandtl number are presented so that solutions to the energy equation may be obtained. Some examples of boundary layer heat transfer and friction coefficient predictions are presented using one of the models discussed, employing a finite difference solution method.
    Keywords: FLUID MECHANICS
    Type: International Journal of Heat and Mass Transfer; 15; May 1972
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-05-11
    Description: Heat transfer with laminar flow in concentric annuli with constant and variable wall temperature and heat flux
    Keywords: GEOPHYSICS
    Type: NASA-TN-D-1972
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: Turbine-blade cooling is an important issue for high-efficiency turbine engines, and discrete-hole injection is widely used as a cooling method. In the present study, detailed measurements were made of the heat transfer and hydrodynamics of a film-cooled flow on a convex wall, both for full and partial coverage. Two important parameters were altered: the blowing ratio, m, and the number of rows of injection holes. Three values of m were tested: m = 0.2, 0.4, and 0.6. In the blown region, m = 0.4 results in the lowest Stanton numbers of the three blowing ratios tested. This indicates that the value of m = 0.4 is near optimum on the convex wall from the point of view of cooling effect by injection. In the recovery region, Stanton numbers gradually approach the no injection values. Although the heat-transfer behavior during recovery from injection looks relatively complicated, the behavior of Stanton number can be explained in terms of two mechanisms: recovery from the thermal effect of injection and recovery from the turbulence augmentation. This interpretation of the data is supported by the hydrodynamic and temperture-profile measurements. For partial blowing cases, the data follow the full-coverage values inside the blown region. In the unblown region, both in the curved and in the flat plate, the effect of the number of blown rows is clearly seen. Hydrodynamic boundary-layer profiles were measured with the aid of a triple hot-water probe. Three mean-velocity components and six turbulence quantities were simultaneously measured, and inside the blown region strong three-dimensionality was observed.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-CR-174964 , NAS 1.26:174964
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: Experiments were performed to determine how boundary layer turbulence is affected by strong convex curvature. The data gathered on the behavior of the Reynolds stress suggested the formulation of a simple turbulence model. Data were taken on two separate facilities. Both rigs had flow from a flat surface, over a convex surface with 90 deg of turning and then onto a flat recovery surface. The geometry was adjusted so that, for both rigs, the pressure gradient along the test surface was zero. Two experiments were performed at delta/R approximately 0.10, and one at weaker curvature with delta/R approximately 0.05. Results show that after a sudden introduction of curvature the shear stress in the outer part of the boundary layer is sharply diminished and is even slightly negative near the edge. The wall shear also drops off quickly downstream. When the surface suddenly becomes flat again, the wall shear and shear stress profiles recover very slowly towards flat wall conditions. A simple turbulence model, which was based on the theory that the Prandtl mixing length in the outer layer should scale on the velocity gradient layer, was shown to account for the slow recovery.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-CR-3391 , HMT-31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: Hydrodynamic measurements of turbulence structure were performed with a triaxial hot wire in the full coverage and the recovery regions following an array of injection holes under isothermal conditions at ambient temperature and pressure for blowing ratios of 0.9 and 0.4. High levels of turbulence kinetic energy (TKE) were determined for low blowing, and low TKE levels were found for the high blowing levels; in the recovery region, the flow can be represented by a model with an outer boundary layer and a 2-dimensional inner boundary layer. Recovery region hydrodynamics can be modelled by considering that a new boundary layer started to grow immediately after the end of blowing; the Prandtl mixing length distributions calculated from the values of mean velocity and turbulent shear stresses were consistent with the presence of a dual boundary layer structure in the recovery region. The program used here contains a one-equation model of turbulence, using turbulence kinetic energy with an algebraic mixing length; this 2-dimensional, finite difference program can predict the mean velocity and turbulence kinetic energy profiles based on initial values, boundary conditions, and a closure condition.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Fluid Mechanics; 101; Nov. 13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...