ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Resources and Remote Sensing  (324)
  • 2015-2019
  • 2010-2014  (188)
  • 2005-2009  (136)
  • 2010  (188)
  • 2006  (136)
Collection
Years
  • 2015-2019
  • 2010-2014  (188)
  • 2005-2009  (136)
Year
  • 1
    Publication Date: 2019-04-04
    Description: This three-volume document, based on the draft document located on the website given on page 6, presents the findings of a NASA-led capabilities assessment of Uninhabited Aerial Vehicles (UAVs) for civil (defined as non-DoD) use in Earth observations. Volume 1 is the report that presents the overall assessment and summarizes the data. The second volume contains the appendices and references to address the technologies and capabilities required for viable UAV missions. The third volume is the living portion of this effort and contains the outputs from each of the Technology Working Groups (TWGs) along with the reviews conducted by the Universities Space Research Association (USRA). The focus of this report, intended to complement the Office of the Secretary of Defense UAV Roadmap, is four-fold: 1) To determine and document desired future Earth observation missions for all UAVs based on user-defined needs; 2) To determine and document the technologies necessary to support those missions; 3) To discuss the present state of the art platform capabilities and required technologies, including identifying those in progress, those planned, and those for which no current plans exist; 4) Provide the foundations for development of a comprehensive civil UAV roadmap. It is expected that the content of this report will be updated periodically and used to assess the feasibility of future missions. In addition, this report will provide the foundation to help influence funding decisions to develop those technologies that are considered enabling or necessary but are not contained within approved funding plans. This document is written such that each section will be supported by an Appendix that will give the reader a more detailed discussion of that section's topical materials.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-11
    Description: This paper evaluates the absolute accuracy and stability of the radiometric calibration of the Atmospheric Infrared Sounder (AIRS) by analyzing the difference between the brightness temperatures measured at 2616 cm(exp -1) and those calculated at the top of the atmosphere (TOA), using the Real-Time Global Sea Surface Temperature (RTGSST) for cloud-free night tropical oceans between +/- 30 degrees latitude. The TOA correction is based on radiative transfer. The analysis of the first 3 years of AIRS radiances verifies the absolute calibration at 2616 cm(exp -1) to better than 200 mK, with better than 16 mK/yr stability. The AIRS radiometric calibration uses an internal full aperture wedge blackbody with the National Institute of Standards and Technology (NIST) traceable prelaunch calibration coefficients. The calibration coefficients have been unchanged since launch. The analysis uses very tight cloud filtering, which selects about 7000 cloud-free tropical ocean spectra per day, about 0.5% of the data. The absolute accuracy and stability of the radiometry demonstrated at 2616 cm(sup -1) are direct consequences of the implementation of AIRS as a thermally controlled, cooled grating-array spectrometer and meticulous attention to details. Comparable radiometric performance is inferred from the AIRS design for all 2378 channels. AIRS performance sets the benchmark for what can be achieved with a state-of-the-art hyperspectral radiometer from polar orbit and what is expected from future hyperspectral sounders. AIRS was launched into a 705 km altitude polar orbit on NASA's Earth Observation System (EOS) Aqua spacecraft on 4 May 2002. AIRS covers the 3.7-15.4 micron region of the thermal infrared spectrum with a spectral resolution of nu/Delta nu = 1200 and has returned 3.7 million spectra of the upwelling radiance each day since the start of routine data gathering in September 2002.
    Keywords: Earth Resources and Remote Sensing
    Type: Journal Of Geophysical Research; Volume 111
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-11
    Description: The Atmospheric Infrared Sounder (AIRS) measures the infrared spectrum in 2378 channels between 3.7 and 15.4 microns with a very high spectral resolution of approximately 1200. AIRS footprints are approximately 1.1 by 0.6 degrees. Because AIRS is a grating spectrometer, each channel has a unique spatial response. Image rotation due to the scan mirror causes these spatial responses to rotate. In effect, each channel has 90 spatial responses, one for each scene footprint in the scan line. Although the spatial response for most channels is symmetric and nearly uniform, some channels have significantly asymmetric response. This paper reviews and describes the prelaunch measurements that characterized the spatial response functions. Next, it describes the conversion of the ground-based results into footprint-specific response functions valid in flight. Then we describe the postlaunch validation of the measurements, including centroid location, axes orientations, and a check on the full two-dimensional response functions. This latter check involves comparison of AIRS data with that of the Moderate Resolution Imaging Spectrometer (MODIS), which flies on the same platform as AIRS. An important result is that AIRS/MODIS brightness temperature comparisons are significantly improved (scatter reduced) when the AIRS spatial response is explicitly taken into account. Finally, a status report is given on attempts to fully verify the prelaunch measurements by deriving the AIRS spatial response from flight data alone.
    Keywords: Earth Resources and Remote Sensing
    Type: SPIE Optics and Photonics; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: Geodetic networks support the TRF requirements of NASA ESE missions. Each of SLR, VLBI, GPS substantially and uniquely contributes to TRF determination. NASA's SLR, VLBI, and GPS groups collaborate toward wide-ranging improvements in the next 5 years. NASA leverages considerable resources through its significant activity in international services. NASA faces certain challenges in continuing and advancing these activities. The Terrestrial Reference Frame (TRF) is an accurate, stable set of positions and velocities. The TRF provides the stable coordinate system that allows us to link measurements over space and time. The geodetic networks provide data for determination of the TRF as well as direct science observations.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-12
    Description: The mission of the NASA Applied Sciences Program is to expand and accelerate the use of NASA research results to benefit society in 12 application areas of national priority. ONe of the program's major challenges is to perform a quick, efficient, and detailed review (i.e., prototyping) of the large number of combinations of NASA observations and results from Earth system models that may be used by a wide range of decision support tools. A Rapid Prototyping Capacity (RPC) is being developed to accelerate the use of NASA research results. Here, we present the conceptual framework of the Rapid Prototyping Capacity within the context of quickly assessing the efficacy of NASA research results and technologies to support the Coastal Management application. An initial RPC project designed to quickly evaluate the utility of moderate-resolution MODIS products for calibrating/validating coastal sediment transport models is also presented.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-11
    Description: Extensive reflected GPS data was collected using a GPS reflectometer installed on an HC130 aircraft during the Soil Moisture Experiment 2002 (SMEX02) near Ames, Iowa. At the same time, widespread surface truth data was acquired in the form of point soil moisture profiles, areal sampling of near-surface soil moisture, total green biomass and precipitation history, among others. Previously, there have been no reported efforts to calibrate reflected GPS data sets acquired over land. This paper reports the results of two approaches to calibration of the data that yield consistent results. It is shown that estimating the strength of the reflected signals by either (1) assuming an approximately specular surface reflection or (2) inferring the surface slope probability density and associated normalization constants give essentially the same results for the conditions encountered in SMEX02. The corrected data is converted to surface reflectivity and then to dielectric constant as a test of the calibration approaches. Utilizing the extensive in-situ soil moisture related data this paper also presents the results of comparing the GPS-inferred relative dielectric constant with the Wang-Schmugge model frequently used to relate volume moisture content to dielectric constant. It is shown that the calibrated GPS reflectivity estimates follow the expected dependence of permittivity with volume moisture, but with the following qualification: The soil moisture value governing the reflectivity appears to come from only the top 1-2 centimeters of soil, a result consistent with results found for other microwave techniques operating at L-band. Nevertheless, the experimentally derived dielectric constant is generally lower than predicted. Possible explanations are presented to explain this result.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-06
    Description: Part of the Earth Observing System Aqua Advanced Microwave Scanning Radiometer (AMSR-E) Arctic sea ice validation campaign in March 2003 was dedicated to the validation of snow depth on sea ice and ice temperature products. The difficulty with validating these two variables is that neither can currently be measured other than in situ. For this reason, two aircraft flights on March 13 and 19,2003, were dedicated to these products, and flight lines were coordinated with in situ measurements of snow and sea ice physical properties. One flight was in the vicinity of Barrow, AK, covering Elson Lagoon and the adjacent Chukchi and Beaufort Seas. The other flight was farther north in the Beaufort Sea (about 73 N, 147.5 W) and was coordinated with a Navy ice camp. The results confirm the AMSR-E snow depth algorithm and its coefficients for first-year ice when it is relatively smooth. For rough first-year ice and for multiyear ice, there is still a relationship between the spectral gradient ratio of 19 and 37 GHz, but a different set of algorithm coefficients is necessary. Comparisons using other AMSR-E channels did not provide a clear signature of sea ice characteristics and, hence, could not provide guidance for the choice of algorithm coefficients. The limited comparison of in situ snow-ice interface and surface temperatures with 6-GHz brightness temperatures, which are used for the retrieval of ice temperature, shows that the 6-GHz temperature is correlated with the snow-ice interface temperature to only a limited extent. For strong temperature gradients within the snow layer, it is clear that the 6-GHz temperature is a weighted average of the entire snow layer.
    Keywords: Earth Resources and Remote Sensing
    Type: IEEE Transactions on Geoscience and Remote Sensing; Volume 44; No. 11; 3081-3090
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-06
    Description: Landslides triggered by rainfall can possibly be foreseen in real time by jointly using rainfall intensity-duration thresholds and information related to land surface susceptibility. However, no system exists at either a national or a global scale to monitor or detect rainfall conditions that may trigger landslides due to the lack of extensive ground-based observing network in many parts of the world. Recent advances in satellite remote sensing technology and increasing availability of high-resolution geospatial products around the globe have provided an unprecedented opportunity for such a study. In this paper, a framework for developing an experimental real-time monitoring system to detect rainfall-triggered landslides is proposed by combining two necessary components: surface landslide susceptibility and a real-time space-based rainfall analysis system (http://trmm.gsfc.nasa.aov). First, a global landslide susceptibility map is derived from a combination of semi-static global surface characteristics (digital elevation topography, slope, soil types, soil texture, and land cover classification etc.) using a GIs weighted linear combination approach. Second, an adjusted empirical relationship between rainfall intensity-duration and landslide occurrence is used to assess landslide risks at areas with high susceptibility. A major outcome of this work is the availability of a first-time global assessment of landslide risk, which is only possible because of the utilization of global satellite remote sensing products. This experimental system can be updated continuously due to the availability of new satellite remote sensing products. This proposed system, if pursued through wide interdisciplinary efforts as recommended herein, bears the promise to grow many local landslide hazard analyses into a global decision-making support system for landslide disaster preparedness and risk mitigation activities across the world.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-06
    Description: An overview of the March 2003 coordinated sea ice field campaign in the Alaskan Arctic is presented with reference to the papers in this special section. This campaign is part of the program to validate the Aqua Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) sea ice products. Standard AMSR-E sea ice products include sea ice concentration, sea ice temperature, and snow depth on sea ice. The validation program consists of three elements, namely: 1) satellite data comparisons; 2) coordinated satellite/aircraft surface measurements; and 3) modeling and sensitivity analyses. Landsat-7 and RADARSAT observations were used in comparative studies with the retrieved AMSR-E sea ice concentrations. The aircraft sensors provided high-resolution microwave imagery of the surface, atmospheric profiles of temperature and humidity, and digital records of sea ice conditions. When combined with in situ measurements, aircraft data were used to validate the AMSR-E sea ice temperature and snow-depth products. The modeling studies helped interpret the field-data comparisons, provided insight on the limitations of the AMSR-E sea ice algorithms, and suggested potential improvements to the AMSR-E retrieval algorithms.
    Keywords: Earth Resources and Remote Sensing
    Type: IEEE Transactions on Geoscience and Remote Sensing; Volume 44; No. 11; 2999-3001
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-06
    Description: NO2 column amounts were measured for the past 2 years at Goddard Space Flight Center, Greenbelt, Maryland, using a Brewer spectrometer in direct Sun mode. A new bootstrap method to calibrate the instrument is introduced and described. This technique selects the cleanest days from the database to obtain the solar reference spectrum. The main advantage for direct Sun measurements is that the conversion uncertainty from slant column to vertical column is negligible compared to the standard scattered light observations where it is typically on the order of 100% (2sigma) at polluted sites. The total 2sigma errors of the direct Sun retrieved column amounts decrease with solar zenith angle and are estimated at 0.2 to 0.6 Dobson units (DU, 1 DU approx. equal to 2.7 10(exp 16) molecules cm(exp -2)), which is more accurate than scattered light measurements for high NO2 amounts. Measured NO2 column amounts, ranging from 0 to 3 DU with a mean of 0.7 DU, show a pronounced daily course and a strong variability from day to day. The NO2 concentration typically increases from sunrise to noon. In the afternoon it decreases in summer and stays constant in winter. As expected from the anthropogenic nature of its source, NO2 amounts on weekends are significantly reduced. The measurements were compared to satellite retrievals from Scanning Image Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). Satellite data give the same average NO2 column and show a seasonal cycle that is similar to the ground data in the afternoon. We show that NO2 must be considered when retrieving aerosol absorption properties, especially for situations with low aerosol optical depth.
    Keywords: Earth Resources and Remote Sensing
    Type: Journal of Geophysical Research; Volume 111
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-06
    Description: We present sunphotometer-retrieved and in situ fine mode fractions (FMF) measured onboard the same aircraft during the ACE-Asia experiment. Comparisons indicate that the latter can be used to identify whether the aerosol under observation is dominated by a mixture of modes or a single mode. Differences between retrieved and in situ FMF range from 5-20%. When profiles contained multiple layers of aerosols, the retrieved and measured FMF were segregated by layers. The comparison of layered and total FMF from the same profile indicates that columnar values are intermediate to those derived from layers. As a result, a remotely sensed FMF cannot be used to distinguish whether the aerosol under observation is composed of layers each with distinctive modal features or all layers with the same modal features. Thus, the use of FMF in multiple layer environments does not provide unique information on the aerosol under observation.
    Keywords: Earth Resources and Remote Sensing
    Type: Geophysical Research Letters (ISSN 0094-8276); Volume 33; L05807
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-06
    Description: During the ACE-Asia field campaign, unprecedented amounts of aerosol property data in East Asia during springtime were collected from an array of aircraft, shipboard, and surface instruments. However, most of the observations were obtained in areas downwind of the source regions. In this paper, the newly developed satellite aerosol algorithm called "Deep Blue" was employed to characterize the properties of aerosols over source regions using radiance measurements from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS). Based upon the ngstr m exponent derived from the Deep Blue algorithm, it was demonstrated that this new algorithm is able to distinguish dust plumes from fine-mode pollution particles even in complex aerosol environments such as the one over Beijing. Furthermore, these results were validated by comparing them with observations from AERONET sites in China and Mongolia during spring 2001. These comparisons show that the values of satellite-retrieved aerosol optical thickness from Deep Blue are generally within 20%-30% of those measured by sunphotometers. The analyses also indicate that the roles of mineral dust and anthropogenic particles are comparable in contributing to the overall aerosol distributions during spring in northern China, while fine-mode particles are dominant over southern China. The spring season in East Asia consists of one of the most complex environments in terms of frequent cloudiness and wide ranges of aerosol loadings and types. This paper will discuss how the factors contributing to this complexity influence the resulting aerosol monthly averages from various satellite sensors and, thus, the synergy among satellite aerosol products.
    Keywords: Earth Resources and Remote Sensing
    Type: IEEE Transactions on Geoscience and Remote Sensing; Volume 44; Issue 11; 3180
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-06
    Description: Retrieving surface longwave radiation from space has been a difficult task since the surface downwelling longwave radiation (SDLW) are integrations from radiation emitted by the entire atmosphere, while those emitted from the upper atmosphere are absorbed before reaching the surface. It is particularly problematic when thick clouds are present since thick clouds will virtually block all the longwave radiation from above, while satellites observe atmosphere emissions mostly from above the clouds. Zhou and Cess developed an algorithm for retrieving SDLW based upon detailed studies using radiative transfer model calculations and surface radiometric measurements. Their algorithm linked clear sky SDLW with surface upwelling longwave flux and column precipitable water vapor. For cloudy sky cases, they used cloud liquid water path as an additional parameter to account for the effects of clouds. Despite the simplicity of their algorithm, it performed very well for most geographical regions except for those regions where the atmospheric conditions near the surface tend to be extremely cold and dry. Systematic errors were also found for areas that were covered with ice clouds. An improved version of the algorithm was developed that prevents the large errors in the SDLW at low water vapor amounts. The new algorithm also utilizes cloud fraction and cloud liquid and ice water paths measured from the Cloud and the Earth's Radiant Energy System (CERES) satellites to separately compute the clear and cloudy portions of the fluxes. The new algorithm has been validated against surface measurements at 29 stations around the globe for the Terra and Aqua satellites. The results show significant improvement over the original version. The revised Zhou-Cess algorithm is also slightly better or comparable to more sophisticated algorithms currently implemented in the CERES processing. It will be incorporated in the CERES project as one of the empirical surface radiation algorithms.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Areas where the end-users can help define the Visible/Infrared Imager Radiometer Suite (VIIRS) products distributed by NOAA include: temporal aggregation, band packaging, and gelolocation packaging. Proposals in these areas are presented along with background information, advantages and disadvantates of each proposal. The proposals are based on experience with NASA EOS missions and programs (MODIS and SeaWIFS).
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-06
    Description: AIRS was launched on EOS Aqua on May 4,2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of lK, and layer precipitable water with an rms error of 20 percent, in cases with up to 80 percent effective cloud cover. The basic theory used to analyze Atmospheric InfraRed Sounder/Advanced Microwave Sounding Unit/Humidity Sounder Brazil (AIRS/AMSU/HSB) data in the presence of clouds, called the at-launch algorithm, was described previously. Pre-launch simulation studies using this algorithm indicated that these results should be achievable. Some modifications have been made to the at-launch retrieval algorithm as described in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and validated as a function of retrieved fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small and the RMS accuracy of lower tropospheric temperature retrieved with 80 percent cloud cover is about 0.5 K poorer than for clear cases. HSB failed in February 2003, and consequently HSB channel radiances are not used in the results shown in this paper. The AIRS/AMSU retrieval algorithm described in this paper, called Version 4, become operational at the Goddard DAAC (Distributed Active Archive Center) in April 2003 and is being used to analyze near-real time AIRS/AMSU data. Historical AIRS/AMSU data, going backwards from March 2005 through September 2002, is also being analyzed by the DAAC using the Version 4 algorithm.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-06-06
    Description: We report results of initial space mission simulation studies for a laser-based, atmospheric CO2 sounder, which are based on real-time carbon cycle process modelling and data analysis. The mission concept corresponds to the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) recommended by the US National Academy of Sciences' Decadal Survey. As a pre-requisite for meaningful quantitative evaluation, we employ a CO2 model that has representative spatial and temporal gradients across a wide range of scales. In addition, a relatively complete description of the atmospheric and surface state is obtained from meteorological data assimilation and satellite measurements. We use radiative transfer calculations, an instrument model with representative errors and a simple retrieval approach to quantify errors in 'measured' CO2 distributions, which are a function of mission and instrument design specifications along with the atmospheric/surface state. Uncertainty estimates based on the current instrument design point indicate that a CO2 laser sounder can provide data consistent with ASCENDS requirements and will significantly enhance our ability to address carbon cycle science questions. Test of a dawn/dusk orbit deployment, however, shows that diurnal differences in CO2 column abundance, indicative of plant photosynthesis and respiration fluxes, will be difficult to detect
    Keywords: Earth Resources and Remote Sensing
    Type: Tellus Series B - Chemical and Physical Meteorology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-06
    Description: The presentation purpose is to describe multi-instrument tools and services that facilitate access and usability of NASA Earth science data at Goddard Space Flight Center (GSFC). NASA's Earth observing system includes 14 satellites. Topics include EOSDIS facilities and system architecture, and overview of GSFC Earth Science Data and Information Services Center (GES DISC) mission, Mirador data search, Giovanni, multi-instrument data exploration, Google Earth[TM], data merging, and applications.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-06
    Description: In March 2003, a field validation campaign was conducted on the sea ice near Barrow, AK. The goal of this campaign was to produce an extensive dataset of sea ice thickness and snow properties (depth and stratigraphy) against which remote sensing products collected by aircraft and satellite could be compared. Chief among these were products from the Polarimetric Scanning Radiometer (PSR) flown aboard a NASA P-3B aircraft and the Aqua Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E). The data were collected in four field areas: three on the coastal sea ice near Barrow, AK, and the fourth out on the open ice pack 175 km northeast of Barrow. The snow depth ranged from 9.4-20.8 cm in coastal areas (n = 9881 for three areas) with the thinnest snow on ice that had formed late in the winter. Out in the main pack ice, the snow was 20.6 cm deep (n = 1906). The ice in all four areas ranged from 138-219 cm thick (n = 1952), with the lower value again where the ice had formed late in the winter. Snow layer and grain characteristics observed in 118 snow pits indicated that 44% of observed snow layers were depth hoar; 46% were wind slab. Snow and ice measurements were keyed to photomosaics produced from low-altitude vertical aerial photographs. Using these, and a distinctive three-way relationship between ice roughness, snow surface characteristics, and snow depth, strip maps of snow depth, each about 2 km wide, were produced bracketing the traverse lines. These maps contain an unprecedented level of snow depth detail against which to compare remote sensing products. The maps are used in other papers in this special issue to examine the retrieval of snow properties from the PSR and AMSR-E sensors.
    Keywords: Earth Resources and Remote Sensing
    Type: IEEE Transactions on Geoscience and Remote Sensing (ISSN 0196-2892); Volume 44; No. 11; 3009-3020
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-06
    Description: An assessment of Advanced Microwave Scanning Radiometer Earth Observing System (AMSR-E) sea ice concentrations under winter conditions using ice concentrations derived from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) imagery obtained during the March 2003 Arctic sea ice validation field campaign is presented. The National Oceanic and Atmospheric Administration Environmental Technology Laboratory's Airborne Polarimetric Scanning Radiometer Measurements, which were made from the National Aeronautics and Space Administration P 3B aircraft during the campaign, were used primarily as a diagnostic tool to understand the comparative results and to suggest improvements to the AMSR-E ice concentration algorithm. Based on the AMSR-E/ETM+ comparisons, a good overall agreement with little bias (approx. 1%) for areas of first year and young sea ice was found. Areas of new ice production result in a negative bias of about 5% in the AMSR-E ice concentration retrievals, with a root mean square error of 8%. Some areas of deep snow also resulted in an underestimate of the ice concentration (approx. 10%). For all ice types combined and for the full range of ice concentrations, the bias ranged from 0% to 3%, and the rms errors ranged from 1% to 7%, depending on the region. The new-ice and deep-snow biases are expected to be reduced through an adjustment of the new-ice and ice-type C algorithm tie points.
    Keywords: Earth Resources and Remote Sensing
    Type: IEEE Transactions on Geoscience and Remote Sensing; Volume 44; No. 11
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-06
    Description: The hierarchical segmentation (HSEG) algorithm is a hybrid of hierarchical step-wise optimization and constrained spectral clustering that produces a hierarchical set of image segmentations. This segmentation hierarchy organizes image data in a manner that makes the image's information content more accessible for analysis by enabling region-based analysis. This paper discusses data analysis with HSEG and describes several measures of region characteristics that may be useful analyzing segmentation hierarchies for various applications. Segmentation hierarchy analysis for generating landwater and snow/ice masks from MODIS (Moderate Resolution Imaging Spectroradiometer) data was demonstrated and compared with the corresponding MODIS standard products. The masks based on HSEG segmentation hierarchies compare very favorably to the MODIS standard products. Further, the HSEG based landwater mask was specifically tailored to the MODIS data and the HSEG snow/ice mask did not require the setting of a critical threshold as required in the production of the corresponding MODIS standard product.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-11
    Description: The design, error budget, and preliminary test results of a 50-56 GHz synthetic aperture radiometer demonstration system are presented. The instrument consists of a fixed 24-element array of correlation interferometers, and is capable of producing calibrated images with 0.8 degree spatial resolution within a 17 degree wide field of view. This system has been built to demonstrate performance and a design which can be scaled to a much larger geostationary earth imager. As a baseline, such a system would consist of about 300 elements, and would be capable of providing contiguous, full hemispheric images of the earth with 1 Kelvin of radiometric precision and 50 km spatial resolution.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-06
    Description: A recent paper by Mishchenko et al. compares near-coincident MISR, MODIS, and AERONET aerosol optical depth (AOD), and gives a much less favorable impression of the utility of the satellite products than that presented by the instrument teams and other groups. We trace the reasons for the differing pictures to whether known and previously documented limitations of the products are taken into account in the assessments. Specifically, the analysis approaches differ primarily in (1) the treatment of outliers, (2) the application of absolute vs. relative criteria for testing agreement, and (3) the ways in which seasonally varying spatial distributions of coincident retrievals are taken into account. Mishchenko et al. also do not distinguish between observational sampling differences and retrieval algorithm error. We assess the implications of the different analysis approaches, and cite examples demonstrating how the MISR and MODIS aerosol products have been applied successfully to a range of scientific investigations.
    Keywords: Earth Resources and Remote Sensing
    Type: Journal of Quantitative Spectroscopy and Radiative Transfer (ISSN 0022-4073); Volume 112; Issue 5; 901-909
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-06-06
    Description: Absorption cross sections of nitrous oxide (N2O) and carbon tetrachloride (CCl4) are reported at five atomic UV lines (184.95, 202.548, 206.200, 213.857, and 228.8 nm) at 27 temperatures in the range 210-350 K. In addition, UV absorption spectra of CCl4 are reported between 200-235 nm as a function of temperature (225-350 K). The results from this work are critically compared with results from earlier studies. For N2O, the present results are in good agreement with the current JPL recommendation enabling a reduction in the estimated uncertainty in the N2O atmospheric photolysis rate. For CCl4, the present cross section results are systematically greater than the current recommendation at the reduced temperatures most relevant to stratospheric photolysis. The new cross sections result in a 5-7% increase in the modeled CCl4 photolysis loss, and a slight decrease in the stratospheric lifetime, from 51 to 50 years, for present day conditions. The corresponding changes in modeled inorganic chlorine and ozone in the stratosphere are quite small. A CCl4 cross section parameterization for use in 37 atmospheric model calculations is presented.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-06-06
    Description: Soil moisture is a fundamental data source used by the United States Department of Agriculture (USDA) International Production Assessment Division (IPAD) to monitor crop growth stage and condition and subsequently, globally forecast agricultural yields. Currently, the USDA IPAD estimates surface and root-zone soil moisture using a two-layer modified Palmer soil moisture model forced by global precipitation and temperature measurements. However, this approach suffers from well-known errors arising from uncertainty in model forcing data and highly simplified model physics. Here we attempt to correct for these errors by designing and applying an Ensemble Kalman filter (EnKF) data assimilation system to integrate surface soil moisture retrievals from the NASA Advanced Microwave Scanning Radiometer (AMSR-E) into the USDA modified Palmer soil moisture model. An assessment of soil moisture analysis products produced from this assimilation has been completed for a five-year (2002 to 2007) period over the North American continent between 23degN - 50degN and 128degW - 65degW. In particular, a data denial experimental approach is utilized to isolate the added utility of integrating remotely-sensed soil moisture by comparing EnKF soil moisture results obtained using (relatively) low-quality precipitation products obtained from real-time satellite imagery to baseline Palmer model runs forced with higher quality rainfall. An analysis of root-zone anomalies for each model simulation suggests that the assimilation of AMSR-E surface soil moisture retrievals can add significant value to USDA root-zone predictions derived from real-time satellite precipitation products.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-06-06
    Description: Since first light in early 2000, operational global quantitative retrievals of aerosol properties over land have been made from MODIS observed spectral reflectance. These products have been continuously evaluated and validated, and opportunities for improvements have been noted. We have replaced the original algorithm by improving surface reflectance assumptions, the aerosol model optical properties and the radiative transfer code used to create the lookup tables. The new algorithm (known as Version 5.2 or V5.2) performs a simultaneous inversion of two visible (0.47 and 0.66 micron) and one shortwave-IR (2.12 micron) channel, making use of the coarse aerosol information content contained in the 2.12 micron channel. Inversion of the three channels yields three nearly independent parameters, the aerosol optical depth (tau) at 0.55 micron, the non-dust or fine weighting (eta) and the surface reflectance at 2.12 micron. Finally, retrievals of small magnitude negative tau values (down to -0.05) are considered valid, thus normalizing the statistics of tau in near zero tau conditions. On a 'test bed' of 6300 granules from Terra and Aqua, the products from V5.2 show marked improvement over those from the previous versions, including much improved retrievals of tau, where the MODIS/AERONET tau (at 0.55 micron) regression has an equation of: y = 1.01+0.03, R = 0.90. Mean tau for the test bed is reduced from 0.28 to 0.21.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: The mission description Polar Operational Environmental Satellites (POES): I) Collect and disseminate worldwide meteorological and environmental data: a) Provide day and night information (AVHRR): 1) cloud cover distribution and type; 2) cloud top temperature; 3) Moisture patterns and ice/snow melt. b) Provide vertical temperature and moisture profiles of atmospheres (HIRS, AMSU, MHS. c) Measure global ozone distribution and solar UV radiation (SBUV). d) Measure proton, electro, and charged particle density to provide solar storm warnings (SEM). d) Collect environmental data (DCS): 1) Stationary platforms in remote locations; 2) Free floating platforms on buoys, balloons, migratory animals. II) Provide Search and Rescue capabilities (SARR, SARP): a) Detection and relay of distress signals. b) Has saved thousands of lives around the world.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: A viewgraph presentation reviewing the Earth Science Capability Demonstration Project is shown. The contents include: 1) ESCD Project; 2) Available Flight Assets; 3) Ikhana Procurement; 4) GCS Layout; 5) Baseline Predator B Architecture; 6) Ikhana Architecture; 7) UAV Capability Assessment; 8) The Big Picture; 9) NASA/NOAA UAV Demo (5/05 to 9/05); 10) NASA/USFS Western States Fire Mission (8/06); and 11) Suborbital Telepresence.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-12
    Description: Field measurements from small boats and sparse arrays of instrumented buoys often do not provide sufficient data to capture the dynamic nature of biogeophysical parameters in may coastal aquatic environments. Several investigators have shown the MODIS 250 m images can provide daily synoptic views of suspended sediment concentration in coastal waters to determine sediment transport and fate. However, the use of MODIS for coastal environments can be limited due to a lack of cloud-free images. Sediment transport models are not constrained by sky conditions but often suffer from a lack of in situ observations for model calibration or validation. We demonstrate here the utility of MODIS 250 m to calibrate (set model parameters), validate output, and set or reset initial conditions of a hydrodynamic and sediment transport model (ECOMSED) developed for Lake Pontchartrain, LA USA. We present our approach in the context of how to quickly assess of 'prototype' an application of NASA data to support environmental managers and decision makers. The combination of daily MODIS imagery and model simulations offer a more robust monitoring and prediction system of suspended sediments than available from either system alone.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-11
    Description: The Earth Observing System Microwave Limb Sounder measures several atmospheric chemical species (OH, HO2, H2O, O3, HCl, ClO, HOCl, BrO, HNO3, N2O, CO, HCN, CH3CN, volcanic SO2), cloud ice, temperature, and geopotential height to improve our understanding of stratospheric ozone chemistry, the interaction of composition and climate, and pollution in the upper troposphere. All measurements are made simultaneously and continuously, during both day and night. The instrument uses heterodyne radiometers that observe thermal emission from the atmospheric limb in broad spectral regions centered near 118, 190, 240, and 640 GHz, and 2.5 THz. It was launched July 15, 2004 on the National Aeronautics and Space Administration's Aura satellite and started full-up science operations on August 13, 2004. An atmospheric limb scan and radiometric calibration for all bands are performed routinely every 25 s. Vertical profiles are retrieved every 165 km along the suborbital track, covering 82 S to 82 N latitudes on each orbit. Instrument performance to date has been excellent; data have been made publicly available; and initial science results have been obtained.
    Keywords: Earth Resources and Remote Sensing
    Type: IEEE Transactions on Geoscience and Remote Sensing (ISSN 0196-2892); Volume 44; No. 5; 1075-1092
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-19
    Description: New data, tools, and capabilities for decision making are significant needs in the northern Gulf of Mexico and other coastal areas. The goal of this project is to support NASA s Earth Science Mission Directorate and its Applied Science Program and the Gulf of Mexico Alliance by producing and providing NASA data and products that will benefit decision making by coastal resource managers and other end users in the Gulf region. Data and research products are being developed to assist coastal resource managers adapt and plan for changing conditions by evaluating how climate changes and urban expansion will impact land cover/land use (LCLU), hydrodynamics, water properties, and shallow water habitats; to identify priority areas for conservation and restoration; and to distribute datasets to end-users and facilitating user interaction with models. The proposed host sites for data products are NOAA s National Coastal Data Development Center Regional Ecosystem Data Management, and Mississippi-Alabama Habitat Database. Tools will be available on the Gulf of Mexico Regional Collaborative website with links to data portals to enable end users to employ models and datasets to develop and evaluate LCLU and climate scenarios of particular interest. These data will benefit the Mobile Bay National Estuary Program in ongoing efforts to protect and restore the Fish River watershed and around Weeks Bay National Estuarine Research Reserve. The usefulness of data products and tools will be demonstrated at an end-user workshop.
    Keywords: Earth Resources and Remote Sensing
    Type: M11-0050 , American Geophysical Union (AGU) Fall Meeting; Dec 13, 2010 - Dec 17, 2010; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-19
    Description: Measurements using the inflatable falling sphere often are requested to provide density data in support of special sounding rocket launchings into the mesosphere and thermosphere. To insure density measurements within narrow time frames and close in space, the inflatable falling sphere is launched within minutes of the major test. Sphere measurements are reliable for the most part, however, availability of these rocket systems has become more difficult and, in fact, these instruments no longer are manufactured resulting in a reduction of the meager stockpile of instruments. Sphere measurements also are used to validate remotely measured temperatures and have the advantage of measuring small-scale atmospheric features. Even so, with the dearth of remaining falling spheres perhaps it is time to consider whether the remote measurements are mature enough to stand alone. Presented are two field studies, one in 2003 from Northern Sweden and one in 2010 from the vicinity of Kwajalein Atoll that compare temperature retrievals between satellite and in situ failing spheres. The major satellite instruments employed are SABER, MLS, and AIRS. The comparisons indicate that remotely measured temperatures mimic the sphere temperature measurements quite well. The data also confirm that satellite retrievals, while not always at the exact location required for individual studies, are adaptable enough and highly useful. Although the falling sphere will provide a measurement at a specific location and time, satellites only pass a given location daily or less often. This report reveals that averaged satellite measurements can provide temperatures and densities comparable to the falling sphere.
    Keywords: Earth Resources and Remote Sensing
    Type: American Geophysical Union Meeting; Dec 12, 2010 - Dec 17, 2010; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-19
    Description: Satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP) from open biomass burning, which affects many vegetated regions of the world on a seasonal basis. Knowledge of the biomass burning characteristics and emission source strengths of different (particulate and gaseous) smoke constituents is one of the principal ingredients upon which the assessment, modeling, and forecasting of their distribution and impacts depend. This knowledge can be gained through accurate measurement of FRP, which has been shown to have a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. Over the last decade or so, FRP has been routinely measured from space by both the MODIS sensors aboard the polar orbiting Terra and Aqua satellites, and the SEVIRI sensor aboard the Meteosat Second Generation (MSG) geostationary satellite. During the last few years, FRP has been gaining recognition as an important parameter for facilitating the development of various scientific studies relating to the quantitative characterization of biomass burning and their emissions. Therefore, we are conducting a detailed analysis of the FRP products from MODIS to characterize the uncertainties associated with them, such as those due to the MODIS bow-tie effects and other factors, in order to establish their error budget for use in scientific research and applications. In this presentation, we will show preliminary results of the MODIS FRP data analysis, including comparisons with airborne measurements.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-19
    Description: Comparison of realizations of the terrestrial reference frame. IGN and DGFI both generated realizations of the terrestrial reference frame under the auspices of the IERS from combination of the same space geodetic data. We examined both results for VLBI sites using the full geodetic VLBI data set with respect to site positions and velocities and time series of station positions, baselines and Earth orientation parameters. One of the difficulties encountered was matching episodic breaks and periods of non-linear motion of the two realizations with the VLBI models. Our analysis and conclusions will be discussed.
    Keywords: Earth Resources and Remote Sensing
    Type: IAG Commission 1 Symposium 2010: Reference Frames for Applications in Geosciences (REFAG2010); Oct 04, 2010 - Oct 08, 2010; Marne la Vallee, France; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-19
    Description: In this study, a new first-order radiative transfer (RT) model is developed to more accurately account for vegetation canopy scattering by modifying the basic r-co model (the zero-order RT solution). In order to optimally utilize microwave radiometric data in soil moisture (SM) retrievals over moderately to densely vegetated landscapes, a quantitative understanding of the relationship between scattering mechanisms within vegetation canopies and the microwave brightness temperature is desirable. A first-order RT model is used to investigate this relationship and to perform a physical analysis of the scattered and emitted radiation from vegetated terrain. The new model is based on an iterative solution (successive orders of scattering) of the RT equations up to the first order. This formulation adds a new scattering term to the i-w model. The additional term represents emission by particles (vegetation components) in the vegetation layer and emission by the ground that is scattered once by particles in the layer. The new model is tested against 1.4 GHz brightness temperature measurements acquired over deciduous trees by a truck-mounted microwave instrument system called ComRAD in 2007. The model predictions are in good agreement with the data and they give quantitative understanding for the influence of first-order scattering within the canopy on the brightness temperature. The model results show that the scattering term is significant for trees and modifications are necessary to the T-w model when applied to dense vegetation. Numerical simulations also indicate that the scattering term has a negligible dependence on SM and is mainly a function of the angle and polarization of the microwave observation.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-19
    Description: Examples of L-band interference will be presented and discussed, as well as the importance of L-band soil moisture observations, as part of this one-day GEOSS workshop XXXVII on "Data Quality and Radio Spectrum Allocation Impact on Earth Observations" will address the broad challenges of data quality and the impact of generating reliable information for decision makers who are Earth data users but not necessarily experts in the Earth observation field. GEO has initiated a data quality assessment task (DA-09-01a) and workshop users will review and debate the directions and challenges of this effort. Radio spectrum allocation is an element of data availability and data quality, and is also associated with a GEO task (AR-06-11). A recent U.S. National Research Council report on spectrum management will be addressed as part of the workshop. Key representatives from industry, academia, and government will provide invited talks on these and related issues that impact GEOSS implementation.
    Keywords: Earth Resources and Remote Sensing
    Type: Institute of Electrial and Electronic Engineers (IEEE) International Geoscience and Remote Sensing Symposium (TGARSS); Jul 26, 2010 - Jul 30, 2010; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-19
    Description: A radiative transfer model for estimating snow water equivalent (SWE, mm) from satellite-observed brightness temperature (K) at 19 and 37 GHz (respectively, T(sub B(sub, sat,19)) and T(sub B(sub, sat,37)) over partially forested area is presented, as an extension of a previously published model, by considering scattering of radiation within the canopy. For the specific case of dense vegetation covering fractional area f, the model can be written as, SWE = alpha{ A. delta (T(sub B(sub, sat)) + B - C. f}/(l f), where delta T(sub B(sub, sat)), is the difference of T(sub B(sub, sat,19)) and T(sub B(sub, sat,37)), alpha(mm/K) is the slope of SWE vs. brightness temperature difference at 19 and 37 GHz that would be obtained by ignoring the presence of atmosphere, delta(T(sub B)sub g)), for a homogeneous snow cover (which varies with grain size). The parameters A, B, and C, are determined primarily by atmospheric characteristics, and for a likely range of atmospheric conditions appear to be in the range of, respectively, 1.15-1.63, 0.69-2.84 K and 0.59-2.39 K. Ignoring atmospheric correction would introduce bias towards underestimation of SWE (and also, snow cover area and snow depth). Increasing cloud liquid water path (L) has the effect of increasing A, and ignoring this variation of A with L would have the impact of biasing the estimate of SWE (and snow extent). Such biasing is further exacerbated with increasing f, because of the appearance of term (l-f) in the denominator. The impact of ignoring the intercept parameters (B and C) would be noticeable at low values of SWE (appearing as a bias towards underestimation of SWE), which has been determined to be about 6 mm for average environmental conditions. The uncertainty in estimating SWE due to variations in the atmospheric characteristics is likely to be less than 15%, but could be up to 25% for non-vegetated snow-covered areas. Better estimates of SWE (and snow extent) would be obtained by adjusting the parameters of the above model to regional differences in the atmospheric characteristics. The biases in determining SWE arising due to variations in atmospheric conditions and due to changes in fractional forest cover are not independent, since they interact as {A/(l-f)}. The present calculations also show that improvement in determining snow cover area from the microwave data is likely to occur when these data are corrected for atmospheric effects, as demonstrated by a specific case study.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-19
    Description: As required by the Harmful Algal Bloom and Hypoxia Research Control Act of 1998, the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force issued the 2001 Gulf Hypoxia Action Plan (updated in 2008). In response to the Gulf Hypoxia Action Plan of 2001 (updated in 2008), the EPA Gulf of Mexico Hypoxia Modeling and Monitoring Project has established a detailed model for the Mississippi-Attchafalaya River Basin which provides a capability to forecast the multi-source nutrient loading to the Gulf and the subsequent bio-geochemical processes leading to hypoxic conditions and subsequent effects on Gulf habitats and fisheries. The primary purpose of the EPA model is to characterize the impacts of nutrient management actions, or proposed actions on the spatial and temporal characteristics of the Gulf hypoxic zone. The model is expected to play a significant role in determining best practices and improved strategies for incentivizing nutrient reduction strategies, including installation of on-farm structures to reduce sediment and nutrient runoff, use of cover crops and other agricultural practices, restoration of wetlands and riparian buffers, improved waste water treatment and decreased industrial nitrogen emissions. These decisions are currently made in a fragmented way by federal, state, and local agencies, using a variety of small scale models and limited data. During the past three years, EPA has collected an enormous amount of in-situ data to be used in the model. We believe that the use of NASA satellite data products in the model and for long term validation of the model has the potential to significantly increase the accuracy and therefore the utility of the model for the decision making described above. This proposal addresses the Gulf of Mexico Alliance (GOMA) priority issue of reductions in nutrient inputs to coastal ecosystem. It further directly relates to water quality for healthy beaches and shellfish beds and wetland and coastal conservation restoration.
    Keywords: Earth Resources and Remote Sensing
    Type: 2010 IEEE International Geoscience and Remote Sensing, Society Symposium; Jul 25, 2010 - Jul 30, 2010; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Over the last four decades a tremendous progress has been made in the Earth science space-based remote sensing observations, technologies and algorithms. Such advancements have improved the predictability by providing lead-time and accuracy of forecast in weather, climate, natural hazards, and natural resources. It has further reduced or bounded the overall uncertainties by partially improving our understanding of planet Earth as an integrated system that is governed by non-linear and chaotic behavior. Many countries such as the US, European Community, Japan, China, Russia, India has and others have invested billions of dollars in developing and launching space-based assets in the low earth (LEO) and geostationary (GEO) orbits. However, the wealth of this scientific knowledge that has potential of extracting monumental socio-economic benefits from such large investments have been slow in reaching the public and decision makers. For instance, there are a number of areas such as water resources and availability, energy forecasting, aviation safety, agricultural competitiveness, disaster management, air quality and public health, which can directly take advantage. Nevertheless, we all live in a global economy that depends on access to the best available Earth Science information for all inhabitants of this planet. This presentation discusses a process to transition Earth science data and products for societal needs including NASA's experience in achieving such objectives. It is important to mention that there are many challenges and issues that pertain to a number of areas such as: (1) difficulties in making a speedy transition of data and information from observations and models to relevant Decision Support Systems (DSS) or tools, (2) data and models inter-operability issues, (3) limitations of spatial, spectral and temporal resolution, (4) communication limitations as dictated by the availability of image processing and data compression techniques. Additionally, the most critical element amongst all is the organizational and management boundaries that must be resolved at local, state, national and international levels to implement and realize free flow of such vital information.
    Keywords: Earth Resources and Remote Sensing
    Type: Joint Workshop on Space Technology and Geo-information for Sustainable Development; Jun 14, 2010 - Jun 17, 2010; Cairo; Egypt
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-19
    Description: For the first time, all imagery acquired by the Landsat series of satellites is being made available by the USGS to users at no cost. This represents a key opportunity to use Landsat in a truly operational monitoring framework: large regions of the U.S. such as the Chesapeake Bay Watershed can now be analyzed using "wall-to-wall" imagery at timescales from approximately 1 month to several years. With the future launch of the Landsat Data Continuity Mission (LDCM) and Decadal Survey missions such as the hyperspectral HyspIRI, it is imperative to develop robust processing systems to perform annual ecosystem assessments over large regions such as the Chesapeake Bay. We have been working at NASA's Goddard Space Flight Center (GSFC) to develop an integrative framework for inserting 30m, annual, Landsat based data and derived products into the existing decision support system for the Bay, with a particular focus on ecosystem condition and changes over the entire watershed. The basic goal is to use a 'stack' of Landsat imagery with 40% or less cloud cover to produce multi-date (2005-2009 period), cloud/shadow/gap-free composited surface reflectance products that will support the creation of watershed scale land cover/ use products and the monitoring of ecosystem change across the Bay. Our scientific focus extends beyond the conventional definition of land cover (i.e. a classification of vegetation type) as we propose to monitor both changes in surface type (e.g. forest to urban), vegetation structure (e.g. forest disturbance due to logging or insect damage), as well as winter crop cover. These processes represent a continuum from large, interannual changes in land cover type, to subtler, intra-annual changes associated with short-term disturbance. The free Landsat data are being processed to surface reflectance and composited using the existing Landsat Ecosystem Disturbance Adaptive Processing System here at NASA/ GSFC, and land cover products (type, tree cover, impervious cover, winter cover) are being produced using well-established decision tree and regression tree algorithms. The goal of this session is to present the data products that we have been developing to the Bay science community and to discuss potential avenues for improvements and usage of the products for decision support.
    Keywords: Earth Resources and Remote Sensing
    Type: Chesapeake Modeling Symposium: Monitoring and Modeling Land Change for Hydrologic and Ecosystem Models: The Way Forward; May 28, 2010; Annapolis, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-18
    Description: The Atlanta Urban Heat Island and Air Quality Project had its genesis in Project ATLANTA (ATlanta Land use Analysis: Temperature and Air quality) that began in 1996. Project ATLANTA examined how high-spatial resolution thermal remote sensing data could be used to derive better measurements of the Urban Heat Island effect over Atlanta. We have explored how these thermal remote sensing, as well as other imaged datasets, can be used to better characterize the urban landscape for improved air quality modeling over the Atlanta area. For the air quality modeling project, the National Land Cover Dataset and the local scale Landpro99 dataset at 30m spatial resolutions have been used to derive land use/land cover characteristics for input into the MM5 mesoscale meteorological model that is one of the foundations for the Community Multiscale Air Quality (CMAQ) model to assess how these data can improve output from CMAQ. Additionally, land use changes to 2030 have been predicted using a Spatial Growth Model (SGM). SGM simulates growth around a region using population, employment and travel demand forecasts. Air quality modeling simulations were conducted using both current and future land cover. Meteorological modeling simulations indicate a 0.5 C increase in daily maximum air temperatures by 2030. Air quality modeling simulations show substantial differences in relative contributions of individual atmospheric pollutant constituents as a result of land cover change. Enhanced boundary layer mixing over the city tends to offset the increase in ozone concentration expected due to higher surface temperatures as a result of urbanization.
    Keywords: Earth Resources and Remote Sensing
    Type: The 2006 Meeting of the AAG; Mar 07, 2006 - Mar 11, 2006; Chicago, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-18
    Description: Population pressure, commercial development, and climate change are expected to cause continuing alteration of the vital oceanic coastal zone environment. These pressures will influence both the geology and biology of the littoral, nearshore, and continental shelf regions. A pressing need for global observation of coastal change processes is an accurate remotely-sensed data product for marine suspended sediments. The concentration, delivery, transport, and deposition of sediments is strongly relevant to coastal primary production, inland and coastal hydrology, coastal erosion, and loss of fragile wetland and island habitats. Sediment transport and deposition is also related to anthropogenic activities including agriculture, fisheries, aquaculture, harbor and port commerce, and military operations. Because accurate estimation of marine suspended sediment concentrations requires advanced ocean optical analysis, a focused collaborative program of algorithm development and assessment is recommended, following the successful experience of data refinement for remotely-sensed global ocean chlorophyll concentrations.
    Keywords: Earth Resources and Remote Sensing
    Type: American Geophysical Union Ocean Sciences Meeting; Feb 20, 2006 - Feb 24, 2006; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-18
    Description: The Ozone Monitoring Instrument (OMI) was launched on NASA's EOS Aura satellite in July 2004. This instrument was built in the Netherlands with collaboration with Finland. The science data products are being developed jointly by scientists from the three countries. OMI is the first instrument to combine the high spatial resolution daily global mapping capability of TOMS with high spectral resolution measurements necessary for retrieving a number of trace gases of relevance to atmospheric chemistry, using techniques pioneered by GOME. In this talk I will show what our planet looks like at UV wavelengths and what these data can tell us about the effects of human activities on global air quality and climate.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: JPL Ocean Data Assimilation; Dec 17, 2010; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-13
    Description: Glaciers are the largest reservoir of freshwater on Earth, supporting one third of the world s population. The Himalaya possess one of the largest resources of snow and ice, which act as a freshwater reservoir for more than 1.3 billion people. This article describes a new project called HIMALA, which focuses on utilizing satellite-based products for better understanding of hydrological processes of the river basins of the region. With support from the US Agency for International Development (USAID), the International Centre for Integrated Mountain Development (ICIMOD), together with its partners and member countries, has been working on the application of satellite-based rainfall estimates for flood prediction. The US National Aeronautics and Space Administration (NASA) partners are working with ICIMOD to incorporate snowmelt and glacier melt into a widely used hydrological model. Thus, through improved modeling of the contribution of snow and ice meltwater to river flow in the region, the HIMALA project will improve the ability of ICIMOD and its partners to understand the impact of weather and climate on floods, droughts, and other water- and climate-induced natural hazards in the Himalayan region in Afghanistan, Bangladesh, Bhutan, China, India, Myanmar, Nepal, and Pakistan.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.JA.4677.2011 , Mountain Research and Development (ISSN 0276-4741); 30; 4; 401-404
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-13
    Description: Landsat-7 Enhanced Thematic Mapper+ (ETM+), launched in April 1999, and Landsat-5 Thematic Mapper (TM), launched in 1984, both have a single thermal band. Both instruments thermal band calibrations have been updated previously: ETM+ in 2001 for a pre-launch calibration error and TM in 2007 for data acquired since the current era of vicarious calibration has been in place (1999). Vicarious calibration teams at Rochester Institute of Technology (RIT) and NASA/Jet Propulsion Laboratory (JPL) have been working to validate the instrument calibration since 1999. Recent developments in their techniques and sites have expanded the temperature and temporal range of the validation. The new data indicate that the calibration of both instruments had errors: the ETM+ calibration contained a gain error of 5.8% since launch; the TM calibration contained a gain error of 5% and an additional offset error between 1997 and 1999. Both instruments required adjustments in their thermal calibration coefficients in order to correct for the errors. The new coefficients were calculated and added to the Landsat operational processing system in early 2010. With the corrections, both instruments are calibrated to within +/-0.7K.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.CPR.4721.2011 , International Geoscience and Remote Sensing Symposium (IGARSS); Jul 25, 2010 - Jul 30, 2010; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-13
    Description: Monitoring forest cover and its changes are a major application for optical remote sensing. In this paper, we present an approach to integrate Landsat, ASTER and MODIS data for forest change detection. Moderate resolution (10-100m) images (e.g. Landsat and ASTER) acquired from different seasons and times are normalized to one "standard" date using MODIS data products as reference. The normalized data are then used to compute forest disturbance index for forest change detection. Comparing to the results from original data, forest disturbance index from the normalized images is more consistent spatially and temporally. This work demonstrates an effective approach for mapping forest change over a large area from multiple moderate resolution sensors on various acquisition dates.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.CPR.4776.2011 , International Geoscience and Remote Sensing Symposium (IGARSS); Jul 25, 2010 - Jul 30, 2010; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: The NASA Soil Moisture Active Passive (SMAP) Mission will provide global observations of soil moisture and freeze/thaw state from space. We outline how priority applications contributed to the SMAP mission measurement requirements and how the SMAP mission plans to foster applications and applied science.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.CP.4285.2011 , 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2010); Jul 25, 2010 - Jul 30, 2010; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: Impervious surface area (ISA) from the National Geophysical Data Center (NGDC) and land surface temperature (LST) from the Moderate Resolution Imaging Spectroradiometer (MODIS) averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) signature on LST amplitude and its relationship with development intensity, size, and ecological setting for more than 3000 urban settlements globally. Development intensity zones based on fractional ISA are defined for each urban area emanating outward from the urban core to the nearby nonurban rural areas and used to stratify sampling for LST. Sampling is further constrained by biome type and elevation data to ensure objective intercomparisons between zones and between cities in different biomes. We find that the ecological context and settlement size significantly influence the amplitude of summer daytime UHI. Globally, an average of 3.8 C UHI is found in cities built in biomes dominated by forests; 1.9 C UHI in cities embedded in grass shrubs biomes; and only a weak UHI or sometimes an urban heat sink (UHS) in cities in arid and semi-arid biomes. Overall, the amplitude of the UHI is negatively correlated (R = -0.66) with the difference in vegetation density between urban and rural zones represented by the MODIS normalized difference vegetation index (NDVI). Globally averaged, the daytime UHI amplitude for all settlements is 2.6 C in summer and 1.4 C in winter. Globally, the average summer daytime UHI is 4.7 C for settlements larger than 500 square kilometers compared with 2.5 C for settlements smaller than 50 square kilometers and larger than 10 square kilometers. The stratification of cities by size indicates that the aggregated amount of ISA is the primary driver of UHI amplitude, with variations between ecological contexts and latitudinal zones. More than 60% of the total LST variance is explained by ISA for urban settlements within forests at mid to high latitudes. This percentage will increase to more than 80% when only settlements in the US are examined.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.JA.5735.2011 , Canadian Journal of Remote Sensing; 36; 3; 185-196
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: Accounting for small-scale spatial heterogeneity of soil moisture (theta) is required to enhance the predictive skill of land surface models. In this paper, we present the results of the development, calibration, and performance evaluation of a downscaling model based on multifractal theory using aircraft!based (800 m) theta estimates collected during the southern Great Plains experiment in 1997 (SGP97).We first demonstrate the presence of scale invariance and multifractality in theta fields of nine square domains of size 25.6 x 25.6 sq km, approximately a satellite footprint. Then, we estimate the downscaling model parameters and evaluate the model performance using a set of different calibration approaches. Results reveal that small-scale theta distributions are adequately reproduced across the entire region when coarse predictors include a dynamic component (i.e., the spatial mean soil moisture 〈theta〉) and a stationary contribution accounting for static features (i.e., topography, soil texture, vegetation). For wet conditions, we found similar multifractal properties of soil moisture across all domains, which we ascribe to the signature of rainfall spatial variability. For drier states, the theta fields in the northern domains are more intermittent than in southern domains, likely because of differences in the distribution of vegetation coverage. Through our analyses, we propose a regional downscaling relation for coarse, satellite-based soil moisture estimates, based on ancillary information (static and dynamic landscape features), which can be used in the study area to characterize statistical properties of small-scale theta distribution required by land surface models and data assimilation systems.
    Keywords: Earth Resources and Remote Sensing
    Type: Water Resources Research (ISSN 0043-1397); 46; W08546
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: Impervious surface area (ISA) from the Landsat TM-based NLCD 2001 dataset and land surface temperature (LST) from MODIS averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) skin temperature amplitude and its relationship to development intensity, size, and ecological setting for 38 of the most populous cities in the continental United States. Development intensity zones based on %ISA are defined for each urban area emanating outward from the urban core to the nonurban rural areas nearby and used to stratify sampling for land surface temperatures and NDVI. Sampling is further constrained by biome and elevation to insure objective intercomparisons between zones and between cities in different biomes permitting the definition of hierarchically ordered zones that are consistent across urban areas in different ecological setting and across scales. We find that ecological context significantly influences the amplitude of summer daytime UHI (urban-rural temperature difference) the largest (8 C average) observed for cities built in biomes dominated by temperate broadleaf and mixed forest. For all cities combined, ISA is the primary driver for increase in temperature explaining 70% of the total variance in LST. On a yearly average, urban areas are substantially warmer than the non-urban fringe by 2.9 C, except for urban areas in biomes with arid and semiarid climates. The average amplitude of the UHI is remarkably asymmetric with a 4.3 C temperature difference in summer and only 1.3 C in winter. In desert environments, the LST's response to ISA presents an uncharacteristic "U-shaped" horizontal gradient decreasing from the urban core to the outskirts of the city and then increasing again in the suburban to the rural zones. UHI's calculated for these cities point to a possible heat sink effect. These observational results show that the urban heat island amplitude both increases with city size and is seasonally asymmetric for a large number of cities across most biomes. The implications are that for urban areas developed within forested ecosystems the summertime UHI can be quite high relative to the wintertime UHI suggesting that the residential energy consumption required for summer cooling is likely to increase with urban growth within those biomes.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.JA.4694.2011 , Remote Sensing of Environment (ISSN 0034-4257); 114; 3; 504-513
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: Climate change is heavily impacted by changing vegetation cover and productivity with large scale monitoring of vegetation only possible with remote sensing techniques. The goal of this effort was to evaluate existing reflectance (R) spectroscopic methods for determining vegetation parameters related to photosynthetic function and carbon (C) dynamics in plants. Since nitrogen (N) is a key constituent of photosynthetic pigments and C fixing enzymes, biological C sequestration is regulated in part by N availability. Spectral R information was obtained from field corn grown at four N application rates (0, 70, 140, 280 kg N/ha). A hierarchy of spectral observations were obtained: leaf and canopy with a spectral radiometer; aircraft with the AISA sensor; and satellite with EO-1 Hyperion. A number of spectral R indices were calculated from these hyperspectral observations and compared to geo-located biophysical measures of plant growth and physiological condition. Top performing indices included the R derivative index D730/D705 and the normalized difference of R750 vs. R705 (ND705), both of which differentiated three of the four N fertilization rates at multiple observation levels and yielded high correlations to these carbon parameters: light use efficiency (LUE); C:N ratio; and crop grain yield. These results advocate the use of hyperspectral sensors for remotely monitoring carbon cycle dynamics in managed terrestrial ecosystems.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.JA.4787.2011 , Journal of Applied Remote Sensing; 4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: The Slope Imaging Multi-polarization Photon-counting Lidar is an airborne instrument developed to demonstrate laser altimetry measurement methods that will enable more efficient observations of topography and surface properties from space. The instrument was developed through the NASA Earth Science Technology Office Instrument Incubator Program with a focus on cryosphere remote sensing. The SIMPL transmitter is an 11 KHz, 1064 nm, plane-polarized micropulse laser transmitter that is frequency doubled to 532 nm and split into four push-broom beams. The receiver employs single-photon, polarimetric ranging at 532 and 1064 nm using Single Photon Counting Modules in order to achieve simultaneous sampling of surface elevation, slope, roughness and depolarizing scattering properties, the latter used to differentiate surface types. Data acquired over ice-covered Lake Erie in February, 2009 are documenting SIMPL s measurement performance and capabilities, demonstrating differentiation of open water and several ice cover types. ICESat-2 will employ several of the technologies advanced by SIMPL, including micropulse, single photon ranging in a multi-beam, push-broom configuration operating at 532 nm.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.CPR.4539.2011 , Proceedings of IEEE International Geoscience and Remote Sensing Symposium; Jul 25, 2010 - Jul 30, 2010; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: This slide presentation reviews the assessment of the needs that NASA can use for the remote sensing of water quality. The goal of this project is to provide information for decision-making activities (water quality standards) using remotely sensed/satellite based water quality data from MODIS and Landsat data.
    Keywords: Earth Resources and Remote Sensing
    Type: SSTI-2220-0200 , Gulf Alliance Nutrient Criteria Conference/GOMA; Jun 08, 2010 - Jun 10, 2010; Saint Petersburg, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: This slide presentation reviews the issue of supplies of food, the relationship to food security, the ability of all people to attain sufficient food for an active and healthy life, and the ability to use satellite technology and remote sensing to assist with planning and act as an early warning system.
    Keywords: Earth Resources and Remote Sensing
    Type: World Bank/Mexico National Water Commission Event at 16th Conference of the Parties; Dec 02, 2010; Cancun; Mexico
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: Variations in agricultural production due to rainfall and temperature fluctuations are a primary cause of food insecurity on the African continent. Analysis of changes in phenology can provide quantitative information on the effect of climate variability on growing seasons in agricultural regions. Using a robust statistical methodology, we describe the relationship between phenology metrics derived from the 26 year AVHRR NDVI record and the North Atlantic Oscillation index (NAO), the Indian Ocean Dipole (IOD), the Pacific Decadal Oscillation (PDO), and the Multivariate ENSO Index (MEI). We map the most significant positive and negative correlation for the four climate indices in Eastern, Western and Southern Africa between two phenological metrics and the climate indices. Our objective is to provide evidence of whether climate variability captured in the four indices has had a significant impact on the vegetative productivity of Africa during the past quarter century. We found that the start of season and cumulative NDVI were significantly affected by large scale variations in climate. The particular climate index and the timing showing highest correlation depended heavily on the region examined. In Western Africa the cumulative NDVI correlates with PDO in September-November. In Eastern Africa the start of the June-October season strongly correlates with PDO in March-May, while the PDO in December-February correlates with the start of the February-June season. The cumulative NDVI over this last season relates to the MEI of March-May. For Southern Africa, high correlations exist between SOS and NAO of September-November, and cumulative NDVI and MEI of March-May. The research shows that climate indices can be used to anticipate late start and variable vigor in the growing season of sensitive agricultural regions in Africa.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.JA.4701.2011 , Remote Sensing of Environment (ISSN 0034-4257); 114; 10; 2286-2296
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: The NASA Moderate Resolution Imaging Spectroradiometer onboard the Aqua platform (MODIS-Aqua) provides a viable data stream for operational water quality monitoring of Chesapeake Bay. Marine geophysical products from MODIS-Aqua depend on the efficacy of the atmospheric correction process, which can be problematic in coastal environments. The operational atmospheric correction algorithm for MODIS-Aqua requires an assumption of negligible near-infrared water-leaving radiance, nL(sub w)(NIR). This assumption progressively degrades with increasing turbidity and, as such, methods exist to account for non-negligible nL(sub w)(NIR) within the atmospheric correction process or to use alternate radiometric bands where the assumption is satisfied, such as those positioned within shortwave infrared (SWIR) region of the spectrum. We evaluated a decade-long time-series of nL(sub w)(lambda) from MODIS-Aqua in Chesapeake Bay derived using NIR and SWIR bands for atmospheric correction. Low signal-to-noise ratios (SNR) for the SWIR bands of MODIS-Aqua added noise errors to the derived radiances, which produced broad, flat frequency distributions of nL(sub w)(lambda) relative to those produced using the NIR bands. The SWIR approach produced an increased number of negative nL(sub w)(lambda) and decreased sample size relative to the NIR approach. Revised vicarious calibration and regional tuning of the scheme to switch between the NIR and SWIR approaches may improve retrievals in Chesapeake Bay, however, poor SNR values for the MODIS-Aqua SWIR bands remain the primary deficiency of the SWIR-based atmospheric correction approach.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.JA.4813.2011 , Remote Sensing of Environment; 114; 10; 2238-2247
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.CPR.4841.2011 , 2010 Ocean Sciences Meeting; Feb 22, 2010 - Feb 26, 2010; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: Ice, Cloud, and land Elevation Satellite (ICESat) / Geosciences Laser Altimeter System (GLAS) waveform data are used to estimate biomass and carbon on a 1.27 X 10(exp 6) square km study area in the Province of Quebec, Canada, below the tree line. The same input datasets and sampling design are used in conjunction with four different predictive models to estimate total aboveground dry forest biomass and forest carbon. The four models include non-stratified and stratified versions of a multiple linear model where either biomass or (biomass)(exp 0.5) serves as the dependent variable. The use of different models in Quebec introduces differences in Provincial dry biomass estimates of up to 0.35 G, with a range of 4.94 +/- 0.28 Gt to 5.29 +/-0.36 Gt. The differences among model estimates are statistically non-significant, however, and the results demonstrate the degree to which carbon estimates vary strictly as a function of the model used to estimate regional biomass. Results also indicate that GLAS measurements become problematic with respect to height and biomass retrievals in the boreal forest when biomass values fall below 20 t/ha and when GLAS 75th percentile heights fall below 7 m.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.JA.4695.2011 , International Journal of Remote Sensing (ISSN 0143-1161); 31; 5; 1359-1372
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: The Land Product Evaluation and Algorithm Testing Element (Land PEATE), a component of the Science Data Segment of the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), is being developed at the NASA Goddard Space Flight Center (GSFC). The primary task of the Land PEATE is to assess the quality of the Visible Infrared Imaging Radiometer Suite (VIIRS) Land data products made by the Interface Data Processing System (IDPS) using the Operational (OPS) Code during the NPP era and to recommend improvements to the algorithms in the IDPS OPS code. The Land PEATE uses a version of the MODIS Adaptive Processing System (MODAPS), NPPDAPS, that has been modified to produce products from the IDPS OPS code and software provided by the VIIRS Science Team, and uses the MODIS Land Data Operational Product Evaluation (LDOPE) team for evaluation of the data records generated by the NPPDAPS. Land PEATE evaluates the algorithms by comparing data products generated using different versions of the algorithm and also by comparing to heritage products generated from different instrument such as MODIS using various quality assessment tools developed at LDOPE. This paper describes the Land PEATE system and some of the approaches used by the Land PEATE for evaluating the VIIRS Land algorithms during the pre-launch period of the NPP mission and the proposed plan for long term monitoring of the quality of the VIIRS Land products post-launch.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.CPR.4707.2011 , 2010 30th IEEE International Geoscience and Remote Sensing Symposium (IGARSS); Jul 25, 2010 - Jul 30, 2010; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: Differencing of digital satellite image pairs highlights subtle changes in near-identical scenes of Earth surfaces. Using the mathematical relationships relevant to photoclinometry, we examine the effectiveness of this method for the study of localized ice sheet surface topography changes using numerical experiments. We then test these results by differencing images of several regions in West Antarctica, including some where changes have previously been identified in altimeter profiles. The technique works well with coregistered images having low noise, high radiometric sensitivity, and near-identical solar illumination geometry. Clouds and frosts detract from resolving surface features. The ETM(plus) sensor on Landsat-7, ALI sensor on EO-1, and MODIS sensor on the Aqua and Terra satellite platforms all have potential for detecting localized topographic changes such as shifting dunes, surface inflation and deflation features associated with sub-glacial lake fill-drain events, or grounding line changes. Availability and frequency of MODIS images favor this sensor for wide application, and using it, we demonstrate both qualitative identification of changes in topography and quantitative mapping of slope and elevation changes.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.JA.4626.2011 , Remote Sensing of Environment (ISSN 0034-4257); 114; 7; 1353-1362
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: A somewhat unorthodox method for determining vertical crustal motion at a tide-gauge location is to difference the sea level time series with an equivalent time series determined from satellite altimetry, To the extent that both instruments measure an identical ocean signal, the difference will be dominated by vertical land motion at the gauge. We revisit this technique by analyzing sea level signals at 28 tide gauges that are colocated with DORIS geodetic stations. Comparisons of altimeter-gauge vertical rates with DORIS rates yield a median difference of 1.8 mm/yr and a weighted root-mean-square difference of2.7 mm/yr. The latter suggests that our uncertainty estimates, which are primarily based on an assumed AR(l) noise process in all time series, underestimates the true errors. Several sources of additional error are discussed, including possible scale errors in the terrestrial reference frame to which altimeter-gauge rates are mostly insensitive, One of our stations, Male, Maldives, which has been the subject of some uninformed arguments about sea-level rise, is found to have almost no vertical motion, and thus is vulnerable to rising sea levels. Published by Elsevier Ltd. on behalf of COSPAR.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.JA.4514.2011 , Advances in Space Research; 45; 1510-1522
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: Infrared sounders, such as the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared sounder (CrIS), have a cloud-impenetrable disadvantage in observing the atmosphere and surface under opaque cloudy conditions. However, recent studies indicate that hyperspectral, infrared sounders have the ability to detect cloud effective-optical and microphysical properties and to penetrate optically thin clouds in observing the atmosphere and surface to a certain degree. We have developed a retrieval scheme dealing with atmospheric conditions with cloud presence. This scheme can be used to analyze the retrieval accuracy of atmospheric and surface parameters under clear and cloudy conditions. In this paper, we present the surface emissivity results derived from IASI global measurements under both clear and cloudy conditions. The accuracy of surface emissivity derived under cloudy conditions is statistically estimated in comparison with those derived under clear sky conditions. The retrieval error caused by the clouds is shown as a function of cloud optical depth, which helps us to understand how well infrared sounders can observe the atmosphere and surface through clouds.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-10813 , SPIE Asia-Pacific Remote Sensing 2010; Oct 11, 2010 - Oct 14, 2010; Incheon; Korea, Republic of
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: This paper discusses the results from a series of field experiments using ground-based L-band microwave active/passive sensors. Three independent approaches are employed to the microwave data to determine vegetation opacity of coniferous trees. First, a zero-order radiative transfer model is fitted to multi-angular microwave emissivity data in a least-square sense to provide "effective" vegetation optical depth. Second, a ratio between radar backscatter measurements with the corner reflector under trees and in an open area is calculated to obtain "measured" tree propagation characteristics. Finally, the "theoretical" propagation constant is determined by forward scattering theorem using detailed measurements of size/angle distributions and dielectric constants of the tree constituents (trunk, branches, and needles). The results indicate that "effective" values underestimate attenuation values compared to both "theoretical" and "measured" values.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.CP.4284.2011 , 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2010); Jul 25, 2010 - Jul 30, 2010; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-12
    Description: The Gulf of Mexico has experienced dramatic wetland habitat area losses over the last two centuries. These losses not only damage species diversity, but contribute to water quality, flood control, and aspects of the Gulf coast economy. Overall wetland losses since the 1950s were examined using land cover/land use (LCLU) change analysis in three Gulf coast watershed regions: Mobile Bay, Galveston Bay, and Tampa Bay. Two primary causes of this loss, LCLU change and climate change, were then assessed using LCLU maps, U.S. census population data, and available current and historical climate data from NOAA. Sea level rise, precipitation, and temperature effects were addressed, with emphasis on analysis of the effects of sea level rise on salt marsh degradation. Ecological impacts of wetland loss, including fishery depletion, eutrophication, and hypoxia were addressed using existing literature and data available from NOAA. These ecological consequences in turn have had an affect on the Gulf coast economy, which was analyzed using fishery data and addressing public health impacts of changes in the environment caused by wetland habitat loss. While recent federal and state efforts to reduce wetland habitat loss have been relatively successful, this study implies a need for more aggressive action in the Gulf coast area, as the effects of wetland loss reach far beyond individual wetland systems themselves to the Gulf of Mexico as a whole.
    Keywords: Earth Resources and Remote Sensing
    Type: M10-0432 , Journal of Coastal Research
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: SSTI-2220-0208
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-19
    Description: Reanalyses integrate multitudes of satellite and conventional observations data assimilation and numerical weather prediction. The result is that many disparate observation platforms, discontinuous in space and time, lead to complete and consistent representations the state of the weather. The component also provides physical fields rarely or never observed. However, the numerical model bias is continuously being corrected by the observational analysis, and this bias changes as variations in the observations occur. NASA's Modern Era Retrospective-analysis for Research and Applications (MERRA) sensitivity to variations in the observing systems are explored. Specifically, we will evaluate the water budget and transport processes as they relate to the advent of SSM/I and AMSU-A radiance assimilation, and an additional case of radiosonde station that exhibits a dramatic shift in mean water states. The MERRA input observation data, now available online, is used to explore these variations.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-19
    Description: Ozone Monitoring Instrument (OMI) Tropospheric NO2 products are being used to enhance the ability to monitor changes in NO2 air quality, update emission inventories, and evaluate regional air quality models. Trends in tropospheric column NO2 have been examined over the eastern United States in relation to emissions changes mandated by regulatory actions. Decreases of 20 to 40 percent over the period 2005 to 2008 were noted, largely in response to major emission reductions at power plants. The OMI data have been used to identify regions in which the opposite trend has been found. We have also used OMI NO2 in efforts to improve emission inventories for NOx emissions from soil. Lightning NOx emissions have been added to CMAQ, the US Environmental Protection Agency's regional air quality model. Evaluation of the resulting NO2 columns in the model is being conducted using the OMI NO2 observations. Community Multiscale Air Quality (CMAQ) together with the OMI NO2 data comprise a valuable tool for monitoring and predicting air quality. Looking to the future, we expect that the combination of Global Ozone Monitoring Experiment-2 (GOME-2) (morning) and OMI (afternoon) data sets obtained through use of the same retrieval algorithms will substantially increase the possibility of successful integration of satellite information into regional air quality forecast models. Farther down the road, we anticipate the Geostationary Coastal and Air Pollution Events (GEO-CAPE) platform to supply data possibly on an hourly basis, allowing much more comprehensive analysis of air quality from space.
    Keywords: Earth Resources and Remote Sensing
    Type: 2010 EUMETSAT Meteorological Satellite Conference; Sep 20, 2010 - Sep 24, 2010; Cordoba; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-19
    Description: Since its launch in December 1999, the NASA EOS Terra MODIS has successfully operated for more than a decade. MODIS makes observations in 36 spectral bands from visible (VIS) to longwave infrared (LWIR) and at three nadir spatial resolutions: 250m (2 bands), 500m (5 bands), and 1km (29 bands). In addition to its on-board calibrators designed for the radiometric calibration, MODIS was built with a unique device, called the spectro-radiometric calibration assembly (SRCA). It can be configured in three different modes: radiometric, spatial, and spectral. When it is operated in the spectral modes, the SRCA can monitor changes in Sensor spectral performance for the VIS and near-infrared (NIR) spectral bands. For more than 10 years, the SRCA operation has continued to provide valuable information for MODIS on-orbit spectral performance. This paper briefly describes SRCA on-orbit operation and calibration activities; it presents decade-long spectral characterization results for Terra MODIS VIS and NIR spectral bands in terms of chances in their center wavelengths (CW) and bandwidths (BW). It is shown that the SRCA on-orbit wavelength calibration capability remains satisfactory. For most spectral bands, the changes in CW and BW are less than 0.5 and 1 nm, respectively. Results and lessons from Terra MODIS on-orbit spectral characterization have and will continue to benefit its successor, Aqua MODIS, and other future missions.
    Keywords: Earth Resources and Remote Sensing
    Type: SPIE Asia-Pacific Remote Sensing Symposium; Oct 10, 2010 - Oct 15, 2010; Incheon; Korea, Republic of
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-19
    Description: Recent advances in remote sensing technologies have enabled the monitoring and measurement of the Earth's land surface at an unprecedented scale and frequency. The myriad of these land surface observations must be integrated with the state-of-the-art land surface model forecasts using data assimilation to generate spatially and temporally coherent estimates of environmental conditions. These analyses are of critical importance to real-world applications such as agricultural production, water resources management and flood, drought, weather and climate prediction. This need motivated the development of NASA Land Information System (LIS), which is an expert system encapsulating a suite of modeling, computational and data assimilation tools required to address challenging hydrological problems. LIS integrates the use of several community land surface models, use of ground and satellite based observations, data assimilation and uncertainty estimation techniques and high performance computing and data management tools to enable the assessment and prediction of hydrologic conditions at various spatial and temporal scales of interest. This presentation will focus on describing the results, challenges and lessons learned from the use of remote sensing data for improving land surface modeling, within LIS. More specifically, studies related to the improved estimation of soil moisture, snow and land surface temperature conditions through data assimilation will be discussed. The presentation will also address the characterization of uncertainty in the modeling process through Bayesian remote sensing and computational methods.
    Keywords: Earth Resources and Remote Sensing
    Type: International Workshop on Data Assimilation for Operational Hydrological Forecasting and Water Resources Management; Oct 30, 2010 - Nov 04, 2010; Delft; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-19
    Description: Impervious surface area (ISA) from the National Geophysical Data Center (NGDC) and land surface temperature (LST) from MODIS averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) signature on LST amplitude and its relationship to development intensity, size, and ecological setting for more than 3000 urban settlements over the globe. Development intensity zones based on fractional ISA are defined for each urban area emanating outward from the urban core to the nearby non-urban rural areas and used to stratify sampling for LST. Sampling is further constrained by biome type and elevation data to insure objective inter-comparisons between zones and between cities in different biomes. We find that the ecological context and settlement size significantly influence the amplitude of summer daytime UHI. Globally, an average of 3.8 C UHI is found in cities built in biomes dominated by forests; 1.9 C UHI in cities embedded in grass/shrub biomes, and only a weak UHI or sometimes an Urban Heat Sink (UHS) in cities in and and semi-arid biomes. Overall, the amplitude of the UHI is negatively correlated (R = -0.66) to the difference in vegetation density between urban and rural zones represented by MODIS Normalized Difference Vegetation Index (NDVI). Globally averaged, the daytime UHI amplitude for all settlement is 2.6 C in summer and 1.4 C in winter. Globally, the average summer daytime UHI is 4.7 C for settlements larger than 500 square kilometers, compared to 2.5 C for settlements smaller than 50 square kilometers and larger than 10 square kilometers. The stratification of cities by size indicates that the aggregated amount of ISA is the primary driver of UHI amplitude with variations between ecological contexts and latitudinal zones. More than 60% of the total LST variances is explained by ISA for urban settlements within forests at mid-to-high latitudes. This percentage will increase to more than 80% when only USA settlements are examined.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-19
    Description: At the USDA's Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) experimental site in Beltsville, Maryland, USA) a field campaign took place throughout the 2002 corn growth cycle from May 10th (emergence of corn crops) to October 2nd (harvest). One of the microwave instruments deployed was the multi-frequency (X-, C- and L-band) quad-polarized (HH, HV, VV, VH) NASA GSFC/George Washington University (GWU) truck mounted radar. During the field campaign, this radar system provided once a week fully polarized C- and L-band (4.75 and 1.6 GHz) backscatter measurements from incidence angle of 15, 35, and 55 degrees. In support of microwave observations, an extensive ground characterization took place, which included measurements of surface roughness, soil moisture, vegetation biomass and morphology. The field conditions during the campaign are characterized by several dry downs with a period of drought in the month of August. Peak biomass the corn canopies was reached on July 24th with a total biomass of approximately 6.5 kg/sq m. This dynamic range in both soil moisture and vegetation conditions within the data set is ideal for the validation of discrete medium vegetation scattering models. In this study, we compare the L band backscatter measurements with simulations by the Tor Vergata model (ferrazzoli and Guerriero 1996). The measured soil moisture, vegetation biomass and most reliably measured vegetation morphological parameters (e.g. number of leaves, number of stems and stem height) were used as input for the Tor Vergata model. The more uncertain model parameters (e.g. surface roughness, leaf thickness) and the stem diameter were optimized using a parameter estimation routine based on the Levenberg-Marquardt algorithm. As cost function for this optimization, the HH and VV polarized backscatter measured and stimulated by the TOR Vergata model for incidence angle of 15, 35, and 55 degrees were used (6 measurements in total). The calibrated Tor Vergata model simulations are in excellent agreement with the measurements of Root Mean Squared Differences (RMSD's) of 0.8, 0.9 and 1.4 dB for incidences of 15, 35 and 55 degrees, respectively. The results from this study that a physically based scattering model with the appropriate parameterization can accurately simulate backscatter measurements and, as such, have the potential of being used for the retrieval of biophysical variables (e.g. soil moisture and vegetation biomass).
    Keywords: Earth Resources and Remote Sensing
    Type: Union Radio-Scientifique International (URSI)Commission of Microwave Signatures 2010; Oct 01, 2010 - Oct 09, 2010; Florence; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-19
    Description: Rainfall intensities during extreme events over the continental U.S. are compared for several advanced radar products. These products include: 1) TRMM spaceborne radar (PR) near surface estimates; 2) NOAA Next-Generation Quantitative Precipitation Estimation (QPE) very high-resolution (1 km) radar-only national mosaics (Q2); 3) very high-resolution instantaneous gauge adjusted radar national mosaics, which we have developed by applying gauge correction on the Q2 instantaneous radar-only products; and 4) several independent C-band dual-polarimetric radar-estimated rainfall samples collected with the ARMOR radar in northern Alabama. Though accumulated rainfall amounts are often similar, we find the satellite and the ground radar rain rate pdfs to be quite different. PR pdfs are shifted towards lower rain rates, implying a much larger stratiform/convective rain ratio than do ground radar products. The shift becomes more evident during strong continental convective storms and much less during tropical storms. Resolving the continental/maritime regime behavior and other large discrepancies between the products presents an important challenge. A challenge to improve our understanding of the source of the discrepancies, to determine the uncertainties of the estimates, and to improve remote-sensing estimates of precipitation in general.
    Keywords: Earth Resources and Remote Sensing
    Type: M10-0502 , 2010 The Meeting of the Americas - Multi-Point Perspectives of Space Plasma; Aug 08, 2010 - Aug 13, 2010; Foz de Iguassu; Brazil
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-19
    Description: The past few years have seen the emergence of satellite altimetry as valuable tool for taking quantitative sea ice monitoring beyond the traditional surface extent measurements and into estimates of sea ice thickness and volume, parameters that arc fundamental to improved understanding of polar dynamics and climate modeling. Several studies have now demonstrated the use of both microwave (ERS, Envisat/RA-2) and laser (ICESat/GLAS) satellite altimeters for determining sea ice thickness. The complexity of polar environments, however, continues to make sea ice thickness determination a complicated remote sensing task and validation studies remain essential for successful monitoring of sea ice hy satellites. One such validation effort, the Arctic Aircraft Altimeter (AAA) campaign of2006. included underflights of Envisat and ICESat north of the Canadian Archipelago using NASA's P-3 aircraft. This campaign compared Envisat and ICESat sea ice elevation measurements with high-resolution airborne elevation measurements, revealing the impact of refrozen leads on radar altimetry and ice drift on laser altimetry. Continuing this research and validation effort, the Canada Basin Sea Ice Thickness (CBSIT) experiment was completed in April 2009. CBSIT was conducted by NOAA. and NASA as part of NASA's Operation Ice Bridge, a gap-filling mission intended to supplement sea and land ice monitoring until the launch of NASA's ICESat-2 mission. CBIST was flown on the NASA P-3, which was equipped with a scanning laser altimeter, a Ku-band snow radar, and un updated nadir looking photo-imaging system. The CB5IT campaign consisted of two flights: an under flight of Envisat along a 1000 km track similar to that flown in 2006, and a flight through the Nares Strait up to the Lincoln Sea that included an overflight of the Danish GreenArc Ice Camp off the coast of northern Greenland. We present an examination of data collected during this campaign, comparing airborne laser altimeter measurements with (1) Envisat RA-2 returns retracked optimally for sea ice and (2) in situ measurements of sea ice thickness and snow depth gathered from ice camp surveys. Particular attention is given to lead identification and classification using the continuous photo-imaging system along the Envisat underflight as well as the performance of the snow radar over the ice camp survey lines.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-19
    Description: Accurately quantifying forest biomass is of crucial importance for climate change studies. By quantifying the amount of above and below ground biomass and consequently carbon stored in forest ecosystems, we are able to derive estimates of carbon sequestration, emission and storage and help close the carbon budget. Mangrove forests, in addition to providing habitat and nursery grounds for over 1300 animal species, are also an important sink of biomass. Although they only constitute about 3% of the total forested area globally, their carbon storage capacity -- in forested biomass and soil carbon -- is greater than that of tropical forests (Lucas et al, 2007). In addition, the amount of mangrove carbon -- in the form of litter and leaves exported into offshore areas is immense, resulting in over 10% of the ocean's dissolved organic carbon originating from mangroves (Dittmar et al, 2006) The measurement of forest above ground biomass is carried out on two major scales: on the plot scale, biomass can be measured using field measurements through allometric equation derivation and measurements of forest plots. On the larger scale, the field data are used to calibrate remotely sensed data to obtain stand-wide or even regional estimates of biomass. Currently, biomass can be calculated using average stand biomass values and optical data, such as aerial photography or satellite images (Landsat, Modis, Ikonos, SPOT, etc.). More recent studies have concentrated on deriving forest biomass values using radar (JERS, SIR-C, SRTM, Airsar) and/or lidar (ICEsat/GLAS, LVIS) active remote sensing to retrieve more accurate and detailed measurements of forest biomass. The implementation of a generation of new active sensors (UAVSar, DesdynI, Alos/Palsar, TerraX) has prompted the development of new tecm'liques of biomass estimation that use the combination of multiple sensors and datasets, to quantify past, current and future biomass stocks. Focusing on mangrove forest biomass estimation, this book chapter has 3 main objectives: a) To describe in detail the field methodologies used to derive accurate estimates of biomass in mangrove forests b) To explain how mangrove forest biomass can be measured using several remote sensing techniques and datasets c) To give a detailed explanation of the measurement challenges and errors that arise in each estimate of forest biomass
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-19
    Description: Large-scale field campaigns provide the critical fink between our understanding retrieval algorithms developed at the point scale, and algorithms suitable for satellite applications at vastly larger pixel scales. Retrievals of land parameters must deal with the substantial sub-pixel heterogeneity that is present in most regions. This is particularly the case for soil moisture remote sensing, because of the long microwave wavelengths (L-band) that are optimal. Yet, airborne L-band imagers have generally been large, heavy, and required heavy-lift aircraft resources that are expensive and difficult to schedule. Indeed, US soil moisture campaigns, have been constrained by these factors, and European campaigns have used non-imagers due to instrument and aircraft size constraints. Despite these factors, these campaigns established that large-scale soil moisture remote sensing was possible, laying the groundwork for satellite missions. Starting in 2005, a series of airborne field campaigns have been conducted in Australia: to improve our understanding of soil moisture remote sensing at large scales over heterogeneous areas. These field data have been used to test and refine retrieval algorithms for soil moisture satellite missions, and most recently with the launch of the European Space Agency's Soil Moisture Ocean Salinity (SMOS) mission, to provide validation measurements over a multi-pixel area. The campaigns to date have included a preparatory campaign in 2005, two National Airborne Field Experiments (NAFE), (2005 and 2006), two campaigns to the Simpson Desert (2008 and 2009), and one Australian Airborne Cal/val Experiment for SMOS (AACES), just concluded in the austral spring of 2010. The primary airborne sensor for each campaign has been the Polarimetric L-band Microwave Radiometer (PLMR), a 6-beam pushbroom imager that is small enough to be compatible with light aircraft, greatly facilitating the execution of the series of campaigns, and a key to their success. An L-band imaging radar is being added to the complement to provide simultaneous active-passive L-band observations, for algorithm development activities in support of NASA's upcoming Soil Moisture Active Passive (.S"M) mission. This paper will describe the campaigns, their objectives, their datasets, and some of the unique advantages of working with small/light sensors and aircraft. We will also review the main scientific findings, including improvements to the SMOS retrieval algorithm enabled by NAFE observations and the evaluation of the Simpson Desert as a calibration target for L-band satellite missions. Plans for upcoming campaigns will also be discussed.
    Keywords: Earth Resources and Remote Sensing
    Type: Remote Sensing and Hydrology 2010 Symposium; Sep 27, 2010 - Oct 01, 2010; Jackson Hole, WY; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-19
    Description: Food security and nutrition in sub-Saharan Africa have long been affected by variations in the weather. Vulnerability to these hazards, along with economic shocks and an adverse political environment, is often uneven in a community. Some individuals and households are more susceptible to emergencies or crises than others, and thus determining who is most vulnerable are and how they are responding to a shock or crises is essential to understand the impact on food security. Daily, quantitative and global observations derived from satellite remote sensing instruments can contribute to understanding how food production has declined due to drought, flood or other weather-related hazard, but it can say nothing about the likelihood that the people living in that area are suffering food insecurity as a result. As Amartya Sen argued, a famine can occur even when there is an absolute surplus of food in a region. Thus organizations like the US Agency for International Development's Famine Early Warning Systems Network (FEWS NET) work to integrate biophysical and socio-economic indicators together with on-the ground assessments to estimate the food security consequences of a variety of events. Climate change is likely to restructure local, regional and global agricultural systems and commodity markets. Although remote sensing information has been used to identify seasonal production declines for the past two decades, new ways of using the data will need to be developed in order to understand, document and respond to the impact of climate change on food security as it is manifested in shorter term shocks. In this article, the contribution of remote sensing is explained, along with the other factors that affect food security
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Knowledge of the emission source strengths of different (particulate and gaseous) atmospheric constituents is one of the principal ingredients upon which the modeling and forecasting of their distribution and impacts depend. Biomass burning emissions are complex and difficult to quantify. However, satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP), which has a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. In this presentation, we will show how the satellite measurement of FRP is facilitating the quantitative characterization of biomass burning and smoke emission rates, and the implications of this unique capability for improving our understanding of smoke impacts on air quality, weather, and climate. We will also discuss some of the challenges and uncertainties associated with satellite measurement of FRP and how they are being addressed.
    Keywords: Earth Resources and Remote Sensing
    Type: 8th Annual NCAR Early Career Scientist Assembly Junior Faculty Forum; Jul 13, 2010 - Jul 15, 2010; Boulder, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-19
    Description: Agricultural land use significantly influences the surface water and energy balances. Effects of irrigation on land surface states and fluxes include repartitioning of latent and sensible heat fluxes, an increase in net radiation, and an increase in soil moisture and runoff. We are working on representing irrigation practices in continental- to global-scale land surface simulation in NASA's Global Land Data Assimilation System (GLDAS). Because agricultural practices across the nations are diverse, and complex, we are attempting to capture the first-order reality of the regional practices before achieving a global implementation. This study focuses on two issues in Southeast Asia: multiple cropping and rice paddy irrigation systems. We first characterize agricultural practices in the region (i.e., crop types, growing seasons, and irrigation) using the Global data set of monthly irrigated and rainfed crop areas around the year 2000 (MIRCA2000) dataset. Rice paddy extent is identified using remote sensing products. Whether irrigated or rainfed, flooded fields need to be represented and treated explicitly. By incorporating these properties and processes into a physically based land surface model, we are able to quantify the impacts on the simulated states and fluxes.
    Keywords: Earth Resources and Remote Sensing
    Type: Western Pacific Geophysics meeting; Jun 22, 2010 - Jun 25, 2010; Taipei; Taiwan, Province of China
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-19
    Description: A major motivation for the study of the coupled land-atmosphere system is the idea that soil moisture anomalies may affect future meteorological variables through their effects on future surface energy and water budgets. If true, the accurate initialization of soil moisture in a subseasonal or seasonal forecast system may improve forecast skill, making the forecast products more valuable to society. The GLACE-2 project is examining, through a coordinated experiment using a wide variety of models, the degree to which subseasonal (out to two months) precipitation and air temperature forecasts improve through the realistic initialization of soil moisture. For the first time ever, a global consensus should emerge regarding the value of land initialization for forecasts, perhaps motivating national forecast centers to make full use of land moisture initialization in their operations
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-19
    Description: The Modern Era Retrospective-analysis for Research and Applications (MERRA) reanalyses has completed 27 years of data) soon to be caught up to present. Here) we present an evaluation of those years currently available) including comparisons with the existing long reanalyses (ERA40) JRA25 and NCEP I and II) as well as with global data sets for the water and energy cycle. Time series shows that the MERRA budgets can change with some of the variations in observing systems, but that the magnitude of energy imbalance in the system is improved with more observations. We will present all terms of the budgets in MERRA including the time rates of change and analysis increments (tendency due to the analysis of observations).
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-19
    Description: Fires are a common occurrence in the Siberian boreal forest. The MOD14 Thermal anomalies product of the Terra MODIS Moderate Resolution Spectroradiometer) product set is designed to detect thermal anomalies (i.e. hotspots or fires) on the Earth's surface. Recent field studies showed a dependence of fire occurrence on topography. In this study MODIS thermal anomaly data and SRTM topography data were merged and analyzed to evaluate if forest fires are more likely to occur at certain combinations of elevation, slope and aspect. Using the satellite data over a large area can lead to better understanding how topography and forest fires are related. The study area covers a 2.5 Million krn(exp 2) portion of the Central Siberian southern taiga from 72 deg to 110 deg East and from 50 deg to 60 deg North. About 57% of the study area is forested and 80% of the forest grows between 200 and 1000 m. Forests with pine (Pinus sylvestris), larch (Larix sibirica, L. gmelinii), Siberian pine (Pinus sibirica), spruce (Picea obovata.) and fir (Abies sibirica) cover most of the landscape. Deciduous stands with birch (Betula pendula, B. pubescens) and aspen (Populus tremula) cover the areas of lower elevation in this region. The climate of this area is distinctly continental with long, cold winters and short hot summers. The tree line in this part of the world is around 1500 m in elevation with alpine tundra, snow and ice fields and rock outcrops extending up to over 3800 m. A 500 m resolution landcover map was developed using 2001 MODIS MOD13 Normalized Vegetation Index (NDVI) and Middle Infrared (MIR) products for seven 16-day periods. The classification accuracy was over 87%. The SRTM version 2 data, which is distributed in 1 degree by 1 degree tiles were mosaiced using the ENVI software. In this study, only those MODIS pixels were used that were flagged as "nominal or high confidence fire" by the MODIS fire product team. Using MODIS data from the years 2000 to 2005 along with the improved Shuttle Radar Topographic Mission (SRTM) version 2 data at 100 m resolution, the distribution of hot spots was examined by elevation, slope and aspect as well as by forest type. The results show that more forest area burns at lower elevations but a larger percentage of the available forest area burns at higher elevations. This is probably because steep slopes occur at higher elevations. Fires are only more common on slopes with a southern exposure if the slope is steeper than 15 degrees. The next step in this study will be to monitor areas where the risk of fire is high (steep slopes with a southern exposure) and to refine this method by incorporating anthropogenic features for more accurate fire disturbance monitoring.
    Keywords: Earth Resources and Remote Sensing
    Type: IEEE International Geoscience and Remote Sensing Symposium and 27th Canadian Symposium on Remote Sensing; Jul 31, 2006 - Aug 04, 2006; Colorado; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-19
    Description: The primary purpose of the ICESat mission was to determine the present-day mass balance of the Greenland and Antarctic ice sheets, identify changes that may be occurring in the surface-mass flux and ice dynamics, and estimate their contributions to global sea-level rise. Although ICESat's three lasers were planned to make continuous measurements for 3 to 5 years, the mission was re-planned to operate in 33-day campaigns 2 to 3 times each year following failure of the first laser after 36 days. Seventeen campaigns were conducted with the last one in the Fall of 2009. Mass balance maps derived from measured ice-sheet elevation changes show that the mass loss from Greenland has increased significantly to about 170 Gt/yr for 2003 to 2007 from a state of near balance in the 1990's. Increased losses (189 Gt/yr) from melting and dynamic thinning are over seven times larger'than increased gains (25 gt/yr) from precipitation. Parts of the West Antarctic ice sheet and the Antarctic Peninsula are losing mass at an increasing rate, but other parts of West Antarctica and the East Antarctic ice sheet are gaining mass at an increasing rate. Increased losses of 35 Gt/yr in Pine Island, Thwaites-Smith, and Marie-Bryd.Coast are more than balanced by gains in base of Peninsula and ice stream C, D, & E systems. From the 1992-2002 to 2003-2007 period, the overall mass balance for Antarctica changed from a loss of about 60 Gt/yr to near balance or slightly positive.
    Keywords: Earth Resources and Remote Sensing
    Type: 2010 AGU Fall Meeting; Dec 13, 2010 - Dec 17, 2010; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-19
    Description: The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over ten years. Among the retrieved quantities are amount and type of wildfire smoke, desert dust, volcanic effluent, urban and industrial pollution particles, and other aerosols. However, the broad scientific challenges of understanding aerosol impacts on climate and health place different, and very exacting demands on our measurement capabilities. And these data sets, though much more advanced in many respects than previous aerosol data records, are imperfect. In this presentation, I will summarize current understanding of MISR and MODIS aerosol product strengths and limitations, discuss how they relate to the bigger aerosol science questions we must address, and give my view of what we will need to do to progress.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-19
    Description: Objective: The objective of this proposal is to provide a routine land surface modeling and data assimilation capability for GPM in order to provide global land surface states that are necessary to support physical precipitation retrieval algorithms over land. It is well-known that surface emission, particularly over the range of frequencies to be included in GPM, is sensitive to land surface states, including soil properties, vegetation type and greenness, soil moisture, surface temperature, and snow cover, density, and grain size. Therefore, providing a robust capability to routinely provide these critical land states is essential to support GPM-era physical retrieval algorithms over land.
    Keywords: Earth Resources and Remote Sensing
    Type: NASA Precipitation Measurement Missions (PMM) Science Team Meeting; Nov 01, 2010 - Nov 04, 2010; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-19
    Description: Determining the health and vigor of vegetation using high spectral resolution remote sensing is an important goal which has application to monitoring agriculture and ecosystem productivity and carbon exchange. Two spectral indices used to assess whether vegetation is performing near-optimally or exhibiting symptoms of environmental stress (e.g., drought or nutrient deficiency, non-optimal temperatures, etc.) are the Photochemical Reflectance Index (PRI) and solar-induced red and far-red Chlorophyll Fluorescence (Fs). Both the PRI and Fs capture the dynamics of photoprotection mechanisms within green foliage: the PRI is based on the association of the reflected radiation in the green spectrum with the xanthophyll cycle, whereas Fs measures the emitted radiation in the red and far-red spectrum. Fs was determined from retrievals in the atmospheric oxygen absorption features centered at 688 and 760 nm using a modified Fraunhofer Line Depth (FLD) method. We previously demonstrated diurnal and seasonal PRI differences for sunlit vs. shaded foliage in a conifer forest canopy, as expressed in the hotspot and darkspot of the Bidirectional Reflectance Function (BRF). In a USDA-ARS experimental field site located in Beltsville, MD, USA, measurements were acquired over a corn crop from a nadir view in 2008 with an ASD FieldSpec Pro (Analytical Spectral Devices, Inc., Boulder, CO, USA) to study the behavior of the PRI for sunlit and shaded foliage as captured in reflectance variations associated with the BRF, in a I m tall canopy in the vegetative growth stage. Those observations were compared to simulations obtained from two radiative transfer models. Measurements were then acquired to examine whether the PRI and Fs were influenced by view zenith and azimuth geometries at different times of day. Those measurements were made in 2010 with the Ocean Optics USB4000 Miniature Fiber Optic Spectrometer (Ocean Optics Inc., Dunedin, Florida, USA) at several times during the day on multiple days throughout the growing season. We found that the PRI consistently had higher values, indicating lower stress, in the BRF darkspot associated with shaded foliage than in the hotspot associated with sunlit foliage. We also found that Fs exhibited differences associated with sunlit and shaded canopy sectors, which were most pronounced for the red/far-red Fs ratio. Values indicated greater physiological stress in afternoons compared to mornings, and in the early senescent canopy as compared to the vegetative growth stage, BRFs for both the PRI and the red/far-red Fs ratio were bowl-shaped for the full azimuth sweep of the canopy. These two spectral indices (PRI, Fs ratio) provided complementary information on the photosynthetic function of the corn canopy.
    Keywords: Earth Resources and Remote Sensing
    Type: 4th International Workshop on Remote Sensing of Vegetation Fluorescence (NCTS 14987-11); Nov 15, 2010 - Nov 17, 2010; Valencia; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-19
    Description: Processes in generating, transporting, and dissipating the airborne dust particles are global phenomena -African dust regularly reaching the Alps; Asian dust seasonally crossing the Pacific into North America, and ultimately the Atlantic into Europe. One of the vital biogeochemical roles dust storms play in Earth's ecosystem is routinely mobilizing mineral dust, as a source of iron, from deserts into oceans for fertilizing the growth of phytoplankton -the basis of the oceanic food chain. Similarly, these dust-laden airs also supply crucial nutrients for the soil of tropical rain forests, the so-called womb of life that hosts 50-90% of the species on Earth. With massive amounts of dust lifted from desert regions and injected into the atmosphere, however, these dust storms often affect daily activities in dramatic ways: pushing grit through windows and doors, forcing people to stay indoors, causing breathing problems, reducing visibility and delaying flights, and by and large creating chaos. Thus, both increasing and decreasing concentrations of doses result in harmful biological effects; so do the airborne dust particles to our Living Earth. Since 1997 NASA has been successfully launching a series of satellites - the Earth Observing System - to intensively study, and gain a better understanding of, the Earth as an integrated system. Through participation in many satellite remote-sensing/retrieval and validation projects over the years, we have gradually developed and refined the SMART (Surface-sensing Measurements for Atmospheric Radiative Transfer) and COMMIT (Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile observatories, a suite of surface remote sensing and in-situ instruments that proved to be vital in providing high temporal measurements, which complement the satellite observations. In this talk, we will present SMART-COMMIT which has played key roles, serving as network or supersite, in major international research projects such as the Joint Aerosol Monsoon Experiment (JAMEX), a core element of the Asian Monsoon Years (AMY, 2008-2012). SMART-COMMIT deployments during 2008 AMY/JAMEX were conducted in northwestern China to characterize the properties of dust-laden aerosols. In 2009, SMART-COMMIT also participated in the JAMEX/RAJO-MEGHA (Radiation, Aerosol Joint Observations-Monsoon Experiment in the Gangetic-Himalayan Area; Sanskrit for Dust-Cloud) to study the aerosol properties, solar absorption and the associated atmospheric warming, and the climatic impact of elevated aerosols during the premonsoon season in South Asia. To fully characterize the properties of airborne dust in the field is an important but challenging task. In this seminar, we will present our recent measurements and retrievals of airborne dust properties.
    Keywords: Earth Resources and Remote Sensing
    Type: Asian Dust/Aerosol and It''s Impact on Global Climate Change; Aug 08, 2010 - Aug 11, 2010; Shanghai; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-19
    Description: We report recent progress derived from comparison of global CO2 flux and transport models with new remote sensing and other sources of CO2 data including those from satellite. The overall objective of this activity is to improve the process models that represent our understanding of the workings of the atmospheric carbon cycle. Model estimates of CO2 surface flux and atmospheric transport processes are required for initial constraints on inverse analyses, to connect atmospheric observations to the location of surface sources and sinks, to provide the basic framework for carbon data assimilation, and ultimately for future projections of carbon-climate interactions. Models can also be used to test consistency within and between CO2 data sets under varying geophysical states. Here we focus on simulated CO2 fluxes from terrestrial vegetation and atmospheric transport mutually constrained by analyzed meteorological fields from the Goddard Modeling and Assimilation Office for the period 2000 through 2009. Use of assimilated meteorological data enables direct model comparison to observations across a wide range of scales of variability. The biospheric fluxes are produced by the CASA model at 1x1 degrees on a monthly mean basis, modulated hourly with analyzed temperature and sunlight. Both physiological and biomass burning fluxes are derived using satellite observations of vegetation, burned area (as in GFED-3), and analyzed meteorology. For the purposes of comparison to CO2 data, fossil fuel and ocean fluxes are also included in the transport simulations. In this presentation we evaluate the model's ability to simulate CO2 flux and mixing ratio variability in comparison to remote sensing observations from TCCON, GOSAT, and AIRS as well as relevant in situ observations. Examples of the influence of key process representations are shown from both forward and inverse model comparisons. We find that the model can resolve much of the synoptic, seasonal, and interannual variability in the observations, although reasons for persistent discrepancies in northern hemisphere vegetation uptake are examined. At this time, we do not find any serious shortcomings in the model transport representation, but this is still the subject of close scrutiny. In general, the fidelity of these simulations leads us to anticipate incorporation of real-time, highly resolved remote sensing and other observations into quantitative analyses that will reduce uncertainty in CO2 fluxes and revolutionize our understanding of the key processes controlling atmospheric CO2 and its evolution with time.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-19
    Description: This paper describes the successful operations of NASA's Earth Observing System (EOS) satellites over the past 10 years and the plans for the future. Excellent operations performance has been a key factor in the overall success of EOS. The EOS Program was conceived in the 1980s and began to take shape in the early 1990s. EOS consists of a series of satellites that study the Earth as an interrelated system. It began with the launch of Terra in December 1999, followed by Aqua in May 2002, and Aura in July 2004. A key EOS goal is to provide a long-term continuous data set to enable the science community to develop a better understanding of land, ocean, and atmospheric processes and their interactions. EOS has produced unprecedented amounts of data which are used all over the world free of charge. Mission operations have resulted in data recovery for Terra, Aqua, and Aura that have consistently exceeded mission requirements. The paper describes the ground systems and organizations that control the EOS satellites, capture the raw data, and distribute the processed science data sets. The paper further describes how operations have evolved since 1999. Examples of this evolution include (a) the implementation of new mission safety requirements for orbital debris monitoring; (b) technology upgrades to keep facilities at the state of the art; (c) enhancements to meet changing security requirements; and (d) operations management of the 2 international Earth Observing Constellations of 11 satellites known as the "Morning Constellation" and the "A-Train". The paper concludes with a view into the future based on the latest spacecraft status, lifetime projections, and mission plans.
    Keywords: Earth Resources and Remote Sensing
    Type: SpaceOps 2010; Apr 25, 2010 - Apr 30, 2010; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-19
    Description: NASA collects large volumes of imagery data from satellite-based Earth remote sensing sensors. Nearly all of the computerized image analysis of this data is performed pixel-by-pixel, in which an algorithm is applied directly to individual image pixels. While this analysis approach is satisfactory in many cases, it is usually not fully effective in extracting the full information content from the high spatial resolution image data that s now becoming increasingly available from these sensors. The field of object-based image analysis (OBIA) has arisen in recent years to address the need to move beyond pixel-based analysis. The Recursive Hierarchical Segmentation (RHSEG) software developed by the author is being used to facilitate moving from pixel-based image analysis to OBIA. The key unique aspect of RHSEG is that it tightly intertwines region growing segmentation, which produces spatially connected region objects, with region object classification, which groups sets of region objects together into region classes. No other practical, operational image segmentation approach has this tight integration of region growing object finding with region classification This integration is made possible by the recursive, divide-and-conquer implementation utilized by RHSEG, in which the input image data is recursively subdivided until the image data sections are small enough to successfully mitigat the combinatorial explosion caused by the need to compute the dissimilarity between each pair of image pixels. RHSEG's tight integration of region growing object finding and region classification is what enables the high spatial fidelity of the image segmentations produced by RHSEG. This presentation will provide an overview of the RHSEG algorithm and describe how it is currently being used to support OBIA or Earth Science applications such as snow/ice mapping and finding archaeological sites from remotely sensed data.
    Keywords: Earth Resources and Remote Sensing
    Type: Capital Science 2010; Mar 27, 2010 - Mar 28, 2010; Arlington, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The United Nations University (UNU) estimates that floods presently impacts greater than 520 million people per year worldwide, resulting in up to 25,000 annual deaths, extensive homelessness, disaster-induced disease, crop and livestock damage, famine, and other serious harm. Meanwhile, aid agencies such as the International Federation of Red Cross and Red Crescent Societies (IFRC) are increasingly seeking better information concerning flood hazards in order to plan for and help mitigate the effects of damaging floods. There is fertile ground to continue development of better remote sensing and modeling techniques to help manage flood related disasters. Disaster management and humanitarian aid organizations need accurate and timely information for making decisions regarding deployment of relief teams and emergency supplies during major floods. Flood maps based on the use of satellite data have proven extremely valuable to such organizations for identifying the location, extent, and severity of these events. However, despite extraordinary efforts on the part of remote sensing data providers to rapidly deliver such maps, there is typically a delay of several days or even weeks from the on-set of flooding until such maps are available to the disaster management community. This paper summarizes efforts at NASA to address this problem through development of an integrated and automated process of a) flood forecasting b) flood detection, c) satellite data acquisition, d) rapid flood mapping and distribution, and e) validation of flood forecasting and detection products.
    Keywords: Earth Resources and Remote Sensing
    Type: XIV Brazilian Remote Sensing Symposium; Apr 26, 2010 - Apr 30, 2010; Natal; Brazil
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-19
    Description: NASA's Ikhana unmanned aerial vehicle (UAV) is a General Atomics MQ-9 Predator-B modified to support the conduct of Earth science missions for the NASA Science Mission Directorate through partnerships, other government agencies and universities. Ikhana, a Native American word meaning 'intelligence', can carry over 2000 lbs of atmospheric and remote sensing instruments in the payload bay and external pods. The aircraft is capable of mission durations in excess of 24 hours at altitudes above 40,000 ft. Redundant flight control, avionics, power, and network systems increase the system reliability and allow easier access to public airspace. The aircraft is remotely piloted from a mobile ground control station (GCS) using both C-band line-of-sight and Ku-band over-the-horizon satellite datalinks. NASA's GCS has been modified to support on-site science monitoring, or the downlink data can be networked to remote sites. All ground support systems are designed to be deployable to support global Eart science investigations. On-board support capabilities include an instrumentation system and an Airborne Research Test System (ARTS). The ARTS can host research algorithms that will autonomously command and control on-board sensors, perform sensor health monitoring, conduct data analysis, and request changes to the flight plan to maximize data collection. The ARTS also has the ability to host algorithms that will autonomously control the aircraft trajectory based on sensor needs, (e.g. precision trajectory for repeat pass interferometry) or to optimize mission objectives (e.g. search for specific atmospheric conditions). Standard on-board networks will collect science data for recording and for inclusion in the aircraft's high bandwidth downlink. The Ikhana project will complete GCS development, science support systems integration, external pod integration and flight clearance, and operations crew training in early 2007. A large-area remote sensing mission is currently scheduled for the Summer 2007.
    Keywords: Earth Resources and Remote Sensing
    Type: DFRC-608
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-19
    Description: The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of operational algorithms for the retrieval of cloud physical and optical properties (optical thickness, effective particle radius, water path, thermodynamic phase) have recently been updated and are being used in the new "Collection 5" processing stream being produced by the MODIS Adaptive Processing System (MODAPS) at NASA GSFC. All Terra and Aqua data are undergoing Collection 5 reprocessing with an expected completion date by the end of 2006. The archived products from these algorithms include 1 km pixel-level (Level-2) and global gridded Level-3 products. The cloud products have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In this talk, we will summarize the available Level-3 cloud properties and their associated statistical data sets, and show preliminary Terra and Aqua results from the available Collection 5 reprocessing effort. Anticipated results include the latitudinal distribution of cloud optical and radiative properties for both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world.
    Keywords: Earth Resources and Remote Sensing
    Type: AMS 12th Conference on Atmospheric Radiation; Jul 10, 2006 - Jul 14, 2006; Madison, WI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-19
    Description: MODIS is a major instrument for the NASA EOS Terra (1aunched in December 1999) and Aqua (launched in May 2002) missions. It was designed and built to enhance and extend its heritage sensors' measurements and data records with applications covering a wide range of studies of the Earth's land, oceans, and atmosphere. MODIS has 36 spectral bands (0.41 - 14.4 micrometers) located on four focal plane assemblies (FPAs). It makes measurements at three nadir spatial resolutions: 250m (bands 1-2), 500m (bands 3-7), and lkm (bands 8-36). Because of instrument design complexity and stringent calibration requirements, extensive calibration and characterization activities were conducted pre-launch by the sensor vendor (Raytheon / Santa Barbara Remote Sensing) for both Tesa and Aqua MODIS. For the 20 reflective solar bands (RSB), these activities include measurements for the detectors noise characterization and radiometric performance, system level response versus scan-angle (RVS), polarization sensitivity, and relative spectral response (RSR). Key radiometric performance was evaluated using thermal vacuum observations. On-orbit MODIS RSB calibration is performed using a solar diffuser (SD) and solar diffuser stability monitor (SDSM) system. The SD bi-directional reflectance factor (BRF) was characterized pre-launch by the sensor vendor with reference samples traceable to NIST reflectance standards. This paper provides a summary of Terra and Aqua MODIS RSB pre-launch and on-orbit calibration and characterization activities and results with focus on the detectors' noise characterization and radiometric performance. Challenging and concerning issues and lessons learned from RSB pre-launch calibration and their impact on post launch performance are also presented. A similar summary for MODIS thermal emissive bands (TEB) is reported in a separate paper in these proceedings.
    Keywords: Earth Resources and Remote Sensing
    Type: The International Society for Optical Engineering (SPIE) Conference on Optics and Photonoics 2006; Aug 13, 2006 - Aug 17, 2006; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-19
    Description: With increasing efforts on data fusion and long-term climate data records (CDR) using observations made by multiple sensors, on the same or different platforms, their cross-calibration and validation work has become more and more important. The uncertainties of the climate models and data records depend not only on the calibration quality of individual sensors but also on their calibration consistency. This paper provides an overview of methodologies used by the MODIS Characterization Support Team (MCST) at NASA GSFC for the inter-comparison studies of Terra and Aqua MODIS on-orbit calibration. Each MODIS was built with a set of onboard calibrators (OBC) that include a blackbody (BB), a solar diffuser (SD), and a solar diffuser stability monitor (SDSM). The BB is primarily used for the thermal emissive bands (TEB) calibration and the SD/SDSM system for the reflective solar bands (RSB) calibration. Although the-instrument design and calibration approach are nearly identical for both Terra and Aqua MODIS and they all went through an extensive and similar pre-launch calibration and characterization process, still their on-orbit calibration consistency needs to be carefully examined and validated as many science products have been generated from observations made by both instruments. Methodologies discussed in this paper include inter-comparison studies using the Moon, a third sensor, and ground targets. Our results show that Terra and Aqua reflective solar bands and thermal emissive bands have been calibrated consistently with excellent long-term stabilities. For the 11 and 12 micrometers sea surface temperature (SST) bands, the calibration difference of Terra and Aqua MODIS is less than 0.2K.
    Keywords: Earth Resources and Remote Sensing
    Type: The International Society for Optical Engineering (SPIE) Conference on Optics and Photonics 2006; Aug 13, 2006 - Aug 17, 2006; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-19
    Description: The succession of US and international Earth observing satellites that follow each other, seconds to minutes apart, across the local afternoon equator crossing is called the ATrain. The A-Train consists of the following satellites, in order of equator crossing: OCO, EOS Aqua, CloudSat, CALIPSO, PARASOL, and EOS Aura. Flying in such formation increases the number of observations, validates observations, and enables coordination between science observations, resulting in a more complete virtual science platform (Kelly, 2000). The goal of this project is to create the first ever A-Train virtual data portal/center, the A-Train Data Depot (ATDD), to process, archive, access, visualize, analyze and correlate distributed atmosphere measurements from various A-Train instruments along A-Train tracks. The ATDD will enable the free movement of remotely located A-Train data so that they are combined to create a consolidated vertical view of the Earth's Atmosphere along the A-Train tracks. Once the infrastructure of the ATDD is in place, it will be easily evolved to serve data from all A-Train data measurements: one stop shopping. The innovative approach of analyzing and visualizing atmospheric profiles along the platforms track (i.e., time) will be accommodated by reusing the GSFC Atmospheric Composition Data and Information Services Center (ACDISC) visualization and analysis tool, GIOVANNI, existing data reduction tools, on-line archiving for fast data access, access to remote data without unnecessary data transfers, and data retrieval by users finding data desirable for further study. Initial measurements utilized include CALIPSO lidar backscatter, CloudSat radar reflectivity, clear air relative humidity, water vapor and temperature from AIRS, and cloud properties and aerosols from both MODIS. This will be foilowed by associated measurements from TVILS, =MI, HIRDLS, sad TES. Given the independent nature of instrumentlplatform development, the ATDD project has been met with many interesting challenges that, once resolved, will provide a much greater understanding of the relative flight dynamics and data co-registration of the suite of A-Train instruments, thus greatly increasing the accuracy of A-Train data analysis. Some of these challenges will be illustrated and discussed. The project's early visualizations and analysis efforts illustrate the importance of managing data so that measurements from various missions can be combined to enhance the understanding of the atmosphere. A-Train data management coordination, as performed here, is extremely significant in facilitating the A-Train science of clouds, precipitation, aerosol and chemistry.
    Keywords: Earth Resources and Remote Sensing
    Type: American Geophysical Union meeting; Dec 11, 2006 - Dec 15, 2006; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-19
    Description: The coming ocean observing systems provide an unprecedented opportunity to change both the public perception of our oceans, and to inspire, captivate and motivate our children, our young adults and even our fellow adults to pursue careers allied with the oceans and to become stewards of our Planet's last unexplored environment. Education plans for the operational component, the Integrated Ocean Observing System (IOOS), and for the research component, Ocean Research Interactive Observatory Networks (ORION), are designed to take advantage of this opportunity. In both cases, community recommendations were developed within the context of the following assumptions: 1. Utilize research on how people learn, especially the four-pronged model of simultaneous learner-centered, knowledge-center, assessment-centered and community-centered learning 2. Strive for maximum impact on national needs in science and technology learning 3. Build on the best of what is already in place 4. Pay special attention to quality, sustainability, and scalability of efforts 5. Use partnerships across federal, state and local government, academia, and industry. Community recommendations for 100s and ORION education have much in common and offer the opportunity to create a coherent education effort allied with ocean observing systems. Both efforts focus on developing the science and technology workforce of the future, and the science and technology literacy of the public within the context of the Earth system and the role of the oceans and Great Lakes in that system. Both also recognize that an organized education infrastructure that supports sustainability and scalability of education efforts is required if ocean observing education efforts are to achieve a small but measurable improvement in either of these areas. Efforts have begun to develop the education infrastructure by beginning to form a community of educators from existing ocean and aquatic education networks and by exploring needs and issues associated with using ocean observing information assets in education. Likewise efforts are underway to address workforce issues by a systematic analysis of current and future workforce and educational needs. These activities will be described as will upcoming opportunities for the community to participate in these efforts.
    Keywords: Earth Resources and Remote Sensing
    Type: Education: Weather, Oceans, Climate (EWOC 2006) Conference; Jul 03, 2006 - Jul 07, 2006; Boulder, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-19
    Description: We have developed at Goddard over the last 5 years a new type of remote sensing instrument based upon the Fabry-Perot interferometer that has broad applicability to a variety of problems of great current interest. The instrument detects absorption features of various atmospheric trace species in direct or reflected sunlight. The Fabry-Perot offers high resolution and high optical throughput with small size and simplicity of operation. We have developed instruments for use as ground based, airborne and satellite sensors for species such as carbon dioxide, oxygen and water vapor. Our current concentration is to develop an ultra precise, inexpensive, ground based device suitable for wide deployment as a validation instrument for the OCO satellite scheduled to launch in 2008. We shall show sensitivity measurements for these three species, compare our water vapor measurements to those obtained using other types of sensors and discuss some of the peculiarities that must be addressed in order to provide the very high quality column measurements required to validate the OCO carbon dioxide measurements.
    Keywords: Earth Resources and Remote Sensing
    Type: American Geophysical Meeting; Dec 11, 2006 - Dec 15, 2006; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-19
    Description: This paper presents the chronological development of technologies and techniques that have led to a satellite mission concept aimed at quantifying the temporal and spatial distributions of upper tropospheric ice clouds. The Submillimeter-wave and Infrared Ice Cloud Experiment (SIRICE) is an Earth System Science Pathfinder mission concept designed to improve our understanding of the upper tropospheric water cycle and its coupling to the Earth s radiation budget. Ice outflow from convective storm systems is known to play an important role in regional energy budgets; however, ice generation and subsequent precipitation and sublimation are poorly quantified. SIRICE will provide measurements of ice cloud distributions and microphysical properties which are needed for understanding the crucial link between the hydrologic and energy cycles. The SIRICE measurement platform is comprised of two integrated instruments, the Submillimeter/millimeter-wave radiometer (SM4) and the Infrared Cloud Ice Radiometer (IRCIR). The primary instrument is the SM4, a conical scanner that provides a 1600 km swath of the Earth's surface at 53 degree incidence. The SM4 has 6 linearly polarized receivers measuring 12 spectral bands centered at 183 GHz, 325 GHz, 448 GHz, 643 GHz and 874 GHz; two receivers at 643 GHz measure horizontal and vertical polarizations. Submillimeter-wavelengths are well suited to the remote sensing of ice clouds due to the relative size of the wavelengths to particle sizes. Upwelling emission from lower tropospheric water vapor is scattered by the ice clouds thus causing a brightness temperature depression at submillimeter wavelengths. The IRCIR is a push broom imager with approximately 1500 km swath and spectral channels at 11 and 12 micrometers. This combination of coincident infrared and submillimeter-wavelength measurements were chosen because of its ability to provide retrieval of ice water path and median particle size for a wide range of ice clouds from thin cirrus to thick anvil structures. Over the past decade there has been a parallel development of submillimeter-wave technologies, demonstration instruments, and remote sensing techniques that have led to the present SIRICE mission concept. Mapping of these developmental paths reveals the origins, rational and maturity of features of the SIRICE payload such as its channel selection, compact design, and multipoint calibration. This presentation traces the evolution of the SIRICE mission concept from the early 1990's to its present status.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-19
    Description: The study of Planet earth is a very complex problem. It has many non-linear and chaotic systems operating in parallel and have interdependencies. In reality, these systems/phenomena s are not well understood or mathematically modeled because of our lack of knowledge of such intricate processes. However, in order to further the subject of Earth as an integrated system, space provides excellent vantage points to look at these processes in multidimensional framework. For example, we can make strives to understand the global water cycle, carbon cycle, atmospheric chemistry, biomass changes, oceans and solid Earth variations by making multitude of global measurements such as soil moisture, precipitation, tropospheric and stratospheric gases, aerosols, tropospheric winds, ocean salinity, ocean color, vegetation cover, crustal dynamics and many more. Such suites of measurements derive the coupled models so we may predict the changes due to natural and anthropogenic forcing. NASA along with other international space agencies have made tremendous investments in recent years in developing and flying remote sensing space borne sensors to enable these measurements. These science measurements and products are further used to address pressing issues such as coastal zone erosion, air quality, severe weather, water availability and quality, public health, fires, earthquakes, land slides and others for societal benefits. This presentation provides a comprehensive overview of NASA s science investigations, related technologies and satellites/sensors and applications.
    Keywords: Earth Resources and Remote Sensing
    Type: International Conference on Advance Space Technologies (ICAST) 2006; Sep 02, 2006 - Sep 03, 2006; Islamabad; Pakistan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-19
    Description: As an integrated observing strategy, the concept of sensorweb for Earth observations is appealing in many aspects. For instance, by increasing the spatial and temporal coverage of observations from space and other vantage points, one can eventually aid in increasing the accuracy of the atmospheric models which are precursor to hurricane track prediction, volcanic eruption forecast, and trajectory path of transcontinental transport of dust, harmful nuclear and chemical plumes. In reality, there is little analysis available in terms of benefits, costs and optimized set of sensors needed to make these necessary observations. This is a complex problem that must be carefully studied and balanced over many boundaries such as science, defense, early warning, security, and surveillance. Simplistically, the sensorweb concept from the technological point of view alone has a great appeal in the defense, early warning and security applications. In fact, it can be relatively less expensive in per unit cost as opposed to building and deploying it for the scientific use. However, overall observing approach should not be singled out and aligned somewhat orthogonally to serve a particular need. On the other hand, the sensorweb should be designed and deployed to serve multiple subject areas and customers simultaneously; and can behave as directed measuring systems for both science and operational entities. Sensorweb can be designed to act as expert systems, and/or also provide a dedicated integrated surveillance network. Today, there is no system in the world that is fully integrated in terms of reporting timely multiple hazards warnings, computing the loss of life and property damage estimates, and is also designed to cater to everyone s needs. It is not an easier problem to undertake and more so is not practically solvable. At this time due to some recent events in the world, the scientific community, social scientists, and operational agencies are more cognizant and getting together to address such colossal problems. Increasing our knowledge of the home planet, via amplified set of observations, is certainly a right step in a right direction. Furthermore, this is a prerequisite in understanding multiple hazard phenomena's. This paper examines various sensorweb options and observing architectures that can be useful specifically in addressing some of these complex issues. The ultimate goal is to serve the society by providing potential natural hazards information to the decision makers in the most expeditious manner so they can prepare themselves to mitigate potential risks to human life, livestock and property.
    Keywords: Earth Resources and Remote Sensing
    Type: Paper no. 6366-13 , European Symposium on Remote Sensing; Sep 11, 2006 - Sep 14, 2006; Stockholm; Sweden
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...