ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: The NASA Soil Moisture Active Passive (SMAP) Mission will provide global observations of soil moisture and freeze/thaw state from space. We outline how priority applications contributed to the SMAP mission measurement requirements and how the SMAP mission plans to foster applications and applied science.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.CP.4285.2011 , 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2010); Jul 25, 2010 - Jul 30, 2010; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-12
    Description: Report describes conceptual design of spaceborne radar system mapping precipitation and clouds at mid-latitudes to provide data for research on global weather and climate. Radar operates at two frequencies. Lower (35 GHz) provides vertical profiles of rainfall at rates up to 20 mm/h and enables probing of cirrus clouds. Higher (94 GHz) enables detection and quantitative measurements of clouds of all types and provides rain profiles at rates up to 10 mm/h.
    Keywords: ELECTRONIC SYSTEMS
    Type: NPO-18274 , NASA Tech Briefs (ISSN 0145-319X); 16; 7; P. 44
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: This paper presents the preliminary results of an architecture study that provides continuous telemetry coverage for NASA missions for immediate post-separation phase. This study is a collaboration effort between Jet Propulsion Laboratory (JPL), Goddard Space Flight Center (GSFC), and Applied Physics Laboratory (APL). After launch when the spacecraft separated from the upper stage, the spacecraft typically executes a number of mission-critical operations prior to the deployment of solar panels and the activation of the primary communication subsystem. JPL, GSFC, and APL have similar design principle statements that require continuous coverage of mission-critical telemetry during the immediate post-separation phase. To conform to these design principles, an architecture that consists of a separate spacecraft transmitter and a robust communication network capable of tracking the spacecraft signals is needed.This paper presents the preliminary results of an architecture study that provides continuous telemetry coverage for NASA missions for immediate post-separation phase. This study is a collaboration effort between Jet Propulsion Laboratory (JPL), Goddard Space Flight Center (GSFC), and Applied Physics Laboratory (APL). After launch when the spacecraft separated from the upper stage, the spacecraft typically executes a number of mission-critical operations prior to the deployment of solar panels and the activation of the primary communication subsystem. JPL, GSFC, and APL have similar design principle statements that require continuous coverage of mission-critical telemetry during the immediate post-separation phase. To conform to these design principles, an architecture that consists of a separate spacecraft transmitter and a robust communication network capable of tracking the spacecraft signals is needed. The main results of this study are as follows: 1) At low altitude (〈 10000 km) when most post-separation critical operations are executed, Earth-based network (e.g. Deep Space Network (DSN)) can only provide limited coverage, whereas space-based network (e.g. Space Network (SN)) can provide continuous coverage. 2) Commercial-off-the-shelf SN compatible transmitters are available for small satellite applications. In this paper we present the detailed coverage analysis of Earth-based and Space-based networks. We identify the key functional and performance requirements of the architecture, and describe the proposed selection criteria of the spacecraft transmitter. We conclude the paper with a proposed forward plan.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: SpaceOps 2008: Protecting the Earth, Exploring the Universe; May 12, 2008 - May 16, 2008; Heidelberg; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-14
    Description: The Soil Moisture Active and Passive (SMAP) Mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council s Decadal Survey. SMAP will make global measurements of the moisture present at Earth's land surface and will distinguish frozen from thawed land surfaces. Direct observations of soil moisture and freeze/thaw state from space will allow significantly improved estimates of water, energy and carbon transfers between land and atmosphere. Soil moisture measurements are also of great importance in assessing flooding and monitoring drought. SMAP observations can help mitigate these natural hazards, resulting in potentially great economic and social benefits. SMAP soil moisture and freeze/thaw timing observations will also reduce a major uncertainty in quantifying the global carbon balance by helping to resolve an apparent missing carbon sink on land over the boreal latitudes. The SMAP mission concept would utilize an L-band radar and radiometer. These instruments will share a rotating 6-meter mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days. The SMAP instruments provide direct measurements of surface conditions. In addition, the SMAP project will use these observations with advanced modeling and data assimilation to provide deeper root-zone soil moisture and estimates of land surface-atmosphere exchanges of water, energy and carbon. SMAP is scheduled for a 2014 launch date
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-14
    Description: Talk outline 1. Derivation of SMAP basic and applied science requirements from the NRC Earth Science Decadal Survey applications 2. Data products and latencies 3. Algorithm highlights 4. SMAP Algorithm Testbed 5. SMAP Working Groups and community engagement
    Keywords: Geophysics
    Type: Paper H32D-04 , GSFC.CPR.4282.2011 , AGU Fall 2010: New and Emerging Satellite Missions for Remote Sensing Hydrology; Dec 12, 2010 - Dec 17, 2010; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...