ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aircraft Design, Testing and Performance  (240)
  • AERODYNAMICS
  • Animals
  • 1950-1954  (84)
  • 1945-1949  (193)
  • 1925-1929
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-17
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: A simple, systematic, optimized vortex-lattice approach is developed for application to lifting-surface problems. It affords a significant reduction in computational costs when compared to current methods. Extensive numerical experiments have been carried out on a wide variety of configurations, including wings with camber and single or multiple flaps, as well as high-lift jetflap systems. Rapid convergence as the number of spanwise or chordwise lattices are increased is assured, along with accurate answers. The results from this model should be useful not only in preliminary aircraft design but also, for example, as input for wake vortex roll-up studies and transonic flow calculations.
    Keywords: AERODYNAMICS
    Type: NASA. Langley Res. Center Vortex-Lattice Utilization; p 325-342
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-05-30
    Description: Estimating method for lift interference of wing- body combinations at supersonic speeds
    Keywords: AERODYNAMICS
    Type: NACA-RM-A51J04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 399-411
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA. Langley Aeron. Lab. NACA: Univ. Conf. on Aerodyn.; p 341-353
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA Conf. on Aerodyn. Probl. of Transonic Airplane Design; p 49-52
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA. Ames Aeron. Lab. NACA Conf. on Aerodyn. Probl. of Transonic Airplane Design; p 21-28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA Conf. on Aerodyn. Probl. of Transonic Airplane Design; p 53-57
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA. Ames Aeron. Lab. NACA Conf. on Aerodyn. Probl. of Transonic Airplane Design; p 3-13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 307-322
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 127-149
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 29-46
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 355-365
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 151-166
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 109-125
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA. Langley Aeron. Lab. NACA: Univ. Conf. on Aerodyn.; p 325-340
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA Conf. on Aerodyn. Probl. of Transonic Airplane Design; p 95-100
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA. Ames Aeron. Lab. NACA Conf. on Aerodyn. Probl. of Transonic Airplane Design; p 43-48
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA Conf. on Aerodyn. Probl. of Transonic Airplane Design; p 15-20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 377-395
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA. Langley Aeron. Lab. NACA: Univ. Conf. on Aerodyn.; p 367-376
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 167-183
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 3-26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-05-29
    Description: Conference on aerodynamics of high speed aircraft
    Keywords: AERODYNAMICS
    Type: NASA-TM-X-57121
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-05-23
    Description: Drag measurements at low lift of four-nacelle aircraft configuration with longitudinal distribution of cross-sectional area conducive to low transonic drag rise
    Keywords: AERODYNAMICS
    Type: NACA-RM-L53E29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TN-270
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: This report begins with a review and analysis of the work being done to develop light airplanes in the U.S. and abroad. A technical discussion of the construction and innovations in light airplanes is then presented.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TM-311
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-06-28
    Description: A flight investigation was made to determine the effect of distance flown in the icing region, antenna length, and antenna angle on the tension occurring in aircraft antennae while in regions of aircraft icing. The experimental antennas were of lengths ranging from 15 to 43 feet and were placed at angles of 0 deg to 64 deg with the airplane thrust axis. Distances up to 256 miles were flown in diverse icing conditions at true airspeeds from 157 to 214 miles per hour and pressure altitudes at which icing conditions were encountered. The results indicate that: The effect of ice formation on antenna tension increased with the angle of the antennas with the longitudinal axis of the airplane. The maximum tension for antennae having angles from 0 deg to 15 deg was 68 pounds, whereas the maximum tension for antennas having angles of 44 deg and 64 deg was 274 and 438 pounds, respectively.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-E7H26a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-06-28
    Description: An equation is presented for calculating the heat flow required from the surface of an internally heated windshield in order to prevent the formation of ice accretions during flight in specified icing conditions. To ascertain the validity of the equation, comparison is made between calculated values of the heat required and measured values obtained for test windshields in actual flights in icing conditions. The test windshields were internally heated and provided data applicable to two common types of windshield configurations; namely the V-type and the type installed flush with the fuselage contours. These windshields were installed on a twin-engine cargo airplane and the icing flights were conducted over a large area of the United States during the winters of 1945-46 and 1946-47. In addition to the internally heated windshield investigation, some test data were obtained for a windshield ice-prevention system in which heated air was discharged into the windshield boundary layer. The general conclusions resulting from this investigation are as follows: 1) The amount of heat required for the prevention of ice accretions on both flush- and V-type windshields during flight in specified icing conditions can be calculated with a degree of accuracy suitable for design purposes. 2) A heat flow of 2000 to 2500 Btu per hour per square foot is required for complete and continuous protection of a V-type windshield in fight at speeds up to 300 miles per hour in a moderate cumulus icing condition. For the same degree of protection and the same speed range, a value of 1000 Btu per hour per square foot suffices in a moderate stratus icing condition. 3) A heat supply of 1000 Btu per hour per square foot is adequate for a flush windshield located well aft of the fuselage stagnation region, at speeds up to 300 miles per hour, for flight in both stratus and moderate cumulus icing conditions. 4) The external air discharge system of windshield thermal ice prevention is thermally inefficient and requires a heat supply approximately 20 times that required for an internal system having the same performance.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TN-1434
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-06-28
    Description: An investigation was conducted to compare the performance of two 25-ft-diam rotors which had identical dimensions and were similar in construction but different in blade airfoil-sections. Tests were conducted at indicated blade pitch angles from 3 degrees to 11.5 degrees and rotor speeds of 200, 290, and 371 rpm. The 23012.6 rotor required 2 percent less power to hover than the 0012.6. At thrust coefficients above design, the performance of the 23012.6 became better than the 0012.6 rotor.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-WR-L-749 , NACA-MR-L6D24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-WR-L-79 , NACA-ARR-L5G19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-06-28
    Description: A relatively simple equation has been found to express with fair accuracy, variation in manifold-charge temperature with charge in engine operating conditions. This equation and associated curves have been checked by multi cylinder-engine data, both test stand and flight, over a wide range of operating conditions. Average mixture temperatures, predicted by the equations of this report, agree reasonably well with results within the same range of carburetor-air temperatures from laboratories and test stands other than the NACA.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-WR-E-273 , NACA-MR-E5L03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-06-28
    Description: An investigation has been conducted in the Langley rectangular high-speed tunnel to determine the effect of compressibility on the pressure distribution for a modified NACA 65,3-019 airfoil having a 0.20-chord flap. The investigation was made for an angle-of-attack range extending from -2 to 12 deg at .20 flap deflections from 0 to -12 deg. Test data were obtained for Mach numbers from 0.28 to approximately 0.74. The results show that the effectiveness of the trailing-edge-type control surface rapidly decreased and approached zero as the Mach number increased above the critical value.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-WR-L-76 , NACA-ACR-L5G31A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-06-28
    Description: Flat-plate flaps with no wing cutouts and flaps having Clark Y sections with corresponding cutouts made in wing were tested for various flap deflections, chord-wise locations, and gaps between flaps and airfoil contour. The drag was slightly lower for wing with airfoil section flaps. Satisfactory aileron effectiveness was obtained with flap gap of 20% wing chord and flap-nose location of 80 percent wing chord behind leading edge. Airflow was smooth and buffeting negligible.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-WR-L-56 , NACA-ARR-L5B17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-06-28
    Description: Pressure-distribution measurements have been made on the fus elage of the Bell X- 1 research airplane. Data are presented for angles of attack from 2 deg. to 8 deg. during pull-ups at Mach numbers of about 0.78, 0.85, 0.88, and 1.02. The results of the investigation indicated that a large portion of the load carried by the fuselage was in the vicinity of the wing and may be attributed to wing-to-fuselage carryover. The presence of the wing from the 41 to 60 percent fuselage stations influenced the fuselage pressures from about 30 to 65 percent fuselage length at Mach numbers of approximat ely 0.78, 0.85, and 0.88, and from about 35 to 80 percent fuselage length at a Mach number of approximately 1.02. The fuselage contributed about 20 percent of the total airplane normal-force coefficient. The center of pressure of the fuselage load throughout the tests was located from 41 to 51 percent fuselage length, which corresponds to the forward half of the wing root-chord location.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-L53I15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-06-28
    Description: The icing characteristics, the de-icing rate with hot air, and the effect of impact ice on fuel metering and mixture distribution have been determined in a laboratory investigation of that part of the engine induction system consisting of a three-barrel injection-type carburetor and a supercharger housing with spinner-type fuel injection from an 18-cylinder radial engine used on a large twin-engine cargo airplane. The induction system remained ice-free at carburetor-air temperatures above 36 F regardless of the moisture content of the air. Between carburetor-air temperatures of 32 F and 36 F with humidity ratios in excess of saturation, serious throttling ice formed in the carburetor because of expansion cooling of the air; at carburetor-air temperatures below 32 F with humidity ratios in excess of saturation, serious impact-ice formations occurred, Spinner-type fuel injection at the entrance to the supercharger and heating of the supercharger-inlet elbow and the guide vanes by the warn oil in the rear engine housing are design features that proved effective in eliminating fuel-evaporation icing and minimized the formation of throttling ice below the carburetor. Air-flow recovery time with fixed throttle was rapidly reduced as the inlet -air wet -bulb temperature was increased to 55 F; further temperature increase produced negligible improvement in recovery time. Larger ice formations and lower icing temperatures increased the time required to restore proper air flow at a given wet-bulb temperature. Impact-ice formations on the entrance screen and the top of the carburetor reduced the over-all fuel-air ratio and increased the spread between the over-all ratio and the fuel-air ratio of the individual cylinders. The normal spread of fuel-air ratio was increased from 0.020 to 0.028 when the left quarter of the entrance screen was blocked in a manner simulating the blocking resulting from ice formations released from upstream duct walls during hot-air de-icing.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TN-1427
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-06-28
    Description: This preliminary report furnishes information on the changes in the forces on each wing of a biplane cellule for various combinations of stagger and gap, stagger and sweepback, stagger and decalage, and gap and decalage. The data were obtained from pressure distribution tests made in the atmospheric wind tunnel of the Langley Memorial Aeronautical Laboratory. Since each test was carried up to 90deg angle of attack, the results may be used in the study of stalled flight and of spinning as well as in the structural design of biplane wings.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TN-330
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-06-28
    Description: A method has been proposed for predicting the effect of a rapid blade-pitch increase on the thrust and induced-velocity response of a helicopter rotor. General equations have been derived for the ensuing motion of the helicopter. These equations yield time histories of thrust, induced velocity, and helicopter vertical velocity for given rates of blade-pitch-angle changes and given rotor-angular-velocity time histories. The results of the method have been compared with experimental results obtained with a rotor mounted on the Langley helicopter test tower. The calculated and experimental results are in good agreement, although, in general, the calculated thrust-coefficient overshoots are about 10 percent greater than those obtained experimentally.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TN-3044
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-06-28
    Description: A cascade of 65-(12)10 compressor blades was tested at one geometric setting over a range of inlet Mach number from 0.12 to 0.89. Two groups of data are presented and compared: the first from the cascade operating conventionally with no boundary-layer control, and the second with the boundary layer controlled by a combination of upstream slot suction and porous-wall suction at the blade tips. A criterion for two-dimensionality was used to specify the degree of boundary-layer control by suction to be applied. The data are presented and an analysis is made to show the effect of Mach number on turning angle, blade wake, pressure distribution about the blade profile and static-pressure rise. The influence of boundary-layer control on these parameters as well as on the secondary losses is illustrated. A system of correlating the measured static-pressure rise through the cascade with the theoretical isentropic values is presented which gives good agreement with the data. The pressure distribution about the blade profile for an inlet Mach number of 0.21 is corrected with the Prandtl-Glauert, Karman-Tsien, and vector-mean velocity - contraction coefficient compressibility correction factors to inlet Mach numbers of 0.6 and 0.7. The resulting curves are compared with the experimental pressure distributions for inlet Mach numbers of 0.6 and 0.7 so that the validity of applying the three corrections can be evaluated.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TN-2649
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-06-28
    Description: The empirical relation between the induced velocity, thrust, and rate of vertical descent of a helicopter rotor was calculated from wind tunnel force tests on four model rotors by the application of blade-element theory to the measured values of the thrust, torque, blade angle, and equivalent free-stream rate of descent. The model tests covered the useful range of C(sub t)/sigma(sub e) (where C(sub t) is the thrust coefficient and sigma(sub e) is the effective solidity) and the range of vertical descent from hovering to descent velocities slightly greater than those for autorotation. The three bladed models, each of which had an effective solidity of 0.05 and NACA 0015 blade airfoil sections, were as follows: (1) constant-chord, untwisted blades of 3-ft radius; (2) untwisted blades of 3-ft radius having a 3/1 taper; (3) constant-chord blades of 3-ft radius having a linear twist of 12 degrees (washout) from axis of rotation to tip; and (4) constant-chord, untwisted blades of 2-ft radius. Because of the incorporation of a correction for blade dynamic twist and the use of a method of measuring the approximate equivalent free-stream velocity, it is believed that the data obtained from this program are more applicable to free-flight calculations than the data from previous model tests.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TN-2474
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-06-28
    Description: The autorotative performance of an assumed helicopter was studied to determine the effect of inoperative jet units located at the rotor-blade tip on the helicopter rate of descent. For a representative ramjet design, the effect of the jet drag is to increase the minimum rate of descent of the helicopter from about 1,OO feet per minute to 3,700 feet per minute when the rotor is operating at a tip speed of approximately 600 feet per second. The effect is less if the rotor operates at lower tip speeds, but the rotor kinetic energy and the stall margin available for the landing maneuver are then reduced. Power-off rates of descent of pulse-jet helicopters would be expected to be less than those of ramjet. helicopters because pulse jets of current design appear to have greater ratios of net power-on thrust to power-off, drag than currently designed rain jets. Iii order to obtain greater accuracy in studies of autorotative performance, calculations in'volving high power-off rates of descent should include the weight-supporting effect of the fuselage parasite-drag force and the fact that the rotor thrust does not equal the weight of the helicopter.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TN-2154
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-06-28
    Description: Flight tests were made in natural icing conditions with two 8-ft-chord heated airfoils of different sections. Measurements of meteorological variables conducive to ice formation were made simultaneously with the procurement of airfoil thermal data. The extent of knowledge on the meteorology of icing, the impingement of water drops on airfoil surfaces, and the processes of heat transfer and evaporation from a wetted airfoil surface have been increased to a point where the design of heated wings on a fundamental, wet-air basis now can be undertaken with reasonable certainty.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TN-1472
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-06-28
    Description: An investigation of a model of a large four-engine bomber was conducted in the Langley 19-f'oot pressure tunnel to determine the effects of several wing and nacelle modifications on drag characteristics and air flow characteristics at the tail. Leading-edge gloves, trailing-edge extensions, and modified nacelle afterbodies were tested individual ly and in combination. The effects of the various modifications were determined by force tests, tuft observations, and turbulence s1ITveys in the region of the tail. Tests were made with fixed and natural transition on the wing and with propellers operating and propellers off. Most of the tests were con- ducted at a Reynolds number of approximately 2.6 x 106. The results indicated that application of certain of the modifications provided worth-while improvements in the characteristics or the model. The flow over the wing and flaps was improved, the drag was reduced, and the turbulence in the region of the tail was reduced. Trailing-edge extensions were the most effective individual modification in improving the flow over the wing with wing flaps neutral, cowl and intercooler flaps clos ed. Modified nacelle afterbodies were the most effectiv8 individual edification in reducing drag with either fixed or natural transition on the wing; however, trailin6-edge extensions were slightly more effective with fixed transition. Combinations of either leading or trailing-edge extensions and modified afterbodies were more effective than either modification alone. With cowl and intercooler flaps open, trailing-edge extensions with modified afterbodies provided substantial improvement in flow and drag characteristics. With wing flaps deflected, enclosing the flap behind the inboard nacelle within an extended afterbody or cutting the flaps at the nacelle appeared. to be the most promising methods of improving the f low over the flaps and the tail. Although the results of hot-wire-anenometer surveys were not conclusive in regard to buffeting characteristics, the modifications did educe the turbulence at the tail with wing flaps both neutral and deflected. The modifications, as a rule, were favorable to maximum lift. Appreciable reductions in longitudinal stability of the model were caused by addition of leading -edge gloves and tr ailing -edge extensions.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-WR-L-114 , NACA-ARR-L5J05
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-06-28
    Description: In conjunction with a program of research on the general problem of stability of airplanes in the climbing condition, tests have been made of a spring-loaded tb which. is referred to as a ?springy tab,? installed on the elevator of a low-wing scout bomber. The tab was arranged to deflect upward with decrease in speed which caused an increase in the pull force required to trim at low speeds and thereby increased the stick-free static longitudinal stability of the airplane. It was found that the springy tab would increase the stick-free stability in all flight conditions, would reduce the danger of inadvertent stalling because of the definite pull force required to stall the airplane with power on, would reduce the effect of center-of-gravity position on stick-free static stability, and would have little effect on the elevator stick forces in accelerated f11ght. Another advantage of the springy tab is that it might be used to provide almost any desired variation of elevator stick force with speed by adjusting the tab hinge-moment characteristics and the variation of spring moment with tab deflection. Unlike the bungee and the bobweight, the springy tab would provide stick-free static stability without requiring a pull force to hold the stick back while taxying. A device similar to the springy tab may be used on the rudder or ailerons to eliminate undesirable trim-force variations with speed.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-WR-L-210 , NACA-ARR-L5I20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-05-25
    Description: An investigation was conducted on a 35 deg swept-wing fighter airplane to determine the effects of several blunt-trailing-edge modifications to the wing and tail on the high-speed stability and control characteristics and tracking performance. The results indicated significant improvement in the pitch-up characteristics for the blunt-aileron configuration at Mach numbers around 0.90. As a result of increased effectiveness of the blunt-trailing-edge aileron, the roll-off, customarily experienced with the unmodified airplane in wings-level flight between Mach numbers of about 0.9 and 1.0 was eliminated, The results also indicated that the increased effectiveness of the blunt aileron more than offset the large associated aileron hinge moment, resulting in significant improvement in the rolling performance at Mach numbers between 0.85 and 1.0. It appeared from these results that the tracking performance with the blunt-aileron configuration in the pitch-up and buffeting flight region at high Mach numbers was considerably improved over that of the unmodified airplane; however, the tracking errors of 8 to 15 mils were definitely unsatisfactory. A drag increment of about O.OOl5 due to the blunt ailerons was noted at Mach numbers to about 0.85. The drag increment was 0 at Mach numbers above 0.90.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-A54C31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-06-28
    Description: As a part of a program of the NACA directed toward increasing the efficiency of compressors and turbines, data were obtained for application to the design of entrance vanes for axfax-flow compressors or turbines. A series of blower-blade sections with relatively high critical speeds have been developed for turning air efficiently from 0 deg to 80 deg starting with an axial direction. Tests were made of five NACA 65-series blower blades (modified NACA 65(216)-010 airfoils) and of four experimentally designed blower blades in a stationary cascade at low Mach numbers. The turning effectiveness and the pressure distributions of these blade sections at various angles of attack were evaluated over a range of solidities near 1. Entrance-vane design charts are presented that give a blade section and angle of attack for any desired turning angle. The blades thus obtained operate with peak-free pressure distributions. Approximate critical Mach numbers were calculated from the pressure distributions.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-WR-L-188 , NACA-ACR-L5G18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-06-28
    Description: The material given in this report summarizes some of the results of recent research that will aid the designers of an airplane in selecting or modifying a configuration to provide satisfactory stability and control characteristics. The requirements of the NACA for satisfactory flying qualities, which specify the important stability and control characteristics of an airplane from the pilot's standpoint, are used as the main topics of the report. A discussion is given of the reasons for the requirements, of the factors involved in obtaining satisfactory flying qualities, and of the methods used in predicting the stability and control characteristics of an airplane. The material is based on lecture notes for a training course for research workers engaged in airplane stability and control investigations.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TR-927
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: The G 24 is a commercial airplane with three engines and a monoplane wing. It is known for it's all metal construction and stabilizers.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-AC-47
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-06-28
    Keywords: AERODYNAMICS
    Type: NACA-RM-A52B06
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-06-28
    Keywords: AERODYNAMICS
    Type: NACA-TN-3283
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-06-28
    Keywords: AERODYNAMICS
    Type: NACA-RM-A53G08
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-06-28
    Description: The general characteristics of the flow field in a submerged air inlet are investigated by theoretical, wind-tunnel, and visual-flow studies. Equations are developed for calculating the laminar and turbulent boundary-layer growth along the ramp floor for parallel, divergent, and convergent ramp walls, and a general equation is derived relating the boundary-layer pressure losses to the boundary-layer thickness. It is demonstrated that the growth of the boundary layer on the floor of the divergent-ramp inlet is retarded and that a vortex pair is generated in such an inlet. Functional relationships are established between the pressure losses in the vortices and the geometry of the inlet. A general discussion of the boundary layer and vortex formations is included, in which variations of the various losses and of the incremental external drag with mass-flow ratio are considered. Effects of compressibility are also discussed.
    Keywords: AERODYNAMICS
    Type: NACA-TN-2323
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-06-28
    Description: An investigation has been conducted in the NACA Cleveland icing research tunnel to determine the aerodynamic and icing characteristics of several recessed fuel-vent configurations. The vents were investigated aerodynamically to obtain vent-tube pressures and pressure distributions on the ramp surface as functions of tunnel-air velocity and angle of attack. Icing investigations were made to determine the vent-tube pressure losses for several icing conditions at tunnel-air velocities ranging from 220 to 440 feet per second. In general, under nonicing conditions, the configurations with diverging ramp walls maintained, vent-tube pressures greater than the required marginal value of 2 inches of water positive pressure differential between the fuel cell and the compartment containing the fuel cell for a range of angles of attack from 0 to 14deg at a tunnel-air velocity of approximately 240 feet per second. A configuration haying divergIng ramp sldewalls, a 7deg ramp angle; and vent tubes manifold,ed to a common plenum chamber opening through a slot In the ramp floor gave the greatest vent-tube pressures for all the configurations investigated. The use of the plenum chamber resulted in uniform pressures in all vent tubes. In a cloud-icing condition, roughness caused by ice formations on the airfoil surface ahead of the vent ramp, rather than icing of the vent configuration, caused a rapid loss in vent-tube pressures during the first few minutes of an icing period. Only the configuration having diverging ramp sidewalls, a 7 ramp angle, and a common plenum chamber maintained the required vent-tube pressures throughout a 60-minute icing period, although the ice formations on this configuration were more severe than those observed for the other configurations. No complete closure of vent-tube openings occurred for the configurations investigated. A simulated freezing-rain condition caused a greater and more rapid vent-tube pressure loss than was observed for a cloud-icing condition.
    Keywords: AERODYNAMICS
    Type: NACA-TN-1789
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-06-28
    Description: The effects of primary and runback ice formations on the section drag of a 36 deg swept NACA 63A-009 airfoil section with a partial-span leading-edge slat were studied over a range of angles of attack from 2 to 8 deg and airspeeds up to 260 miles per hour for icing conditions with liquid-water contents ranging from 0.39 to 1.23 grams per cubic meter and datum air temperatures from 10 to 25 F. The results with slat retracted showed that glaze-ice formations caused large and rapid increases in section drag coefficient and that the rate of change in section drag coefficient for the swept 63A-009 airfoil was about 2-1 times that for an unswept 651-212 airfoil. Removal of the primary ice formations by cyclic de-icing caused the drag to return almost to the bare-airfoil drag value. A comprehensive study of the slat icing and de-icing characteristics was prevented by limitations of the heating system and wake interference caused by the slat tracks and hot-gas supply duct to the slat. In general, the studies showed that icing on a thin swept airfoil will result in more detrimental aerodynamic characteristics than on a thick unswept airfoil.
    Keywords: AERODYNAMICS
    Type: NACA-RM-E53J30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-06-28
    Description: Calculations have been made for the icing limit of a diamond airfoil at zero angle of attack in terms of the stream Mach number, stream temperature, and pressure altitude. The icing limit is defined as a wetted-surface temperature of 320 F and is related to the stream conditions by the method of Hardy. The results show that the point most likely to ice on the airfoil lies immediately behind the shoulder and is subject to possible icing at Mach numbers as high as 1.4.
    Keywords: AERODYNAMICS
    Type: NACA-TN-2861
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-06-28
    Keywords: AERODYNAMICS
    Type: NACA-RM-E53C26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-06-28
    Description: The effects of primary and. runback icing and frost formations on the drag of an 8-foot-chord NACA 651-212 airfoil section were investigated over a range of angles of attack from 20 to 80 and airspeeds up to 260 miles per hour for icing conditions with liquid-water contents ranging from 0.25 to 1.4 grams per cubic meter and datum air temperatures of -30 to 30 F. The results showed that glaze-ice formations, either primary or runback, on the upper surface near the leading edge of the airfoil caused large and rapid increases in drag, especially at datum air temperatures approaching 32 F and in the presence of high rates of water catch. Ice formations at lower temperatures (rime ice) did not appreciably increase the drag coefficient over the initial (standard roughness) drag coefficient. Cyclic de-icing of the primary Ice formations on the airfoil leading-edge section permitted the drag coefficient to return almost to the bare airfoil drag value. Runback icing on the lower surface did not present a serious drag problem except when heavy spanwise ridges of runback ice occurred aft of the heatable area. Frost formations caused rapid and large increases in drag with incipient stalling of the airfoil.
    Keywords: AERODYNAMICS
    Type: NACA-TN-2962
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-06-27
    Description: The mechanics of laminar boundary layer transition are reviewed. Drag possibilities for boundary layer control are analyzed using assumed conditions of transition Reynolds number, inlet loss, number of slots, blower efficiency, and duct losses. Although the results of such analysis are highly favorable, those obtained by experimental investigations yield conflicting results, showing only small gains, and sometimes losses. Reduction of this data indicates that there is a lower limit to the quantity of air which must be removed at the slot in order to stabilize the laminar flow. The removal of insufficient air permits transition to occur while the removal of excessive amounts of air results in high power costs, with a net drag increases. With the estimated value of flow coefficient and duct losses equal to half the dynamic pressure, drag reductions of 50% may be obtained; with twice this flow coefficient, the drag saving is reduced to 25%.
    Keywords: AERODYNAMICS
    Type: NASA-CR-145337 , D-7625
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-06-27
    Description: The problem of the minimum induced drag of wings having a given lift and a given span is extended to include cases in which the bending moment to be supported by the wing is also given. The theory is limited to lifting surfaces traveling at subsonic speeds. It is found that the required shape of the downwash distribution can be obtained in an elementary way which is applicable to a variety of such problems. Expressions for the minimum drag and the corresponding spanwise load distributions are also given for the case in which the lift and the bending moment about the wing root are fixed while the span is allowed to vary. The results show a 15-percent reduction of the induced drag with a 15-percent increase in span as compared with results for an elliptically loaded wing having the same total lift and bending moment.
    Keywords: AERODYNAMICS
    Type: NACA-TN-2249 , Collected Works of Robert T. Jones; p 539-556
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-06-27
    Keywords: AERODYNAMICS
    Type: NACA-TN-1292 , NASA-TM-79866
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-06-28
    Description: An investigation has been made in the NACA Lewis icing research tunnel to determine the aerodynamic and icing characteristics of a full-scale induction-system air-scoop assembly incorporating a flush alternate inlet. The flush inlet was located immediately downstream of the offset ram inlet and included a 180 deg reversal and a 90 deg elbow in the ducting between inlet and carburetor top deck. The model also had a preheat-air inlet. The investigation was made over a range of mass-air- flow ratios of 0 to 0.8, angles of attack of 0 and 4 deg airspeeds of 150 to 270 miles per hour, air temperatures of 0 and 25 F various liquid-water contents, and droplet sizes. The ram inlet gave good pressure recovery in both clear air and icing but rapid blockage of the top-deck screen occurred during icing. The flush alternate inlet had poor pressure recovery in both clear air and icing. The greatest decreases in the alternate-inlet pressure recovery were obtained at icing conditions of low air temperature and high liquid-water content. No serious screen icing was observed with the alternate inlet. Pressure and temperature distributions on the carburetor top deck were determined using the preheat-air supply with the preheat- and alternate-inlet doors in various positions. No screen icing occurred when the preheat-air system was operated in combination with alternate-inlet air flow.
    Keywords: AERODYNAMICS
    Type: NACA-RM-E53E07
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-12
    Description: There are forwarded herewith the results of blade motion and bouncing tests on the Kellett KD-1 three-bladed autogiro. Motion picture records and two-component accelerometer records were taken in flight during glides at air speeds from 30 miles per hour to 100 miles per hour indicator readings. Calibration curves of correct indicated air speed and rotor speed as functions of air speed meter reading were established with a trailing pitot-static head and a rotoscope, at 2,000 ft. altitude and an air density of 0.00231 slug/ cu. ft., all tests being made at approximately that density.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-MR-X-1935
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-06-27
    Description: The damping in roll and rolling effectiveness of two models of a missile having cruciform, triangular, interdigitated wings and tails have been determined through a Mach number range of 0.8 to 1.8 by utilizing rocket-propelled test vehicles. Results indicate that the damping in roll was relatively constant over the Mach umber range investigated. The rolling effectiveness was essentially constant at low supersonic speeds and increased with increasing mach numbers in excess of 1.4 over the Mach number range investigated. Aeroelastic effects increase the rolling-effectiveness parameters pb/2V divided by delta and decrease both the rolling-moment coefficient due to wing deflection and the damping-in-roll coefficient.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-L51D16
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-06-28
    Description: The results of wind tunnel tests at NASA Langley targeted at the performance and configurational characteristics of 0.1 and 0.13 scale model spanwise blowing (SWB) jet wing concepts are reported. The concept involves redirection of engine compressor bleed air to provide SWB at the fuselage-wing juncture near the wing leading edge. The tests covered the orientation of the outer panel nozzles, the effects of SWB operation on the performance of leading and trailing edge flaps and the effects of SWB on lateral stability. The trials were run at low speeds and angles of attack from 24-45 deg (landing). Both lift and longitudinal stability improved with the SWB, stall and leading edge vortex breakdown were delayed and performance increased with the SWB rate. Lateral stability was degraded below 20 deg angle of attack while instabilities were delayed above 20 deg due to roll damping.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 84-2195
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-06-27
    Keywords: AERODYNAMICS
    Type: NASA-TM-79864 , NACA-TN-3062
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-06-27
    Keywords: AERODYNAMICS
    Type: NASA-TM-79844 , NACA-TR-1198 , NACA-TN-3018
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-08-17
    Description: Measurement of average skin-friction coefficients have been made on six rocket-powered free-flight models by using the boundary-layer rake technique. The model configuration was the NACA RM-10, a 12.2-fineness-ratio parabolic body of revolution with a flat base. Measurements were made over a Mach number range from 1 to 3.7, a Reynolds number range 40 x 10(exp 6) to 170 x 10(exp 6) based on length to the measurement station, and with aerodynamic heating conditions varying from strong skin heating to strong skin cooling. The measurements show the same trends over the test ranges as Van Driest's theory for turbulent boundary layer on a flat plate. The measured values are approximately 7 percent higher than the values of the flat-plate theory. A comparison which takes into account the differences in Reynolds number is made between the present results and skin-friction measurements obtained on NACA RM-10 scale models in the Langley 4- by 4-foot supersonic pressure tunnel, the Lewis 8- by 6-foot supersonic tunnel, and the Langley 9-inch supersonic tunnel. Good agreement is shown at all but the lowest tunnel Reynolds number conditions. A simple empirical equation is developed which represents the measurements over the range of the tests.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-L54G14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-08-17
    Description: As part of an investigation to increase the power output of the V-1710-93 engine at altitude, the engine-stage supercharger was combined with a constant-area vaneless diffuser designed to improve the performance of the engine-stage supercharger at the rated engine operating point. The performance of the modified supercharger was investigated in a variable-component supercharger test rig and compared with that of the standard supercharger with an 8-vaned diffuser. A separate evaluation of the component efficiencies and a study of the flow characteristics of the modified supercharger was made possible by internal diffuser instrumentation. At the volume flow required by the engine for rated operating conditions, the modified supercharger increased the over-all adiabatic efficiency 0.05 and the over-all pressure coefficient 0.035. Furthermore, the capacity of the engine-stage supercharger was increased by replacing the standard 8-vaned diffuser with the vaneless diffuser. The peak over-all adiabatic efficiency for the modified supercharger, however, was 0.05 to 0.07 lower than that of the standard unit over the range of tip speeds investigated. The improved performance of the modified supercharger at rated engine operating conditions resulted from a shift of the point of peak adiabatic efficiency and pressure coefficient of the standard supercharger to a higher flow. The energy loss through the vaneless diffuser was found to be small. Because of the restricted diffuser diameter, however, diffusion was inadequate, which resulted in a relatively small static-pressure rise through the diffuser, high diffuser-exit velocities, and excessive collector-case losses.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-E6K22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-16
    Description: The sound field of a rotating propeller is teated theoretically on the basis of aerodynamic principles. For the lower harmonics, the directional characteristics and the radiated sound energy are determined and are in conformity with existing experimental results.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TM-1195 , Physikalische Zeitschrit der Sowjetinion: Physical magazine of the Soviet Union volume 9 number 1; 9; 1; 57-71
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-11
    Description: A tank investigation has been conducted on a 1/8-size powered dynamic model of the Grumman JRF-5 airplane equipped with twin hydro-skis. The results of tests using two types of skis are presented: one had vertical sides joining the top surface to the chine; the other had the top surface faired to the chine to eliminate the vertical sides. Both configurations had satisfactory longitudinal stability although the model had a slightly greater stable elevator range available when the skis without the vertical sides were attached. Free model tests indicated no instability present when one ski emerged before the other. Considerable excess thrust was available at all speeds with either type of skis. A hump gross load-resistance ratio of 3.37 was obtained with the skis with the vertical sides and 3.53 with the other skis. Landing behavior in smooth water with yaw up to 15deg and roll up to 15deg in opposite directions was satisfactory with either type of skis.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA RM-SL52D17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-11
    Description: An investigation has been made in the Langley two-dimensional low-turbulence pressure tunnel to develop the optimum configuration of a 0.35-chord slotted flap on an NACA 65(sub 1120)-111 airfoil section modified by removing the trailing-edge cusp. The section pitching-moment characteristics and the effects of standard roughness on the section characteristics were determined for the flap retracted at Reynolds numbers ranging from 3.0 x 10(exp 6) to 9.0 x 10(exp 6).
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-L7B18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-11
    Description: Tests were made of a 1/18-scale dynamically similar model of the Lockheed Constellation airplane to investigate its ditching characteristics and proper ditching technique. Scale-strength bottoms were used to reproduce probable damage to the fuselage. The model was landed in calm water at the Langley tank no. 2 monorail. Various landing attitudes, speeds, and fuselage configuration were simulated. The behavior of the model was determined from visual observations, by recording the longitudinal decelerations, and by taking motion pictures of the ditchings. Data are presented in tabular form, sequence photographs, and time-history deceleration curves. It was concluded that the airplane should be ditched at a medium nose-high landing attitude with the landing flaps full down. The airplane will probably make a deep run with heavy spray and may even dive slightly. The fuselage will be damaged and leak substantially but in calm water probably will not flood rapidly. Maximum longitudinal decelerations in a calm-water ditching will be about 4g.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL8K18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-11
    Description: Flight tests of a P-51H airplane with two different vertical-tail assemblies were made to determine lateral and directional stability and control characteristics. The airplane had satisfactory directional stability in the landing, approach, and wave-off conditions with either tail. In the power-on clean and glide conditions, however, the airplane had weak directional stability with the original tail. The production tail, which had a 7-inch fin extension and a shorter span rudder, improved the directional stability in the power-on clean and glide conditions, but the stability was still weak in the power-on clean condition. Increased altitude in either case caused a slight decrease in the stability. The rudder-trim-force change with speed with either vertical-tail assembly was high. The general aileron control characteristics were satisfactory but the aileron effectiveness failed to meet the Army handling-qualities requirements.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL7L11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-11
    Description: A fundamental defect of existing methods for the determination of the polar of an airplane in flight is the impossibility of obtaining the thrust or the resistance of the propeller for any type airplane with any type engine. The new method is based on the premise that for zero propeller thrust the mean angle of attack of the blade is approximately the same for all propellers if this angle is reckoned from the aerodynamic chord of the profile section. This angle was determined from flight tests. Knowing the mean angle of the blade setting the angle of attack of the propeller blade at zero thrust can be found and the propeller speed in gliding obtained. The experimental check of the new method carried out on several airplanes gave positive results. The basic assumptions for the construction of the polars and the method of analyzing the flight data are given.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TM-1076 , Report of the Central Aero-Hydrodynamical Inst.; Rept-418
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-11
    Description: An investigation was made to determine the static longitudinal and lateral stability and control characteristics of a l/6-scale model of the revised Republic XF-84H airplane with and without the propeller operating. The model had a 40deg swept wing of aspect ratio 3.45 and was equipped with a thin, three-blade supersonic-type propeller. Modifications incorporated in the revised model included a raised horizontal tail, increased rudder size, wing fences at 65 percent semispan, and a modified wing leading edge outboard of the fences. The test results for flap-retracted and flap-deflected conditions indicated that the revised configuration should be satisfactory for most normal flight conditions provided the angle of attack does not exceed the angle for pitch-up. An abrupt pitch-up tendency of the model was evident for the zero thrust condition above approximately 15' angle of attack. Although the effects of power were destabilizing, power-on longitudinal stability was satisfactory through the angle-of-attack range for which the model was stable with zero thrust. Above the angle of attack for pitch-up, an uncontrollable left roll-off tendency would be expected with power on and slats retracted. Projection of wing slats or use of leading-edge chord-extensions with only the left extension drooped were found beneficial in controlling the roll-off tendency with power on; however the most effective means found was projection of only the left slat.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL53I24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-11
    Description: An analysis of the estimated high-speed flying qualities of the Chance Vought XF7U-1 airplane in the Mach number range from 0.40 to 0.91 has been made, based on tests of an 0.08-scale model of this airplane in the Langley high-speed 7- by 10-foot wind tunnel. The analysis indicates longitudinal control-position instability at transonic speeds, but the accompanying trim changes are not large. Control-position maneuvering stability, however, is present for all speeds. Longitudinal lateral control appear adequate, but the damping of the short-period longitudinal and lateral oscillations at high altitudes is poor and may require artificial damping.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL8J15-Pt-6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-11
    Description: Powered models of three different flying boats were landed in oncoming wave of various heights and lengths. The resulting motions and acceleration were recorded to survey the effects of varying the trim at landing, the deceleration after landing, and the size of the waves. One of the models had an unusually long afterbody. The data for landing with normal rates of deceleration indicated that the most severe motions and accelerations were likely to occur at some period of the landing run subsequent to the initial impact. Landings made at abnormally low trims led to unusually severe bounces during the runout. The least severe landing occurred after a small lending when the model was rapidly decelerated at about 0.4 g in a simulation of the proposed use of braking devices. The severity of the landings increased with wave height and was at a maximum when the wave length was of the order of from one and one-half to twice the over-all length of the model. The models with afterbodies of moderate length frequently bounced clear of the water into a stalled attitude at speeds below flying speed. The model with the long afterbody had less tendency to bounce from the waves and consequently showed less severe accelerations during the landing run than the models with moderate lengths of afterbody.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-L6L13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-11
    Description: Theoretical pressure distributions and measured lift, drag, and pitching moment characteristics at three values of Reynolds number are presented for a group of NACA four-digit-series airfoil sections modified for high-speed applications. The effectiveness of flaps applied to these airfoils and the effect of standard leading-edge roughness were also investigated at one value of Reynolds number. Results are also presented of tests of three conventional NACA four-digit-series airfoil sections.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-L7I22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-11
    Description: A dynamically similar model of the Army P-38 airplane was tested to determine the best way to land this airplane on the water and to determine its probable ditching performance. The tests consisted of ditching the model at various landing attitudes, flap settings, speeds, weights, and conditions of simulated damage. The model was ditched in calm water from the tank towing carriage and a few ditching were made in both calm and rough water at the outdoor catapult. The performance of the model was determined by making visual observations, by recording lengths of run and time histories of decelerations, and by taking motion pictures of the ditchings.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-L6J17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-11
    Description: In the present report the true weight distribution law of the wing structure along the span is investigated. It is shown that the triangular distribution and that based on the proportionality to the chords do not correspond to the actual weight distribution, On the basis of extensive data on wings of the CAHI type airplane formulas are obtained from which it is possible to determine the true diagram of the structural weight distribution along the span from a knowledge of only the geometrical dimensions of the wing. At the end of the paper data are presented showing how the structural weight is distributed between the straight center portion and the tapered portion as a function of their areas.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TM-1086 , Report of the Central Aero-Hydrodynamical Institute, Moscow; Rept-381
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-11
    Description: A spin investigation has been conducted in the Langley 20 -foot free-spinning tunnel on a 1/29 - scale model of the Republic XP-91 airplane with vee tail installed. The effects cf control settings and movements upon the effect spin and recovery characteristics of the model were determined for the clean condition (wing tanks removed, landing gear and flaps retracted). The tests were made at a loading simulating that following cruise at altitude and at a time when nearly all fuel was expended. The results indicated that the airplane might not spin at normal spinning-control configuration, but if a spin were obtained, recovery therefrom by full rudder reversal would be satisfactory. It was also indicated that aileron-against settings would lead to violent oscillatory motions and should be avoided.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-L7L03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-11
    Description: An investigation was conducted in the Langley impact basin of the water loads on a half scale model of the XJL-1 hull whose forebody has a vee bottom with exaggerated chine flare. The impact loads, moments, and pressures were determined for a range of landing conditions. A normal full-scale landing speed of 86 miles per hour was represented with effective flight paths ranging from 0.6deg to 11.6deg. Landings were made with both fixed trim and free-to-trim mounting of the float over a trim range of -15deg to 12deg into smooth water and into waves having equivalent full-scale length. of 120 feet and heights ranging from 1 to 4 feet. All data and results presented in this report are given in terms of equivalent full-scale values. Summary tables and illustrative plots are used in presenting the material. The following maximum values of load and pressure are those which are apropos for effective flight paths less than 6.5deg which was the maximum value obtained in tests with the XJL-1 hull model representing full-scale landings with vertical velocity of 4.5 feet per second into 4-foot waves. The maximum local pressure on the flat portion of the bottom is 130 pounds per square inch which was measured on a 2-inch-diameter circular area near the step. The maximum local pressure obtained in the curved area near the chines is 200 pounds per square inch. This pressure was also measured near the step.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-L6I03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-11
    Description: The longitudinal stability and control characteristics of a B-29 airplane have been measured with a booster incorporated in the elevator control system. Tests were made to determine the effects on the handling qualities of the test airplane of variations in pilots control-force gradients as well as the effects of variations in the maximum rate of control motion supplied by the booster system.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-L50D11 , Rept-3130
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-11
    Description: An investigation of the spin and recovery characteristics of a 1/24-scale model of the McDonnell XP-88 airplane has been conducted in the Langley 20-foot free-spinning tunnel. The effects of control settings and movements on the erect and inverted spin and recovery characteristics of the model in the normal loading were determined. Tests of the model in the long-range loading also were made. The investigation included tail-modification, spin-recovery parachute, pilot-escape, and rudder-pedal-force tests. Recoveries were generally satisfactory for spins in the normal loading provided the ailerons were not held against the spin. Satisfactory recoveries were obtained regardless of the aileron setting when the leading-edge flaps were deflected and normal recovery technique was used or when the horizontal tail was raised 70 inches, full scale. Recoveries were rapid from all inverted spins obtained. In the long-range loading with tanks on, it may be necessary to jettison the tanks in order to obtain recovery. A 12.0-foot spin-recovery parachute at the tail or a 4.0-foot parachute opened on the outer wing tip (drag coefficient of 0.66) was found to be effective for recoveries from demonstration spins. Test results showed that in an emergency the pilot should attempt to escape from the outboard side of the spinning airplane. The rudder-pedal forces in a spin were indicated to be within the capabilities of the pilot.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-L7H21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-11
    Description: From flight tests of 0.5-scale models of the Fairchild Lark pilotless aircraft conducted at the flight test station of the Pilotless Aircraft Research Division at Wallops Island, Va., some evaluations of the static longitudinal stability were obtained by analysis of the short-period oscillations induced by the abrupt movement of the rudder elevators. The analysis shows that for the Lark configuration with wing flap deflections of 0 degrees and 15 degrees the static longitudinal stability decreases slightly up to the critical Mach number and than as the Mach number increases further the stability increases greatly.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-L6L17a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-11
    Description: Tables I and II of this report summarize the gust and draft velocity data for thunderstorm flights 25 and 26 of August 21, 1946 and August 22, 1946, respectively. These dta were evaluated from records of NACA instruments installed in P-61C airplanes and are of the type presented in reference 1 for previous flights. Table III summarizes the readings of a milliammeter which was used in conjunction with other equipment to indicate ambient air temperature during thunderstorm surveys. These data were read from motion-picture records of the instrument and include all cases in which variations in the instrument indications were noted during the present flights.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-L6L02a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-11
    Description: At the request of the Air Materiel Command, Army Air Forces an investigation of the low-speed, power-off stability and control characteristics of the McDonnell XP-85 airplane is being conducted in the Langley free-flight tunnel. The XP-85 airplane is a parasite fighter carried in a bomb bay of the B-36 airplane. As a part of the investigation a few force tests were made of a 1/5 scale model of the XP-85 with a conventional tail assembly installed in place of the original design five-unit tail assembly. The total area of the conventional assembly was approximately 80 percent of the area of the five-unit assembly. The results of this investigation showed that the conventional tail assembly gave about the same longitudinal stability characteristics as the original configuration and improved the directional and lateral stability.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-L7C26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-11
    Description: Flight tests to determine propeller performance have been made of a Curtiss No. 838-102-18 three-blade propeller having trailing-edge extensions on a Republic P-47D-28 airplane in climb and high speed. These tests are a part of a general propeller flight-test program at the Langley Laboratory of the National Advisory Committee for Aeronautics. Results of climb tests indicate that when power is changed from approximately 1475 horsepower at 2550 rpm (roughly normal power) to 2400 horsepower at 2700 rpm (approximately military power) there is a loss in propeller efficiency of 3 percent at an altitude of 7000 feet, and 4 percent at 21,000 feet. At an airplane Mach number of 0.7 there is a gain of 9 percent in propeller efficiency when the power coefficient per blade is increased from 0.06 to 0.09. Optimum power coefficient per blade at this Mach number is estimated to be approximately 0.12. An analysis to determine the effect of the addition of extensions on the performance of the basic propeller blades indicates that climb performance was increased but high-speed performance was reduced. Both effects, however, were small.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-L7D10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-11
    Description: An investigation of two 1/14 scale model configurations of an outboard nacelle for the XB-36 airplane was made in the Langley two-dimensional low-turbulence tunnels over a range of airplane lift coefficients (C (sub L) = 0.409 to C(sub L) = 0.943) for three representative flow conditions. The purpose of the investigation was to develop a low-drag wing-nacelle pusher combination which incorporated an internal air-flow system. The present investigation has led to the development of a nacelle which had external drag coefficients of similar order of magnitude to those obtained previously from tests of an inboard nacelle configuration at the corresponding operating lift coefficients and from approximately one-third to one-half of those of conventional tractor designs having the same ratio of wing thickness to nacelle diameter.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-L7G25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-11
    Description: Tests have been conducted in the Langley high-speed 7- by 10-foot tunnel over a Mach number range from 0.40 to 0.91 to determine the stability and control characteristics of an 0.08-scale model of the Chance Vought XF7U-1 airplane. The basic lateral stability characteristics of the complete model with undeflected control surfaces are presented in the present report with a very limited analysis of the results.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-L7G10-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-12
    Description: Free-flight tests have been made to determine the zero-lift drag of several configurations of the XAAM-N-2 pilotless aircraft. Base-pressure measurements were also obtained for some of the configurations. The results show that increasing the wing-thickness ratio from 4 to 6 percent increased the wing drag by about 100 percent at M = 1.3 and by about 30 percent at M = 1.8. Increasing the nose fineness ratio from 5.00 to 6.25 reduced the drag coefficient of the wingless models a maximum of about 0.030 (10 percent) at M = 2.0. A corresponding change in nose shape for the winged models decreased the drag coefficient by about 0.05 in the Mach number range from 1.1 to 1.4; at Mach numbers greater than 1.6 no measurable reduction in drag coefficient was obtained. The drag of the present Sparrow fuselage is less than that of a parabolic fuselage which could contain the same equipment.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL50C16a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-12
    Description: A limited investigation of a 1/24-scale dynamically similar model of the Navy Bureau of Aeronautics DR-77 design was conducted in Langley tank no. 2 to determine the calm-water take-off and the rough-water landing characteristics of the design with particular regard to the take-off resistance and the landing accelerations. During the take-off tests, resistance, trim, and rise were measured and photographs were taken to study spray. During the landing tests, motion-picture records and normal-acceleration records were obtained. A ratio of gross load to maximum resistance of 3.2 was obtained with a 30 deg. dead-rise hydro-ski installation. The maximum normal accelerations obtained with a 30 deg. dead-rise hydro-ski installation were of the order of 8g to log in waves 8 feet high (full scale). A yawing instability that occurred just prior to hydro-ski emergence was improved by adding an afterbody extension, but adding the extension reduced the ratio of gross load to maximum resistance to 2.9.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL53F04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-12
    Description: This report contains the flight-test results of the stalling characteristics measured during the flying-qualities investigation of the Lockheed P-8OA airplane (Army No. 44-85099). The tests were conducted in straight and turning flight with and without wing-tip tanks. These tests showed satisfactory stalling characteristics and adequate stall warning for all configurations and conditions tested.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SA7L04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-12
    Description: An investigation is being conducted to determine the altitude performance characteristics of the Nene II engine and its components. The present paper presents the preliminary results obtained using jet nozzle 18.00 inches in diameter, with an area equal to 92.2 percent of the area of the standard jet nozzle for this engine. The experimental results presented are for conditions simulating altitudes from 20,000 to 60,000 feet and ram-pressure ratios from 1.1 to 3.5. These ram-pressure ratios correspond to flight Mach numbers between 0.374 and 1.466. Data obtained with the 18.00 inch-diameter jet nozzle and corrected to standard sea-level conditions showed substantially the same trends with altitude as the data previously obtained with an 18.75-inch-diameter nozzle and with an 18.41-inch-diameter nozzle. Jet thrust, air consumption, and fuel consumption, corrected to standard sea-level conditions, increased rapidly with increasing ram-pressure ratio. In general, corrected net thrust specific fuel consumption increased with increase in ram-pressure ratio. Corrected net thrust decreased with an increase in ram-pressure ratio at an engine speed of 8000 rpm. At corrected engine speeds between 8000 and 10,800 rpm, net thrust first decreased with an increase in ram-pressure ratio and then increased with further increase in ram pressure ratio; at corrected engine speeds above 10,800 rpm, net thrust increased continuously with increase in ram-pressure ratio. Tail-pipe temperature decreased with an increase in ram-pressure ratio.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-E8H06
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-12
    Description: The stator-blade angles in the twelfth through fifteenth stages of a 16-stage axial-flow compressor were increased 3O. The over-all performance of this modified compressor is compared to the performance of the compressor with original blade angles. The matching characteristics of the modified compressor and a two-stage turbine were obtained and compared to those of the compressor with original blade angles and the same turbine.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-E52A10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-12
    Description: An investigation has been conducted to determine the static stability and control and damping in roll and yaw of a 0.13-scale model of the Convair XFY-1 airplane with propellers off from 0 deg to 90 deg angle of attack. The tests showed that a slightly unstable pitch-up tendency occurred simultaneously with a break in the normal-force curve in the angle-of-attack range from about 27 deg to 36 deg. The top vertical tail contributed positive values of static directional stability and effective dihedral up to an angle of attack of about 35 deg. The bottom tail contributed positive values of static directional stability but negative values of effective dihedral throughout the angle-of-attack range. Effectiveness of the control surfaces decreased to very low values at the high angles of attack, The model had positive damping in yaw and damping in roll about the body axes over the angle-of-attack range but the damping in yaw decreased to about zero at 90 deg angle of attack.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL54J04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-12
    Description: An investigation is being conducted to determine the altitude performance characteristics of the British Nene II engine and its components. The present paper presents the preliminary results obtained using a standard jet nozzle. The test results presented are for conditions simulating altitudes from sea level to 60,000 feet and ram pressure ratios from 1.0 to 2.3. These ram pressure ratios correspond to flight Mach numbers between zero and 1.16 assuming a 100 percent ram recovery.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-E8E12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-12
    Description: Wind tunnel tests of the 0.16-scale Douglas MX-656 model were made at low and high subsonic Mach numbers to investigate the static longitudinal- and lateral stability characteristics. The tests shows that undesirable changes in longitudinal stability at the stall were apparently caused by an altered downwash pattern at the tail. The jettisonable nose fins were highly destabilizing. Compressibility effects for the test Mach numbers were not detrimental to the longitudinal- or lateral-stability characteristics.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SA9D26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-12
    Description: Measurements of wing and fuselage pressure distributions were made at low and high subsonic Much numbers on a 0.16-scale model of the projected MX-656 research airplane. The MX-656 is a supersonic design utilizing a low-aspect-ratio wing and tail. Pressure-distribution measurements indicated that, although the critical Mach number of the wing was approximately 0.81 at 0 degree angle of attack, compressibility effects were of little significance below a Mach number of at least 0.90. The principal effect of compressibility was an increase in the pressure gradient over the after 30 percent of the wing chord, causing a tendency for the flow to separate. At 0.40 Mach number, the wing stalled abruptly at approximately 12 deg, angle of attack. The wing-pressure distribution showed this stall was a result of complete separation of the flow from the upper surface of the wing, Deflecting the leading-edge flaps delayed the stall to a higher angle of attack with some increase in the maximum section normal force,
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SA9H22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-12
    Description: Altitude performance characteristics of the J65-B3 turbojet engine and its components were obtained at engine-inlet conditions corresponding to Reynolds number indices from 0.2 to 0.8 over a range of corrected engine speeds from 70 to 110 percent of rated speed. Engine operational limits up to an altitude of 75,000 feet together with ignition and windmilling characteristics were also obtained. The engine and component data are presented both in graphical and in tabulated form. The operational characteristics are presented in graphical form.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SE54H18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...