ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (18,506)
  • AERODYNAMICS  (12,790)
  • SOLAR PHYSICS  (5,716)
  • 42.73
  • Cell & Developmental Biology
  • Inorganic Chemistry
  • 1
    Publication Date: 2019-06-28
    Description: Wind tunnel tests have been conducted on an NACA 2412 airfoil section at Reynolds number of 2.2 x 10(exp 6) and Mach number of 0.13. Detailed measurements of flow fields associated with turbulent boundary layers have been obtained at angles of attack of 12.4 degrees, 14.4 degrees, and 16.4 degrees. Pre- and post-separated velocity and pressure survey results over the airfoil and in the associated wake are presented. Extensive force, pressure, tuft survey, hot-film survey, local skin friction, and boundary layer data are also included. Pressure distributions and separation point locations show good agreement with theory for the two layer angles of attack. Boundary layer displacement thickness, momentum thickness, and shape factor agree well with theory up to the point of separation. There is considerable disparity between extent of flow reversal in the wake as measured by pressure and hot-film probes. The difference is attributed to the intermittent nature of the flow reversal.
    Keywords: AERODYNAMICS
    Type: NASA-CR-197497 , NAS 1.26:197497 , AR77-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: We have studied the magnetic structure in AR 7150 (S09E06) observed on 29 April 1992 by the Soft X-Ray Telescope (SXT) on Yohkoh. The observed X-ray images are compared with force-free magnetic fields with different values of alpha, extrapolated from the Marshall Space Flight Center (MSFC) photospheric magnetogram observed at the same time. The results show that the magnetic field of the active region is not potential. Different groups of loops are characterized by different values of alpha. Bright loops correlation between the brightness of individual loops with the amount of twist. Further investigation of the magnetic state of the loop structure requires accurate nonlinear force-free calculations.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 17; 4-5; p. (4/5)205-(4/5)208
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: After its fly-by of the planet Jupiter in February 1992, the Ulysses spacecraft is now in a highly inclined heliocentric orbit that will bring it above the south polar regions of the Sun in September 1994. The high-latitude phenomena observed to date have been strongly influenced by the near-minimum solar activity conditions encountered during this phase of the mission. In late April 1993, when Ulysses was at approximately 29 deg S heliographic latitude, the recurrent high speed solar wind stream that had been observed at the location of the spacecraft for 11 consecutive solar rotation underwent a dramatic change. The wind speed in the valleys between successive peaks increased in a single step from approximately 420 km/s to aopproximately 560 km/s. This change in solar wind flow was accompanied by the disappearance at the spacecraft of the magnetic sector structure that had been observed until then. Both these finding are consistent with Ulysses having climbed beyond the latitude of the coronal streamer belt in which is embedded the heliospheric current sheet (HCS). In its subsequent poleward journey, no further evidence for an encounter with the HCS has been seen at Ulysses. Other phenomena observed include the evolution with latitude of corotating interaction region (CIRs) and their influence on the acceleration of energetic particles, and the characteristics of the solar wind flows emanating from the south polar coronal hole. In this paper, we present details of the above observations. Finally, while the polar passes of the prime mission will take place near solar minimum, an extended mission will bring Ulysses back over the poles near the maximum of the next cycle. A summary of scientific goals for Ulysses at solar maximum is given.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 17; 4-5; p. (4/5)293-(4/5)302
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Extensive hard X-ray (HXR)/gamma-ray (GR) observations of solar flares, performed during solar cycles 21 and 22 have led to important new discoveries. These data, combined with observations obtained in other parts of the electromagnetic spectrum (soft X-ray, Hard X-ray, optical, and radio) largley contributed to get a better understanding and to develop new ideas on particle acceleration and transport during solar flares. This review presents new observational facts relevant to hard X-ray/gamma-ray producing flares. Among these are the frequent presence of sub-second time structure in the hard X-ray emission, the variability in hard X-ray and radio spatial distributions during a flare and from flare to flare, the evidence for strong gamma-ray line emission from the Corona and the existence of extended phases of the gamma-ray emission lasting for several hours after the flare onset. This ensemble of observations indicates that particle acceleration takes place at different sites in a complex and dynamic magnetic field environment.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 17; 5-Apr; p. (4/5)71-(4/5)80
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: A flood of new observations of the solar corona have been made with high spatial resolution, good temporal coverage and resolution, and large linear dynamic range by the Soft X-ray Telescope (SXT) on Yohkoh. These data are changing our fundamental understanding of how solar magnetic fields emerge, interact, and dissipate. This paper reviews some of the results from Yohkoh in the context of earlier results from the Solar Maximum Mission (SMM) and in comjunction with ground-based optical and radio observations.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 17; 5-Apr; p. (4/5)179-(4/5)188
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: We have studied the relation between flux emergence and flare activity in the active region NOAA 7260, using images from the Soft X-ray Telescope (SXT) aboard the Yohkoh spacecraft and other supporting ground-based data. It is found that microflares start around the time of flux emergence as recorded in white-light data, which generally precedes a major flare by several hours. We interpret the microflares as due to fast reconnection that takes place intermittently in the slow reconnection stage while more energy is accumulated in preparation for a larger flare.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 17; 5-Apr; p. (4/5)201-(4/5)204
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The implementation of a two-equation k-omega turbulence model into the NPARC flow solver is described. Motivation for the selection of this model is given, major code modifications are outlined, new imputs to the code are described, and results are presented for several validation cases: an incompressible flow over a smooth flat plate, a subsonic diffuser flow, and a shock-induced separated flow. Comparison of results with the k-epsilon model indicate that the k-omega model predicts simple flows equally well whereas, for adverse pressure gradient flows, the k-omega model outperforms the other turbulence models in NPARC.
    Keywords: AERODYNAMICS
    Type: NASA-TM-107080 , NAS 1.15:107080 , E-9955 , AIAA PAPER 96-0383 , NIPS-96-08118 , Aerospace Sciences Meeting and Exhibit; Jan 15, 1996 - Jan 18, 1996; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: An approach for solving the compressible Euler and Navier-Stokes equations upon meshes composed of nearly arbitrary polyhedra is described. Each polyhedron is constructed from an arbitrary number of triangular and quadrilateral face elements, allowing the unified treatment of tetrahedral, prismatic, pyramidal, and hexahedral cells, as well the general cut cells produced by Cartesian mesh approaches. The basics behind the numerical approach and the resulting data structures are described. The accuracy of the mixed volume grid approach is assessed by performing a grid refinement study upon a series of hexahedral, tetrahedral, prismatic, and Cartesian meshes for an analytic inviscid problem. A series of laminar validation cases are made, comparing the results upon differing grid topologies to each other, to theory, and experimental data. A computation upon a prismatic/tetrahedral mesh is made simulating the laminar flow over a wall/cylinder combination.
    Keywords: AERODYNAMICS
    Type: NASA-TM-107135 , NAS 1.15:107135 , AIAA PAPER 96-0762 , E-10065 , NIPS-96-07909 , Aerospace Sciences Meeting and Exhibit; Jan 15, 1996 - Jan 18, 1996; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-27
    Description: The paper lists US solar missions, both those planned and funded by NASA alone as well as those carried out in collaboration with other space agencies. Soe of the missions are now in operation, the others are either planned and approved or under active discussion. The paper also describes the principal scientific objects of the missions and gives some orbital characteristics.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 17; 4-5; p. (4/5)363-(4/5)368
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-28
    Description: Interplanetary scintillation (IPS) measurements of the 'disturbance factor' g, obtained with the Cambridge (UK) array can be used to explore the heliospheric density structure. We have used these data to construct synoptic (Carrington) maps, representing the large-scale enhancements of the g-factor in the inner heliosphere. These maps emphasize the stable corotating, rather than the transient heliospheric density enhancements. We have compared these maps with Carrington maps of Fe XIV observations National Solar Observatory ((NSO), Sacramento Peak) and maps based on Yohkoh Soft X-Ray Telescope (SXT) X-ray observations. Our results indicate that the regions of enhanced g tend to map to active regions rather than the current sheet. The implication is that act ve regions are the dominant source of the small-scale (approximately equal 200 km) density variations present in the quiet solar wind.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 17; 5-Apr; p. (4/5)311-(4/5)314
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-08-28
    Description: The large-scale structure of the solar corona is investigated using synoptic maps produced from Fe XIV (530.3 nm), Fe X (637.4 nm) and Ca XV (569.4 nm) data obtained at National Solar Observatory (NSO/SP), Yohkoh/Soft X-ray Telescope (SXT) X-ray data and Wilcox Solar Observatory (WSO) 'source surface' maps. We find that the Fe XIV data are an excellent proxy for spatially-average Yohkoh/SXT data. Isolated emission features and large-scale structures are nearly identical in SXT and Fe XIV maps. In addition, coronal holes and other low-emission regions are very similar. Synoptic temperature maps, calculated from the Fe X/Fe XIV ratio, show a tendency for the highest temperatures to occur where the large-scale magnetic fields change polarity at high latitudes, while lower-latitude features, including active regions, have lower apparent tempertures. Regions of enhanced temperature generally follow the helisopheric current sheet (HCS) as defined by the WSO maps. Further, emission in Ca XV (formed at T is approximately equal to 3 MK), generally occurs only over low-latitude regions that are bright in both FE X (T approximately equal to 1 MK) and Fe XIV (T approximately equal to 2 MK). Thus, there is evidence for low (approximately equal to 1 MK), moderate (approximately equal to 2 MK) and high (approximately 3 MK) temperatures in close proximity in the low corona.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 17; 5-Apr; p. (4/5)235-(4/5)238
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-08-28
    Description: Coronal mass ejections (CME's) are thought to result from the loss of stability within a magnetically confined coronal structure leading to its radial expansion into interplanetary space. As the CME expands into the corona current sheets will form between the expanding CME and surrounding field lines in the ambient wind. This configuration may lead to reconnection between the CME and adjacemt field lines. Such reconnection may produce double ion beams as has been observed in the terrrestrial magnetosphere. We examine all 24 distinct signatures of CME's observed by Ulysses during the in-ecliptic portion of the mission. In 5 of these 24 cases the ion spectra were not clear and thus the presence of double ion beams could not be determined. In 13 of the remaining 19 CME's double ion beams were found on the leading and/or trailing edge of the CME but not in the interior of the CME. In 3 of the CME's double ion beams were found throughout the CME while in the remaining 3 CME's double ion beams were not present near or just inside of the CME. In contrast in a control sample of 19 randomly chosen intervals, double ion beams were present at the leading and/or trailing edges of the random intervals in only 3 of the 19 cases. There appears to be no correlation between probability of occurrence of double ion beams and a magnetic cloud or non-cloud configuration of the CME and no correlation between the presence of the double ion beams at the edges of the CME and the CME being a fast or slow CME.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 17; 4-5; p. (4/5)303-(4/5)306
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-08-27
    Description: Imaging observations of solar flare hard X-ray sources with the Hard X-ray Telescope (HXT) aboard the Yohkoh satellite have revealed that hard X-ray emissions (greater than 30 ke V) originate most frequently from double sources. The double sources are located on both sides of the magnetic neutral line, suggesting that the bulk of hard X-rays is emitted from footpoints of flaring magnetic loops. We also found that hard X-rays from the double sources are emitted simultaneously within a fraction of second and that the weaker source tends to be located in the stronger magnetic field region, showing a softer spectrum. Physcial implications on the observed characteristics of the hard X-ray double sources are discussed.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 17; 4-5; p. (4/5)67-(4/5)70
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-08-24
    Description: The scaling properties of a time series of Doppler images obtained in good visibility conditions are studied. A 28 cm vacuum telescope and a vacuum spectroheliograph in video spectra-spectroheliograph mode, are used. Sixty line-of-sight Doppler images of an area of the quiet sun are investigated. They were taken at 60 sec intervals over a one hour span and have a 2 arcsec resolution. After the removal of the five-minute oscillations, the time-spatial spectrum is calculated. To study the turbulence of photospheric flows, two scaling parameters in the spectra, are estimated: the exponent of the spatial part of the power spectrum, and the exponent governing the scaling of time correlations. The implied diffusive behavior is discussed. This includes the estimation of a diffusion coefficient and the type of diffusion involved.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 249-252
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-24
    Description: The nonlocal non-diffusive transport of passive scalars in turbulent magnetohydrodynamic (MHD) convection is investigated using transilient matrices. These matrices describe the probability that a tracer particle beginning at one position in a flow will be advected to another position after some time. A method for the calculation of these matrices from simulation data which involves following the trajectories of passive tracer particles and calculating their transport statistics, is presented. The method is applied to study the transport in several simulations of turbulent, rotating, three dimensional compressible, penetrative MDH convection. Transport coefficients and other diagnostics are used to quantify the transport, which is found to resemble advection more closely than diffusion. Some of the results are found to have direct relevance to other physical problems, such as the light element depletion in sun-type stars. The large kurtosis found for downward moving particles at the base of the convection zone implies several extreme events.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 253-258
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-08-24
    Description: Long uninterrupted sequences of solar magnetograms from the global oscillations network group (GONG) network and from the solar and heliospheric observatory (SOHO) satellite will provide the opportunity to study the proper motions of magnetic features. The possible use of multiscale regularization, a scale-recursive estimation technique which begins with a prior model of how state variables and their statistical properties propagate over scale. Short magnetogram sequences are analyzed with the multiscale regularization algorithm as applied to optical flow. This algorithm is found to be efficient, provides results for all the spatial scales spanned by the data and provides error estimates for the solutions. It is found that the algorithm is less sensitive to evolutionary changes than correlation tracking.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 227-232
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-08-24
    Description: Ulysses has collected data between 1 and 5 AU during, and just following solar maximum, when the heliospheric current sheet (HCS) can be thought of as reaching its maximum tilt and being subject to the maximum amount of turbulence in the solar wind. The Ulysses solar wind plasma instrument measures the vector velocity and can be used to estimate the flow speed and direction in turbulent 'eddies' in the solar wind that are a fraction of an astronomical unit in size and last (have either a turnover or dynamical interaction time of) several hours to more than a day. Here, in a simple exercise, these solar wind eddies at the HCS are characterized using Ulysses data. This character is then used to define a model flow field with eddies that is imposed on an ideal HCS to estimate how the HCS will be deformed by the flow. This model inherently results in the complexity of the HCS increasing with heliocentric distance, but the result is a measure of the degree to which the observed change in complexity is a measure of the importance of solar wind flows in deforming the HCS. By comparison with randomly selected intervals not located on the HCS, it appears that eddies on the HCS are similar to those elsewhere at this time during the solar cycle, as is the resultant deformation of the interplanetary magnetic field (IMF). The IMF deformation is analogous to what is often termed the 'random walk' of interplanetary magnetic field lines.
    Keywords: SOLAR PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A7; p. 12,261-12,273
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2011-08-24
    Description: Several physical and observational effects contribute to the significant imbalances of magnetic flux that are often observed in active regions. We consider an effect not previously treated: the influence of electric currents in the photosphere. Electric currents can cause a line-of-sight flux imbalance because of the directionality of the magnetic field they produce. Currents associated with magnetic flux tubes produce larger imbalances than do smoothly-varying distributions of flux and current. We estimate the magnitude of this effect for current densities, total currents, and magnetic geometry consistent with observations. The expected imbalances lie approximately in the range 0-15%, depending on the character of the current-carying fields and the angle from which they are viewed. Observationally, current-induced flux imbalances could be indicated by a statistical dependence of the imbalance on angular distance from disk center. A general study of magnetic flux balance in active regions is needed to determine the relative importance of other- probably larger- effects such as dilute flux (too weak to measure or rendered invisible by radiative transfer effects), merging with weak background fields, and long-range connections between active regions.
    Keywords: SOLAR PHYSICS
    Type: Solar Physics (ISSN 0038-0938); 157; 1-2; p. 185-197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-08-24
    Description: Measurements of wing buffeting, using root strain gages, were made in the NASA Langley 0.3 m cryogenic wind tunnel to refine techniques which will be used in larger cryogenic facilities such as the United States National Transonic Facility (NTF) and the European Transonic Wind Tunnel (ETW). The questions addressed included the relative importance variations in frequency parameter and Reynolds number, the choice of model material (considering both stiffness and damping) and the effects of static aeroelastic distortion. The main series of tests was made on three half models of slender 65 deg delta wings with a sharp leading edge. The three delta wings had the same planform but widely differing bending stiffnesses and frequencies (obtained by varying both the material and the thickness of the wings). It was known that the steady flow on this configuration would be insensitive to variations in Reynolds number. On this wing at vortex breakdown the spectrum of the unsteady excitation is unusual, having a sharp peak at particular frequency parameter. Additional tests were made on one unswept half-wing of aspect ratio 1.5 with an NPL 9510 aerofoil section, known to be sensitive to variations in Reynolds number at transonic speeds. The test Mach numbers were M = 0.21 and 0.35 for the delta wings and to M = 0.30 for the unswept wing. On this wing the unsteady excitation spectrum is fairly flat (as on most wings). Hence correct representation of the frequency parameter is not particularly important.
    Keywords: AERODYNAMICS
    Type: Aeronautical Journal (ISSN 0001-9240); 99; 981; p. 1-14
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: A semianalytic method is derived for dealing simultaneously with large numbers of linear stellar oscillation modes trapped in a cavity (a shell) of fluid which is rotating and convecting. A simple generalization of mixing-length theory shows how convection is modulated by weak rotational effects and by the horizontal wind fields of linear r-mode oscillations. The modulated convection is then used to compute the energy lost to turbulent viscosity by a family of nondegenerate oscillations. Viscosity terms of fourth degree in the wind shear can be included if they are a perturbation affecting only a small portion of the r-mode. Viscous energy loss strenghthens convection in a narrow layer near the base of the H and He ionization zone. In the Sun, this layer is about 7 Mm thick and centered at 0.932 of a solar radius where convection cells have a typical size of about 20 Mm and a lifetime of 0.3 Ms, both similar to what is observed in supergranules. If the rms velocity of r-modes at the surface exceeds 5 m/s, then energy is deposited inside the Sun at a sufficient rate to power the supergranulation and impose on it a weak latitude dependence.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 443; 1; p. 423-433
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2011-08-24
    Description: We present observational evidence that eruptions of quiescent filaments and associated coronal mass ejections (CMEs) occur as a consequence of the destabilization of large-scale coronal arcades due to interactions between these structures and new and growing active regions. Both statistical and case studies have been carried out. In a case study of a 'bulge' observed by the High-Altitude Observatory Solar Maximum Mission coronagraph, the high-resolution magnetograms from the Big Bear Solar Observatory show newly emerging and rapidly changing flux in the magnetic fields that apparently underlie the bugle. For other case studies and in the statistical work the eruption of major quiescent filaments was taken as a proxy for CME eruption. We have found that two thirds of the quiescent-filament-associated CMEs occurred after substantial amounts of new magnetic flux emerged in the vicinity of the filament. In addition, in a study of all major quiescent filaments and active regions appearing in a 2-month period we found that 17 of the 22 filaments that were associated with new active regions erupted and 26 of the 31 filaments that were not associated with new flux did not erupt. In all cases in which the new flux was oriented favorably for reconnection with the preexisting large-scale coronal arcades; the filament was observed to erupt. The appearance of the new flux in the form of new active regions begins a few days before the eruption and typically is still occurring at the time of the eruption. A CME initiation scenario taking account of these observational results is proposed.
    Keywords: SOLAR PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A3; p. 3355-3367
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2011-08-24
    Description: Total solar irradiance measurements from the 1984-1993 Earth Radiation Budget Satellite (ERBS) active cavity radiometer and 1978-1993 Nimbus 7 transfer cavity radiometer spacecraft experiments are analyzed to detect the presence of 11-, 22-, and 80-year irradiance variability components. The analyses confirmed the existence of a significant 11-year irradiance variability component, associated with solar magnetic activity and the sunspot cycle. The analyses also suggest the presence of a 22- or 80-year variability component. The earlier Nimbus 7 and Solar Maximum Mission (SMM) spacecraft irradiance measurements decreased approximately 1.2 and 1.3 W/sq m, respectively, between 1980 and 1986. The Nimbus 7 values increased 1.2 W/sq m between 1986 and 1989. The ERBS irradiance measurements increased 1.3 W/sq m during 1986-1989, and then decreased 0.4 W/sq m (at an annual rate of 0.14 W/sq. m/yr) during 1990-1993. Considering the correlations between ERBS, Nimbus 7, and SMM irradiance trends and solar magnetic activity, the total solar irradiance should decrease to minimum levels by 1997 as solar activity decreases to minimum levels, and then increase to maximum levels by the year 2000 as solar activity rises. The ERBS measurements yielded 165.4 +/- 0.7 W/sq m as the mean irradiance value with measurement accuracies and precisions of 0.2% and 0.02%, respectively. The ERBS mean irradiance value is within 0.2% of the 1367.4, 1365.9, and 1366.9 W/sq m mean values for the SMM, Upper Atmosphere Research Satellite (UARS), and Space Shuttle Atmospheric Laboratory for Applications and Science (ATLAS 1) Solar Constant (SOLCON) active cavity radiometer spacecraft experiments, respectively. The Nimbus 7 measurements yielded 1372.1 W/sq m as the mean value with a measurement accuracy of 0.5%. Empirical irradiance model fits, based upon 10.7 -cm solar radio flux (F10) and photometric sunspot index (PSI), were used to assess the quality of the ERBS, Numbus 7, SMM, and the UARS irradiance data sets and to identify irradiance variability trends which may be caused by drifts or shifts in the spacecraft sensor responses. Comparisons among the fits and measured irradiances indicate that the Nimbus 7 radiometer response shifted by a total of 0.8 W/sq m between September 1989 and April 1990 and that the ERBS and UARS radiometers each drifted approximately 0.5 W/sq m during the first 5 months in orbit.
    Keywords: SOLAR PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A2; p. 1667-1675
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2011-08-24
    Description: Compressible MHD simulations in one dimension with three-dimensional vectors are used to investigate a number of processes relevant to problems in interplanetary physics. The simulations indicate that a large-amplitude nonequilibrium (e.g., linearly polarized) Alfvenic wave, which always starts with small relative fluctuations in the magnitude B of the magnetic field, typically evolves to flatten the magnetic profile in most regions. Under a wide variety of conditions B and the density rho become anticorrelated on average. If the mean magnetic field is allowed to decrease in time, the point where the transverse magnetic fluctuation amplitude delta B(sub T) is greater than the mean field B(sub 0) is not special, and large values of delta B(sub T)/B(sub 0) do not cause the compressive thermal energy to increase remarkably or the wave energy to dissipate at an unusually high rate. Nor does the 'backscatter' of the waves that occurs when the sound speed is less than the Alfven speed result, in itself, in substantial energy dissipation, but rather primarily in a phase change between the magnetic and velocity fields. For isolated wave packets the backscatter does not occur for any of the parameters examined; an initial radiation of acoustic waves away from the packet establishes a stable traveling structure. Thus these simulations, although greatly idealized compared to reality, suggest a picture in which the interplanetary fluctuations should have small deltaB and increasingly quasi-pressure balanced compressive fluctuations, as observed, and in which the dissipation and 'saturation' at delta B(sub T)/B(sub 0) approximately = 1 required by some theories of wave acceleration of the solar wind do not occur. The simulations also provide simple ways to understand the processes of nonlinear steepening and backscattering of Alfven waves and demonstrate the existence of previously unreported types of quasi-steady MHD states.
    Keywords: SOLAR PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A3; p. 3405-3415
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Frequency shifts of high frequency p-modes during the solar cycle are calculated for a non-magnetic polytrope convection zone model. An isothermal chromospheric atmosphere threaded by a uniform horizontal magnetic field is correlated to this model. The relevant observations of such frequency changes are discussed. The calculated simultaneous changes in the field strength and chromospheric temperature result in the frequency shifts that are similar to those of the observations.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 69-72
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-08-24
    Description: The specific attraction and, in large part, the significance of solar magnetograms lie in the fact that they give the most important data on the electric currents and the nonpotentiality of active regions. Using the vector magnetograms from the Marshall Space Flight Center (MSFC), we employ a unique technique in the area of data analysis for resolving the 180 deg ambiguity in order to calculate the spatial structure of the vertical electric current density. The 180 deg ambiguity is resolved by applying concepts from the nonlinear multivariable optimization theory. The technique is shown to be of particular importance in very nonpotential active regions. The characterization of the vertical electric current density for a set of vector magnetograms using this method then gives the spatial scale, locations, and magnitude of these current systems. The method, which employs an intermediate parametric function which covers the magnetogram and which defines the local `preferred' direction, minimizes a specific functional of the observed transverse magnetic field. The specific functional that is successful is the integral of the square of the vertical current density. We find that the vertical electric current densities have common characteristics for the extended bipolar (beta) (gamma) (delta)-regions studied. The largest current systems have j(sub z)'s which maximizes around 30 mA/sq m and have a linear decreasing distribution to a diameter of 30 Mn.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 445; 2; p. 982-998
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-08-24
    Description: Relative abundances of oxygen, neon, and magnesium have been derived for a sample of nine solar active regions, flares, and an erupting prominance by combining plots of the ion differential emission measures. The observations were photographed in the 300-600 A range by the Naval Research Laboratory (NRL) spectroheliograph on Skylab. Methods for deriving the Mg/Ne abundance ratio-which measures the separation between the low- first ionization potential (FIP) and high-FIP abundnace plateaus-have been described in previous papers. In this paper we describe the spectroscopic methods for deriving the O/Ne abundance ratio, which gives the ratio between two high-FIP elements. The plot of the O/Ne ratio versus the Mg/Ne ratio in the sample of nine Skylab events is shown. The variation in the Mg/Ne ratio by a factor of 6 is associated with a much smaller range in the O/Ne ratio. This is broadly consistent with the presence of the standard FIP pattern of abundances in the outer atmosphere of the Sun. However, a real change in the relative abundances of oxygen and neon by a factor of 1.5 cannot be excluded.
    Keywords: SOLAR PHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 442; 1; p. 446-450
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2011-08-24
    Description: We use the ray description of acoustic-gravity modes to calculate time-distance diagrams for the quiet Sun and for regions in the vicinity of a sunspot with a monolithic flux-tube structure. Time-distance curves for the quiet Sun match the observations of Duvall et al. In the vicinity of a sunspot these quiet Sun curves split into a family of closely spaced curves. The structure of this bandlike feature is found to be sensitive to the sunspot model and can be a diagnostic of the subsurface geometry of the sunspot flux tube.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 438; 1; p. 454-462
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The signature of the solar cycle appears in helioseismic frequencies and splittings. It is known that the changing outer superadiabatic region of the sun is responsible for this. The deeper solar-cycle mechanism from the surface changes, and, in particular, how magnetic fields perturb the global modes, the solar irradiance and the luminosity, is discussed. The irradiance and helioseismic changes are described. The interpretation of seismic and photometric data is discussed, considering current one-dimensional models and phenomenology. It is discussed how the long term solar-cycle luminosity effect could be caused by changes occurring near the base of the convection zone (CZ). It is shown that a thin toroidal flux sheath at the top of the radiative zone changed the thermal stratification immediately below the CZ over a solar-cycle timescale in two ways: the temperature of the magnetized fluid becomes hotter than the surrounding fluid, and the temperature gradient steepens above the magnetized region. The testing of CZ dynamics and extension of numerical experiments to global scales are considered.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 1: Invited Reviews and Working Group Reports; p 145-149
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-08-24
    Description: The chromospheric bright points are the sites where intense heating occurs in three minute period waves. The bright points are grouped into three classes depending on the amount of intensity enhancement and the pattern of their dynamical evolution. A 35-minute time series of photographic spectra in the Ca(II) H line on a quiet region ofthe center of the solar disk was used to show that the period of intensity oscillations seen at sites of the bright points is independent of their intensity enhancements. The series was also used to show that the period may not depend on the strength of the magnetic fields with which they are associated. A linear regression equation was fitted to a curve representing the variation of the period of intensity oscillations with the peak value of I(sub H2V). The correlation coefficient was found to be 0.19.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 525-527
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-08-24
    Description: The preliminary results of the photometry of CaII K spectroheliograms are presented. From the spectrograms for 1992, plages, the magnetic network, intranetwork elements and the chromospheric background were separated using the histogram method. The intensity and area of these separated features, as well as the full disk intensity, were derived. The spatial K index was compared to the spectral CaII K index derived from line profiles. It was found that the spatial K index and intensity of plages, the network elements and the intranetwork and background regions were highly correlated with the MgII h and k c/w ratio.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 429-435
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-08-24
    Description: The observations made in July 1994 on the impact of fragment A of the comet P/Shoemaker-Levy 9 with Jupiter are described. The instrumentation used was a magneto-optical filter, acting as a two-channel filter. The data showed a double-peak transient which occurred after the impact, and whose general properties indicated a true jovian origin. The peaks appear in absorption. A numerical simulation can explain the main characteristics of the observed signal where the two peaks have the same polarity and appear only in the channel at shorter wavelengths. The simulation carried out appeared to indicate that the observed signal could be produced by the combination of shock waves and the expanding material with a velocity of 13 +/- 8 km/s. This implies that two separate impacts may have been observed. The developed simulation can be extended to predict long term effects.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 345-350
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2011-08-24
    Description: Both weak magnetic fields and latitudinally dependent acoustic perturbations remove the degeneracy of the azimuthal quantum number, m, of acoustic modes of otherwise spherically symmetrical solar model. In the case of acoustic perturbations, the degeneracy is removed because the range of latitude in which a mode propagates depends on m, and therefore modes of like principle order n and degree l sample the aspherical scalar sound speed distribution differently. In the magnetic case, the removal of the degeneracy is caused by the same geometrical effect, and is influenced by the anisotropy of the Lorentz forces. Asymptotic analysis is used to show that the frequency splittings cannot be unambiguously attributed to the direct effect of a magnetic field, and that the effect of such a field on frequency splittings can be reproduced by a perturbation to the sound speed.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 73-76
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The central intensities of Na(I) D1 and D2 linear profiles at the sites of the chromospheric bright points in the interior of the supergranulation cells were derived from photographic spectra. The observation scheme sampled spectra simultaneously in seven lines at a repetition rate of 12 sec. It is shown that the Na(I) D1 and D2 lines exhibit a four minute periodicity in their intensity oscillations. It is seen that the period of intensity oscillations decreases outwardly from the photosphere to the corona. It is surmised that the spatial and temporal relationships between intensity and/or velocity in the photosphere and chromosphere may explain the physical mechanisms of the underlying oscillations.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 521-524
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2011-08-24
    Description: The dependence of the brightness of chromospheric network elements on latitude was investigated for quiet solar regions. Calibrated photographic CaII K-spectroheliograms were used to compare the variation in brightness at the center of the disk with higher latitude of chromospheric network elements in a quiet region as a function of solar activity. It was found that there was no significant difference in brightness between the center of the solar disk and higher latitude. It is concluded that the brightness of the chromospheric network elements in a quiet region does not depend on the latitude, but that the variation in the intensity enhancement is related to the level of solar activity.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 437-438
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-08-24
    Description: The preliminary analysis of a 69 day observation run taken at the JPL using the magneto-optical filter is presented. The aim is to estimate the rotational splitting of l = 1 modes. A value of Delta nu = 0.44 +/- 0.09 micro-Hz is found. In a second, more accurate analysis, it is planned to investigate the low frequency part of the power spectrum. The observational statistics are presented.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 311-313
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2011-08-24
    Description: The plane-wave decomposition of the acoustic-gravity wave effects observed in the photosphere provides a computationally efficient technique that probes the structure of the upper convective zone and boundary. In this region, the flat sun approximation is considered as being reasonably accurate. A technique to be used for the systematic plane-wave analysis of Michelson Doppler imager data, as part of the solar oscillations investigation, is described. Estimates of sensitivity are presented, and the effects of using different planar mappings are discussed. The technique is compared with previous approaches to the three dimensional plane-wave problem.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 147-150
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2011-08-24
    Description: It was observed that the p-mode power is substantially suppressed in magnetic regions. One possible explanation is that the upper turning point, the acoustic cut-off point of the solar p-modes is lowered in the presence of a magnetic field. A related possibility is that the attenuation length scale in the evanescent region is reduced in the presence of a magnetic field. It is likely that the observations sample a different position in the evanescent tails of the eigenfunctions in magnetic regions because of different temperature structures in these regions. A model is used to quantify the first of these effects.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 63-67
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The fluctuations in magnetic field and plasma velocity in solar wind, which possess many features of fully developed magnetohydrodynamic (MHD) turbulence, are discussed. Direct spacecraft observations from 0.3 to over 20 AU, remote sensing radio scintillation observations, numerical simulations, and various models provide complementary methods that show that the fluctuations in the wind parameters undergo significant dynamical evolution independent of whatever turbulence might exist in the solar photosphere and corona. The Cluster mission, with high time resolution particle and field measurements and its variable separation strategies, should be able to provide data for answering many questions on MHD turbulence.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of the Cluster Workshops on Data Analysis Tools, and Physical Measurements and Mission-Oriented Theory; p 137-147
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2011-08-24
    Description: Double ion beams are often observed in the solar wind, but little work has been done in relating these beams to structures within the solar wind. Double ion beams are observed as beams of a given ion species and charge state occurring at two different energies. We use the three-dimensional ion plasma instrument on board the Ulysses spacecraft to look for evidence of such beams associated with the heliospheric current sheet. In a subset chosen independently of plasma parameters consisting of 8 of cover 47 crossings of the current sheet made during the inecliptic phase of the Ulysses mission we find that these double ion beams are always present on either side of the current sheet. The double beams are present in both the proton and helium species. The secondary beam typically has a higher helium abundance, which suggests that these beams are formed in the helium-rich corona rather than in interplanetary space. The double beams are not present in the interior of the current sheet. Neither collisions nor effects of plasma beta can account for the disappearance of the double beams inside the current sheet in all eight cases. We postulate that these beams are formed by reconnection occurring near the Sun in the boundary region between the open field lines of the coronal holes and the closed field line region of the heliospheric current sheet. Such a scenario would be consistent with previous X ray measurements which suggect that reconnection is occurring in this region.
    Keywords: SOLAR PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A5; p. 7881-7889
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2011-08-24
    Description: A global resistive, two-dimensional, time-dependent magnetohydrodynamic (MHD) model is used to introduce and support the hypothesis that the quiet solar middle chromosphere is heated by resistive dissipation of large-scale electric currents which fill most of its volume. The scale height and maximum magnitude of the current density are 400 km and 31.3 m/sq m, respectively. The associated magnetic field is almost horizontal, has the same scale height as the current density, and has a maximum magnitude of 153 G. The current is carried by electrons flowing across magnetic field lines at 1 m/s. The resistivity is the electron contribution to the Pedersen resitivity for a weakly ionized, strongly magnetized, hydrogen gas. The model does not include a driving mechanism. Most of the physical quantities in the model decrease exponentially with time on a resistive timescale of 41.3 minutes. However, the initial values and spatial; dependence of these quantities are expected to be essentially the same as they would be if the correct driving mechanism were included in a more general model. The heating rate per unit mass is found to be 4.5 x 10(exp 9) ergs/g/s, independent of height and latitude. The electron density scale height is found to be 800 km. The model predicts that 90% of the thermal energy required to heat the middle chromosphere is deposited in the height range 300-760 km above the temperature minimum. It is shown to be consistent to assume that the radiation rate per unit volume is proportional to the magnetic energy density, and then it follows that the heating rate per unit volume is also proportional to the energy from the photosphere into the overlying chromosphere are briefly discussed as possible driving mechanisms for establishing and maintaining the current system. The case in which part of or all of the current is carried by protons and metal ions, and the contribution of electron-proton scattering to the current are also considered, with the conclusion that these effects do not change the qualitative prediction of the model, but probably change the quantitative predictions slightly, mainly by increasing the maximum magntiude of the current density and magnetic field to at most approximately 100 mA/m and approximately 484 G, respectively. The heating rate per unit mass, current density scale height, magnetic field scale height, temperatures, and pressures are unchanged or are only slightly changed by including these additional effects due to protons and ions.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 443; 1; p. 450-459
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2011-08-24
    Description: A number of different solar constant observations all made from space during the ATLAS 2 mission have been gathered and compared to each other. The Sun did not have a single sunspot during several days. As eight of the radiometric channels were all within 0.1%, the mean of the observations has been used to determine a set of adjustment factors providing de facto the definition of the Space Absolute Radiometric Reference (SARR). The differential absolute radiometers of Solar Constant (SOLCON) experiment and the Solar Variability-1 (SOVA 1) experiment, as well as the SOVA 2 and Active Cavity Radiometer (ACR) radiometers that have been brought back to the Earth may, if used in the same conditions, reproduce and maintain the SARR for the future.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 16; 8; p. (8)17-(8)23
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-08-31
    Description: Analytical investigation of dynamic stall on HAWT (horizontal-axis wind turbines) rotor loads was conducted. Dynamic stall was modeled using the Gormont approach on the MOD-2 rotor, treating the blade as a rigid body teetering about a fixed axis. Blade flapwise bending moments at station 370 were determined with and without dynamic stall for spatial variations in local wind speed due to wind shear and yaw. The predicted mean flapwise bending moments were found to be in good agreement with test results. Results obtained with and without dynamic stall showed no significant difference for the mean flapwise bending moment. The cyclic bending moments calculated with and without dynamic stall effects were substantially the same. None of the calculated cyclic loads reached the level of the cyclic loads measured on the MOD-2 using the Boeing five-minute-average technique.
    Keywords: AERODYNAMICS
    Type: DASCON Engineering, Collected Papers on Wind Turbine Technology; p 41-46
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-08-31
    Description: A coordinated effort has been underway over the past four years to elevate unstructured-grid methodology to a mature level. The goal of this endeavor is to provide a validated capability to non-expert users for performing rapid aerodynamic analysis and design of complex configurations. The Euler component of the system is well developed, and is impacting a broad spectrum of engineering needs with capabilities such as rapid grid generation and inviscid flow analysis, inverse design, interactive boundary layers, and propulsion effects. Progress is also being made in the more tenuous Navier-Stokes component of the system. A robust grid generator is under development for constructing quality thin-layer tetrahedral grids, along with a companion Navier-Stokes flow solver. This paper presents an overview of this effort, along with a perspective on the present and future status of the methodology.
    Keywords: AERODYNAMICS
    Type: NASA. Lewis Research Center, Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions; p 289-308
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2013-08-29
    Description: From 1981 to 1988 the KAO was used to measure the 30 to 670 micron continuum radiation from the Sun. The most significant result was te measurement of the limb brightness and extent during two total solar eclipses. The results clearly indicate a solar limb at 50 to 670 microns which is extended beyond that expected for an atmosphere in hydrostatic equilibrium. Unique measurements of far infrared solar oscillations and brightness of active regions were also carried out. A complete set of references is included.
    Keywords: SOLAR PHYSICS
    Type: Astronomical Society of the Pacific, Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, Volume 73; p 329-332
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-04-02
    Description: Since its launch in October 1990, Ulysses has provided good quality magnetic field data, practically covering the whole time interval until now. We have studied the very long time scale evolution of the interplanetary magnetic field, in particlular, we have search for recurrent disturbances in the magnetic field. The magnetic field vectors have been mapped back to the Sun along Parker spirals, in order to determine the Heliographic longitude of the source regions in the corona. It was found that the position of many high field sources drifts systematically relative to the corona assumed to rotate with the equatorial rotation period of the Sun. The results are compared to similar observations on the eastward drift of magnetic sectors observed after about June 1992. Changes associated with both the declining phase of the solar cycle and the latitudinal excursion of Ulysses are also discussed.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 16; 9; p. (9)339
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-03-30
    Description: The conference discussed the heliosphere during the declining solar cycle. Topics covered included: manifestations of solar activity, the solar wind, ion pick-up and anomalous cosmic rays, the interplanetary magnetic field, cosmic ray modulation, co-rotating interaction regions, and the heliosphere boundary, as well as several related topics.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1777); 16; 9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-01-25
    Description: Grid generation plays an integral part in the solution of computational fluid dynamics problems for aerodynamics applications. A major difficulty with standard structured grid generation, which produces quadrilateral (or hexahedral) elements with implicit connectivity, has been the requirement for a great deal of human intervention in developing grids around complex configurations. This has led to investigations into unstructured grids with explicit connectivities, which are primarily composed of triangular (or tetrahedral) elements, although other subdivisions of convex cells may be used. The existence of large gradients in the solution of aerodynamic problems may be exploited to reduce the computational effort by using high aspect ratio elements in high gradient regions. However, the heuristic approaches currently in use do not adequately address this need for high aspect ratio unstructured grids. High aspect ratio triangulations very often produce the large angles that are to be avoided. Point generation techniques based on contour or front generation are judged to be the most promising in terms of being able to handle complicated multiple body objects, with this technique lending itself well to adaptivity. The eventual goal encompasses several phases: first, a partitioning phase, in which the Voronoi diagram of a set of points and line segments (the input set) will be generated to partition the input domain; second, a contour generation phase in which body-conforming contours are used to subdivide the partition further as well as introduce the foundation for aspect ratio control, and; third, a Steiner triangulation phase in which points are added to the partition to enable triangulation while controlling angle bounds and aspect ratio. This provides a combination of the advancing front/contour techniques and refinement. By using a front, aspect ratio can be better controlled. By using refinement, bounds on angles can be maintained, while attempting to minimize the number of Steiner points.
    Keywords: AERODYNAMICS
    Type: NASA. Lewis Research Center, Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions; p 88
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-04-02
    Description: Two intense heliospheric 2-3 kHz radio emission events have been observed by Voyagers 1 and 2, the first in 1983-84 and the second in 1992-93. These radio emission events occurred about 400 days after large Forbush decreases in mid-1982 and mid-1991. Since Forbush decreases are indicative of a strong interplanetary shock propagating outward through the heliosphere, this temporal relationship provides strong evidence that the radio emissions are triggered by the interaction of a shock with one of the outer boundaries of the heliosphere. From the travel time and the known speed of the shock, the distance to the interaction region can be estimated and is well beyond 100 AU. At this great distance the plasma frequency at the terminal shock (100 to 200 Hz) is believed to be too small to explain the observed emission frequencies, which extend up to 3.6 kHz. For this reason, we have proposed that the interaction takes place at or near the heliopause, where remote sensing measurements show that the plasma frequency is in a suitable range (approximately 3 kHz) for explaining the radio emission. From the travel time and shock propagation speed, the radial distance to the heliopause has been calculated for various candidate solar events. After taking into account the likely deceleration of the shock, the heliopause is estimated to be in the range from about 110 to 160 AU.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 16; 9; p. (9)279-(9)290
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-04-02
    Description: Milestones on our road to understanding the heliosphere between 1950 and 1988 are recalled. Among these are early studies of solar energetic particles suggesting a heliospheric boundary at 5 AU, the discovery of the solar wind and the sectored nature of the interplanetary magnetic field. Recent results, particularly from the Ulysses spacecraft, confirm the arrival of neutrals from interstellar space, the pick-up of singly charged ions by the solar wind and the acceleration of these ions to become anomalous cosmic rays. Two distinct solar wind regimes have been discovered. At low heliolatitudes a highly variable solar wind blows at an average speed around 450 km/s, while at high latitudes a relatively smooth 750 km/s flow is observed. No indicators of a dipole-like magnetic field have been seen by Ulysses in solar polar latitudes. The cosmic radiation increase with latitude is much smaller than predicted. The status of and plans for the Voyager 1 and 2, Pioneer 10 and 11, and Ulysses spacecraft are outlined.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 16; 9; p. (9)5-(9)23
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-04-02
    Description: The radio receiver of the URAP (Unified Radio and Plasma Wave) experiment on Ulysses has recorded a heliospheric activity particularly intense between late May and early June 1991. Many solar radio emissions of types III and II were observed together with interplanetary (IP) shocks. In the same time, the radio spectrograph ARTEMIS at Nancay (France) observed several intense type II bursts. We investigate the association and/or interaction of these radio emissions, which are remotely observed, with some IP shocks detected in situ, in the context of a Coronal Mass Ejection (CME) induced scenario.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 16; 9; p. (9)345
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-04-02
    Description: A detailed analysis of small period (15-900 sec) magnetohydrodynamic (MHD) turbulences of the interplanetary magnetic field (IMF) has been made using Pioneer-11 high time resolution data (0.75 sec) inside a Corotating Interaction Region (CIR) at a heliocentric distance of 2.5 AU in 1973. The methods used are the hodogram analysis, the minimum variance matrix analysis and the cohenrence analysis. The minimum variance analysis gives evidence of linear polarized wave modes. Coherence analysis has shown that the field fluctuations are dominated by the magnetosonic fast modes with periods 15 sec to 15 min. However, it is also shown that some small amplitude Alfven waves are present in the trailing edge of this region with characteristic periods (15-200 sec). The observed wave modes are locally generated and possibly attributed to the scattering of Alfven waves energy into random magnetosonic waves.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 16; 9; p. (9)171-(9)174
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-04-02
    Description: Correlations between interplanetary magnetic fields (IMFs) at 0.72 AU and 1.0 AU have been examined using data sets obtained from the Pioneer Venus orbiter and Earth-orbiting spacecraft. While the two-sector structures are evident in long-term variations at these two heliocentric distances, the corresponding auto-correlation coefficients are consistently smaller at 1.0 AU than at 0.72 AU. This suggests that the IMF structures become less persistent at 1.0 AU due to the effects of changing solar wind dynamics between the Venus and Earth orbits. Short-term variations exhibit generally poor correlations between IMFs near Venus and those near Earth, though good correlations are sometimes obtained for well-defined structures when the Sun, Venus, and Earth are closely aligned. The rather poor correlations in the background streams indicate that the IMFs are still changing between the Venus and Earth orbits under the strong influence of solar wind dynamics.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 16; 9; p. (9)111-(9)114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-04-02
    Description: The Fe K-alpha and K-beta X-ray lines (wavelengths 1.94 and 1.76 A) in the solar X-ray spectrum are formed by fluoroescence of photospheric iron atoms, and the ratio of the intensity of either to the He-like iron (Fe XXV) resonance line at 1.85 A is a function of the photospheric-to-coronal abundance of iron. The temperature dependence of this ratio is weak as long as the flare temperature T(sub e) greater than or approximately equal to 15 x 10(exp 6)K. Comparison of the theoretical value of this intensity ratio with observations from crystal spectrometers on Yohkoh, Solar Maximum Mission (SMM) and P78-1 are consistent with the photospheric abundance of Fe being equal to the coronal.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 15; 7; p. (7)33-(7)36
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-04-02
    Description: Solar energetic particles (SEPs) provide a measurement of coronal element abundances that is highly independent of the ionization states and temperature of the ions in the source plasma. The most complete measurements come from large 'gradual' events where ambient coronal plasma is swept up by the expanding shock wave from a coronal mass ejection. Particles from 'impulsive' flares have a pattern of acceleration-induced enhancements superimposed on the coronal abundances. Particles accelerated from high-speed solar wind streams at corotating shocks show a different abundance pattern corresponding to material from coronal holes. Large variations in He/O in coronal material are seen for both gradual and impulsive-flare events but other abundance ratios, such as Mg/Ne, are remarkably constant. SEP measurements now include hundreds of events spanning 15 years of high-quality measurement.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 15; 7; p. (7)41-(7)51
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-04-02
    Description: A survey of the Pioneer Venus Orbiter (PVO) magnetometer and plasma data from 1979-1980, shows that the occurrence frequency of interplanetary shocks, coronal mass ejections (CMEs) and stream interactions observed at 0.7 AU exhibits a solar cycle variation. As previously found at 1 AU, the observed number of both interplanetary shocks and CMEs peaks during solar maximum (approximately 16 and approximately 27 per year, respectively) and reaches a low during solar minimum (approximately 0 and approximately 7 per year, respectively), in phase with the variation in smoothed sunspot number. The number of stream interactions observed varies in the opposite manner, having a minimum during solar maximum (approximately 15 per year) and a maximum during solar minimum (approximately 34 per year). The percentage of CMEs and stream interactions producing interplanetary shocks also varies during the solar-cycle and exhibits interesting behavior during the declining phase. While the number of CMEs observed during this phase is decreasing, the percentage of CMEs producing interplanetary shocks reaches a maximum. Also, while the number of stream interactions observed is increasing, but has not reached maximum during the declining phase, the percentage of stream interactions producing interplanety shocks is at a maximum.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 16; 9; p. (9)353
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-06-28
    Description: In relation to the understanding of the structure and dynamics of the solar atmosphere which requires realistic coronal magnetic field models, a horizontal current-current sheet (HCCS) coronal model was developed. The model includes large-scale, low altitude, horizontal currents and the effect of thin current sheets in the streamer belt of the field above cusp-type neutral points. The effect of the streamer current sheet on the field below the cusp points is accounted for. In order to suggest what can be anticipated from Michelson Doppler imager (MDI) photospheric magnetic field data calculations of the coronal magnetic field using low spatial resolution data, are presented, and results from the calculations of solar eclipses are compared with solar eclipse images.
    Keywords: SOLAR PHYSICS
    Type: NASA-CR-200367 , NAS 1.26:200367 , ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 509-514
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-06-28
    Description: The dynamics of compressible convection within a curved local segment of a rotating spherical shell are considered in relation to the turbulent redistribution of angular momentum within the solar convection zone. Current supercomputers permit fully turbulent flows to be considered within the restricted geometry of local area models. By considering motions in a curvilinear geometry in which the Coriolos parameters vary with latitude, Rossby waves which couple with the turbulent convection are thought of as being possible. Simulations of rotating convection are presented in such a curved local segment of a spherical shell using a newly developed, sixth-order accurate code based on compact finite differences.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 245-248
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-06-28
    Description: Inversion results for the radial hydrostatic structure of the Sun, using six months of oscillation data obtained with the LOWL instrument, are presented. Both low and intermediate degree modes are used, thus avoiding the systematic errors that might have occurred in previous inversions by merging more than one data set. Using modes of between 0 deg and 90 deg and frequencies of between 1.5 mHz and 3.5 mHz, the variations with depth of the speed of sound, the density and the pressure were inferred for radii of between 0.05 and 0.85 stellar radius. It was found that in this region, the sound speed was within 0.15% of that of a model constructed using an equation of state that incorporated helium diffusion. The density difference between the Sun and the model was less than 0.8%. Given the small error bars on the inversion results, these differences are considered as being significant.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 25-30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-06-28
    Description: A direct numerical simulation (DNS) algorithm has been developed and validated for use in the investigation of crossflow instability on supersonic swept wings, an application of potential relevance to the design of the High-Speed Civil Transport (HSCT). The algorithm is applied to the investigation of stationary crossflow instability on an infinitely long 77-degree swept wing in Mach 3.5 flow. The results of the DNS are compared with the predictions of linear parabolized stability equation (PSE) methodology. In-general, the DNS and PSE results agree closely in terms of modal growth rate, structure, and orientation angle. Although further validation is needed for large-amplitude (nonlinear) disturbances, the close agreement between independently derived methods offers preliminary validation of both DNS and PSE approaches.
    Keywords: AERODYNAMICS
    Type: NASA-CR-198267 , NAS 1.26:198267 , NIPS-96-08486
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: One-dimensional hydrostatic models of quiet and active solar regions can be constructed that generally account for the observed intensities of lines and continue throughout the spectrum, except for the infrared CO lines. There is an apparent conflict between: (1) observations of the strongest infrared CO lines formed in LTE at low-chromospheric heights but at temperatures much cooler than the average chromospheric values; and (2) observations of Ca II, UV (ultraviolet), and microwave intensities that originate from the same chromospheric heights but at the much higher temperatures characteristic of the average chromosphere. A model M(sub CO) has been constructed which gives a good fit to the full range of mean CO line profiles (averaged over the central area of the solar disk and over time) but this model conflicts with other observations of average quiet regions. A model L(sub CO) which is approximately 100 K cooler than M(sub CO) combined with a very bright network model F in the proportions 0.6 L(sub CO) + 0.4 F is found to be generally consistent with the CO, Ca II, UV, and microwave observations. Ayres, Testerman, and Brault found that models COOLC and FLUXT in the proportions 0.925 and 0.075 account for the CO and Ca II lines, but these combined models give an average UV intensity at 140 nm about 20 times larger than observed. The 0.6 L(sub CO) + 0.4 F result may give a better description of the cool and hot components that produce the space- and time-averaged spectra. Recent observations carried out by Uitenbroek, Noyes, and Rabine with high spatial and temporal resolution indicate that the faintest intensities in the strong CO lines measured at given locations usually become much brighter within 1 to 3 minutes. The cool regions thus seem to be mostly the low-temperature portions of oscillatory waves rather than cool structures that are stationary.
    Keywords: SOLAR PHYSICS
    Type: PREPRINT-SERIES-4069 , NSO/Sacramento Peak Workshop; Sacramento, CA; United States|Smithsonian Astrophysical Observatory, Study of Magnetic Motions in the Solar Photosphere and Their Implications for Heating the Solar Atmosphere; 12 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-06-28
    Description: Recent in situ Ulysses and Galileo observations of the source regions of type 3 solar radio bursts appear to show an absence of ion acoustic waves S produced by nonlinear Langmuir wave processes such as the electrostatic (ES) decay, in contradiction with earlier ISEE 3 observations and analytic theory. This letter resolves these apparent contradictions. Refined analyses of the maximum S-wave electric fields produced by ES decay and of the characteristics of the Ulysses Wave Form Analyzer (WFA) instrument show that the bursty S waves observed by the ISEE 3 should be essentially undetectable by the Ulysses WFA. It is also shown that the maximum S-wave levels predicted for the Galileo event are approximately less than the instrumental noise level, thereby confirming an earlier suggestion. Thus, no contradictions exist between the ISEE 3 and Ulysses/Galileo observation, and no evidence exists against ES decay in the published Ulysses and Galileo data. All available data are consistent with, or at worst not inconsistent with, the ES decay proceeding and being the dominant nonlinear process in type 3 bursts.
    Keywords: SOLAR PHYSICS
    Type: NASA-CR-199999 , NAS 1.26:199999 , NIPS-96-07103
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-06-28
    Description: Two F-18 aircraft were flown, one above the other, in two formations, in order for the shock systems of the two aircraft to merge and propagate to the ground. The first formation had the canopy of the lower F-18 in the inlet shock of the upper F-18 (called inlet-canopy). The flight conditions were Mach 1.22 and an altitude of 23,500 ft. An array of five sonic boom recorders was used on the ground to record the sonic boom signatures. This paper describes the flight test technique and the ground level sonic boom signatures. The tail-canopy formation resulted in two, separated, N-wave signatures. Such signatures probably resulted from aircraft positioning error. The inlet-canopy formation yielded a single modified signature; two recorders measured an approximate flattop signature. Loudness calculations indicated that the single inlet-canopy signatures were quieter than the two, separated tail-canopy signatures. Significant loudness occurs after a sonic boom signature. Such loudness probably comes from the aircraft engines.
    Keywords: AERODYNAMICS
    Type: NASA-TM-104312 , H-2067 , NAS 1.15:104312
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-06-28
    Description: Some open questions in the physics of bow shock formation, the evolution of the particle distributions from solar wind into the magnetosheath, and the acceleration of ions at the moment of the shock are summarized. A layout of the current situation is presented in view of recent theoretical developments and the new diagnostic tools provided by the Cluster mission. The transition of ions across the quasi-perpendicular bow shock and their downstream thermalization are discussed. The processes and spatial scales are found to be species dependent and are discussed for H(+), He(2+), and He(+). The theory of particle acceleration at quasi-parallel shocks are reviewed. It is shown how Cluster can study the time variable structures of the shock as predicted by hybrid simulation. It is emphasized that high time resolution measurement with simultaneous species separation is necessary for the study of the ion acceleration. Suggestions for the spacecraft separations at the bow shock are suggested.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of the Cluster Workshops on Data Analysis Tools, and Physical Measurements and Mission-Oriented Theory; p 127-135
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-06-28
    Description: A multiblock, discrete sensitivity analysis method is used to couple a direct optimization method and a flow analysis method. The domain is divided into smaller subdomains for which the sensitivities are obtained separately. Then, an effective sensitivity equation is solved to complete the coupling of all the sensitivity information. The flow analysis is based on the thin-layer Navier-Stokes equations solved by an implicit, upwind-biased, finite-volume method. The method of feasible directions is used for the present gradient-based optimization approach. First, a transonic airfoil is optimized to investigate the behavior of the method in highly nonlinear flows as well as the effect of different blocking strategies on the procedure. A supercritical airfoil is produced from an initially symmetric airfoil with multiblocking affecting the path but not the final shape. Secondly, a two-element airfoil is shape optimized in subsonic flow to demonstrate the present method's capability of shaping aerodynamically interfering elements simultaneously. For a very low and a very high Reynolds number cases, the shape of the main airfoil and the flap are optimized to yield improved lift-to-drag ratios.
    Keywords: AERODYNAMICS
    Type: NASA-CR-199785 , NAS 1.26:199785 , AIAA PAPER 94-4273 , NIPS-95-06444
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-06-28
    Description: This report summarizes some NASA Lewis (i.e., government owned) computer codes capable of being used for airbreathing propulsion system studies to determine the design geometry and to predict the design/off-design performance of compressors and turbines. These are not CFD codes; velocity-diagram energy and continuity computations are performed fore and aft of the blade rows using meanline, spanline, or streamline analyses. Losses are provided by empirical methods. Both axial-flow and radial-flow configurations are included.
    Keywords: AERODYNAMICS
    Type: NASA-CR-198433 , NAS 1.26:198433 , E-10041 , NIPS-95-06493
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-06-28
    Description: A far-wing theory in which the validity of the detailed balance principle is maintained in each step of the derivation is presented. The role of the total density matrix including the initial correlations is analyzed rigorously. By factoring out the rapidly varying terms in the complex-time development operator in the interaction representation, better approximate expressions can be obtained. As a result, the spectral density can be expressed in terms of the line-coupling functions in which two coupled lines are arranged symmetrically and whose frequency detunings are omega - 1/2(omega(sub ji) + omega (sub j'i'). Using the approximate values omega - omega(sub ji) results in expressions that do not satisfy the detailed balance principle. However, this principle remains satisfied for the symmetrized spectral density in which not only the coupled lines are arranged symmetrically, but also the initial and final states belonging to the same lines are arranged symmetrically as well.
    Keywords: AERODYNAMICS
    Type: NASA-TM-111075 , NAS 1.15:111075
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-06-28
    Description: To identify planform characteristics which have promise for a highly maneuverable vehicle, an investigation was conducted in the Langley Subsonic Basic Research Tunnel to determine the low-speed longitudinal aerodynamics of 21 planform geometries. Concepts studied included twin bodies, double wings, cutout wings, and serrated forebodies. The planform models tested were all 1/4-in.-thick flat plates with beveled edges on the lower surface to ensure uniform flow separation at angle of attack. A 1.0-in.-diameter cylindrical metric body with a hemispherical nose was used to house the six-component strain gauge balance for each configuration. Aerodynamic force and moment data were obtained across an angle-of-attack range of 0 to 70 deg with zero sideslip at a free-stream dynamic pressure of 30 psf. Surface flow visualization studies were also conducted on selected configurations using fluorescent minitufts. Results from the investigation indicate that a cutout wing planform can improve lift characteristics; however, cutout size, shape, and position and wing leading-edge sweep will all influence the effectiveness of the cutout configuration. Tests of serrated forebodies identified this concept as an extremely effective means of improving configuration lift characteristics; increases of up to 25 percent in the value of maximum lift coefficient were obtained.
    Keywords: AERODYNAMICS
    Type: NASA-TP-3503 , L-17301 , NAS 1.60:3503
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-06-28
    Description: In order to investigate how solar activity is organized in longitude, major solar flares, large sunspot groups, and large scale photospheric magnetic field strengths were analyzed. The results of these analyses are reported. The following results are discussed: hot spots, initially recognized as areas of high concentration of major flares, are the preferred locations for the emergence of big sunspot groups; double hot spots appear in pairs that rotate at the same rate separated by about 180 deg in longitude, whereas, single hot spots have no such companions; the northern and southern hemispheres behave differently in organizing solar activity in longitude; the lifetime of hot spots range from one to several solar cycles; a hot spot is not always active throughout its lifetime, but goes through dormant periods; and hot spots with different rotational periods coexist in the same hemisphere during the same solar cycle.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 113-118
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-06-28
    Description: The Mount Wilson (California) synoptic program of solar magnetic observations scans the solar disk between 1 and 20 times per day. As part of this program, the radius is determined as an average distance between the image center and the point where the intensity in the FeI line at lambda = 525.0 nm drops to 25 percent of its value at the disk's center. The data base of information was analyzed and corrected for effects such as scattered light and atmospheric reflection. The solar variability and the measurement techniques are described. The observation data sets, the corrections made to the data, and the observed variations, are discussed. It is stated that similar spectral lines at lambda = 525.0 nm, which are common in the solar spectrum, probably exhibit similar radius changes. All portions of the sun are weighted equally so that it is concluded that, within spectral lines, the radiating area of the sun is increased at the solar maximum.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 107-111
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-06-28
    Description: The computational fluid dynamics code, PARC3D, is tested to see if its use of non-physical artificial dissipation affects the accuracy of its results. This is accomplished by simulating a shock-laminar boundary layer interaction and several hypersonic flight conditions of the Pegasus(TM) launch vehicle using full artificial dissipation, low artificial dissipation, and the Engquist filter. Before the filter is applied to the PARC3D code, it is validated in one-dimensional and two-dimensional form in a MacCormack scheme against the Riemann and convergent duct problem. For this explicit scheme, the filter shows great improvements in accuracy and computational time as opposed to the nonfiltered solutions. However, for the implicit PARC3D code it is found that the best estimate of the Pegasus experimental heat fluxes and surface pressures is the simulation utilizing low artificial dissipation and no filter. The filter does improve accuracy over the artificially dissipative case but at a computational expense greater than that achieved by the low artificial dissipation case which has no computational time penalty and shows better results. For the shock-boundary layer simulation, the filter does well in terms of accuracy for a strong impingement shock but not as well for weaker shock strengths. Furthermore, for the latter problem the filter reduces the required computational time to convergence by 18.7 percent.
    Keywords: AERODYNAMICS
    Type: NASA-CR-186033 , H-2071 , NAS 1.26:186033
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-06-28
    Description: An optimization procedure is developed for the simultaneous improvement of the aerodynamic and sonic boom characteristics of high speed aircraft. From a sonic boom perspective, it is desirable to minimize the first peak in the overpressure signal at a specified distance away from the aircraft. From aerodynamic point of view, the aerodynamic drag coefficient ratio must be minimized while maintaining the lift coefficient at desired level. The optimization procedure is applied to wing-body configurations related to high speed aircraft. The objectives of this current research are: (1) development of a multiobjective optimization procedure for aerospace vehicles with the integration of sonic boom and aerodynamic performance criteria; and (2) development of semi-analytical approach for calculating sonic boom design sensitivities.
    Keywords: AERODYNAMICS
    Type: NASA-CR-199083 , NAS 1.26:199083
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-06-28
    Description: During the Higher Harmonic Control Aeroacoustic Rotor Test, extensive measurements of the rotor aerodynamics, the far-field acoustics, the wake geometry, and the blade motion for powered, descent, flight conditions were made. These measurements have been used to validate and improve the prediction of blade-vortex interaction (BVI) noise. The improvements made to the BVI modeling after the evaluation of the test data are discussed. The effects of these improvements on the acoustic-pressure predictions are shown. These improvements include restructuring the wake, modifying the core size, incorporating the measured blade motion into the calculations, and attempting to improve the dynamic blade response. A comparison of four different implementations of the Ffowcs Williams and Hawkings equation is presented. A common set of aerodynamic input has been used for this comparison.
    Keywords: AERODYNAMICS
    Type: NASA-TM-110825 , NAS 1.15:110825 , AD-A294477
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-06-28
    Description: We have studied an outstanding sequence of continuum images of the solar granulation from Pic du Midi Observatory. We have calculated the horizontal vector flow field using a correlation tracking algorithm, and from this determined three scalar field: the vertical component of the curl; the horizontal divergence; and the horizontal flow speed. The divergence field has substantially longer coherence time and more power than does the curl field. Statistically, curl is better correlated with regions of negative divergence - that is, the vertical vorticity is higher in downflow regions, suggesting excess vorticity in intergranular lanes. The average value of the divergence is largest (i.e., outflow is largest) where the horizontal speed is large; we associate these regions with exploding granules. A numerical simulation of general convection also shows similar statistical differences between curl and divergence. Some individual small bright points in the granulation pattern show large local vorticities.
    Keywords: SOLAR PHYSICS
    Type: Smithsonian Astrophysical Observatory, Study of Magnetic Notions in the Solar Photosphere and Their Implications for Heating the Solar Atmosphere; 9 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-06-28
    Description: The Multiple Experiment Transporter into Earth Orbit and Return-Solar EUV Experiment (METEOR-SEE) project will take daily extreme ultraviolet (EUV) irradiance spectra starting in the summer of 1995. The METEOR-SEE package consists of an EUV grating spectrograph (EGS) and a cluster of 5 soft x-ray photometers (XP's). Both these instruments have flown previously on NASA sounding rockets. Because of the scope of the project, new data processing algorithms had to be developed for the SEE instruments onboard the METEOR satellite. An overview of the data flow describes how satellite data are collected and processed. Detailed descriptions of specific routines will show what data processing entails.
    Keywords: SOLAR PHYSICS
    Type: NASA-CR-200091 , NAS 1.26:200091 , NIPS-96-07662
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-06-28
    Description: An extensive quantity of airload measurements was obtained for a pressure-instrumented model of the BO-105 main rotor for a large number of higher-harmonic control (HHC) settings at Duits-Nederlandse Wind Tunnel (DNW). The wake geometry, vortex strength, and vortex core size were also measured through a laser light sheet technique and LDV. These results are used to verify the BVI airload prediction methodologies developed by AFDD, DLR, NASA Langley, and ONERA. The comparisons show that an accurate prediction of the blade motion and the wake geometry is the most important aspect of the BVI airload predictions.
    Keywords: AERODYNAMICS
    Type: NASA-TM-110824 , NAS 1.15:110824 , AD-A294468
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-06-28
    Description: This is a guide for the use of the pressure disk rotor model that has been placed in the incompressible Navier-Stokes code INS3D-UP. The pressure disk rotor model approximates a helicopter rotor or propeller in a time averaged manner and is intended to simulate the effect of a rotor in forward flight on the fuselage or the effect of a propeller on other aerodynamic components. The model uses a modified actuator disk that allows the pressure jump across the disk to vary with radius and azimuth. The cyclic and collective blade pitch angles needed to achieve a specified thrust coefficient and zero moment about the hub are predicted. The method has been validated with experimentally measured mean induced inflow velocities as well as surface pressures on a generic fuselage. Overset grids, sometimes referred to as Chimera grids, are used to simplify the grid generation process. The pressure disk model is applied to a cylindrical grid which is embedded in the grid or grids used for the rest of the configuration. This document will outline the development of the method, and present input and results for a sample case.
    Keywords: AERODYNAMICS
    Type: NASA-CR-4692 , NAS 1.26:4692
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-06-28
    Description: Future hypersonic vehicles are going to be designed largely with computational fluid dynamic methods based on appropriate physical models. The question on how much of this design process can be completed with the present state of computational aerothermodynamics is addressed. Some limitations of current models are discussed. It is shown that much more research is required before it will be possible to accurately design a hypersonic vehicle for all of its flight conditions. The quantities that must be computed accurately so that a minimum weight hypersonic vehicle can be designed are discussed. The use of computational fluid dynamics methods coupled with current thermochemical models in order to compute the quantities under specific flow conditions is considered.
    Keywords: AERODYNAMICS
    Type: ESA, Proceedings of the 2nd European Symposium on Aerothermodynamics for Space Vehicles; p 365-37
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-06-28
    Description: An experimental investigation was conducted to determine the aerodynamic characteristics of a store as it was separated from the lee side of a flat plate inclined at 15 deg to the free-stream flow at Mach 6. Two store models were tested: a cone cylinder and a roof delta. Force and moment data were obtained for both stores as they were moved in 0.5-in. increments away from the flat plate lee-side separated flow region into the free-stream flow while the store angle of attack was held constant at either 0 deg or 15 deg. The results indicate that both stores had adverse separation characteristics (i.e., negative normal force and pitching moment) at an angle of attack of 0 deg, and the cone cylinder had favorable separation characteristics (i.e., positive normal force and pitching moment) at an angle of attack of 15 deg. At an angle of attack of 15 deg, the separation characteristics of the roof delta are indeterminate at small separation distances and favorable at greater separation distances. These characteristics are the result of the local flow inclination relative to the stores as they traversed through the flat plate lee-side flow field. In addition to plotted data, force and moment data are tabulated and schlieren photographs of the stores and flat plate are presented.
    Keywords: AERODYNAMICS
    Type: NASA-TM-4652 , L-17384 , NAS 1.15:4652
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-06-28
    Description: A high Reynolds number investigation of a commercial transport model was conducted in the National Transonic Facility (NTF) at Langley Research Center. This investigation was part of a cooperative effort to test a 0.03-scale model of a Boeing 767 airplane in the NTF over a Mach number range of 0.70 to 0.86 and a Reynolds number range of 2.38 to 40.0 x 10(exp 6) based on the mean aerodynamic chord. One of several specific objectives of the current investigation was to evaluate the level of data repeatability attainable in the NTF. Data repeatability studies were performed at a Mach number of 0.80 with Reynolds numbers of 2.38, 4.45, and 40.0 x 10(exp 6) and also at a Mach number of 0.70 with a Reynolds number of 40.0 x 10(exp 6). Many test procedures and data corrections are addressed in this report, but the data presented do not include corrections for wall interference, model support interference, or model aeroelastic effects. Application of corrections for these three effects would not affect the results of this study because the corrections are systematic in nature and are more appropriately classified as sources of bias error. The repeatability of the longitudinal stability-axis force and moment data has been accessed. Coefficients of lift, drag, and pitching moment are shown to repeat well within the pretest goals of plus or minus 0.005, plus or minus 0.0001, and plus or minus 0.001, respectively, at a 95-percent confidence level over both short- and near-term periods.
    Keywords: AERODYNAMICS
    Type: NASA-TP-3522 , L-17412 , NAS 1.60:3522
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-06-28
    Description: An experimental investigation was conducted to determine the effect of diverter wedge half-angle and nacelle lip height on the drag characteristics of an assembly consisting of a nacelle fore cowl from a typical high-speed civil transport (HSCT) and a diverter mounted on a flat plate. Data were obtained for diverter wedge half-angles of 4.0 deg, 6.0 deg, and 8.0 deg and ratios of the nacelle lip height above a flat plate to the boundary-layer thickness (h(sub n)/delta) of approximately 0.87 to 2.45. Limited drag data were also obtained on a complete nacelle/diverter configuration that included fore and aft cowls. Although the nacelle/diverter drag data were not corrected for base pressures or internal flow drag, the data are useful for comparing the relative drag of the configuration tested. The tests were conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.50, 1.80, 2.10, and 2.40 and Reynolds numbers ranging from 2.00 x 10(exp 6) to 5.00 x 10(exp 6) per foot. The results of this investigation showed that the nacelle/diverter drag essentially increased linearly with increasing h(sub n)/delta except near 1.0 where the data showed a nonlinear behavior. This nonlinear behavior was probably caused by the interaction of the shock waves from the nacelle/diverter configuration with the flat-plate boundary layer. At the lowest h(sub n)/delta tested, the diverter wedge half-angle had virtually no effect on the nacelle/diverter drag. However, as h(sub n)/delta increased, the nacelle/diverter drag increased as diverter wedge half-angle increased.
    Keywords: AERODYNAMICS
    Type: NASA-TM-4660 , L-17416 , NAS 1.15:4660
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-06-28
    Description: Water droplet trajectories within the NASA Lewis Research Center's Icing Research Tunnel (IRT) were studied through computer analysis. Of interest was the influence of the wind tunnel contraction and wind tunnel model blockage on the water droplet trajectories. The computer analysis was carried out with a program package consisting of a three-dimensional potential panel code and a three-dimensional droplet trajectory code. The wind tunnel contraction was found to influence the droplet size distribution and liquid water content distribution across the test section from that at the inlet. The wind tunnel walls were found to have negligible influence upon the impingement of water droplets upon a wing model.
    Keywords: AERODYNAMICS
    Type: NASA-TM-107023 , E-9828 , NAS 1.15:107023
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: This document outlines the tests performed to make aerodynamic force and torque measurements on the SOFIA wind tunnel model telescope. These tests were performed during the SOFIA 2 wind tunnel test in the 14 ft wind tunnel during the months of June through August 1994. The test was designed to measure the dynamic cross elevation moment acting on the SOFIA model telescope due to aerodynamic loading. The measurements were taken with the telescope mounted in an open cavity in the tail section of the SOFIA model 747. The purpose of the test was to obtain an estimate of the full scale aerodynamic disturbance spectrum, by scaling up the wind tunnel results (taking into account differences in sail area, air density, cavity dimension, etc.). An estimate of the full scale cross elevation moment spectrum was needed to help determine the impact this disturbance would have on the telescope positioning system requirements. A model of the telescope structure, made of a light weight composite material, was mounted in the open cavity of the SOFIA wind tunnel model. This model was mounted via a force balance to the cavity bulkhead. Despite efforts to use a 'stiff' balance, and a lightweight model, the balance/telescope system had a very low resonant frequency (37 Hz) compared to the desired measurement bandwidth (1000 Hz). Due to this mechanical resonance of the balance/telescope system, the balance alone could not provide an accurate measure of applied aerodynamic force at the high frequencies desired. A method of measurement was developed that incorporated accelerometers in addition to the balance signal, to calculate the aerodynamic force.
    Keywords: AERODYNAMICS
    Type: NASA-TM-110668 , SER-PK-001 , NAS 1.15:110668
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: Progress made in understanding of the physics of the upper boundary layer of the sun, its influence on frequencies of five-minute oscillations, and its role in the excitation of the oscillations, are reviewed. The approaches taken for the seismological diagnosis of the properties of the layer are discussed. Information concerning the properties of the layer are obtained from Michelson Doppler imagery high-resolution data. The structure of the convective boundary layer is discussed considering high-resolution observations, three dimensional numerical simulations, the mean stratification of the convective layers, and the effects of momentum transfer by convection. The effects of convection on the oscillation frequencies, mode excitation, and mode damping, are discussed.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 1: Invited Reviews and Working Group Reports; p 165-176
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: Helioseismology reveals that there appears to be a discrepancy between the differential rotation profile with the radius and latitude deduced from the inversion of the observed frequency splitting of p-modes and the rotation profile anticipated from various global simulations of convection in rotating shells. The problem may be caused by deductions in numerical simulations of convection which was considered near laminar flows. A high performance computing offers paths for studying the properties of such astrophysical turbulence. A range of approaches to study the basic dynamics of convection is reviewed, along with its ability to redistribute angular momentum in rotating systems. The results of recent three-dimensional simulations of turbulent compressible convection constrained by the effects of rotation are described for the cases in spherical shells and local area f-planes. The turbulence possesses intense vortex tubes with intricate interactions and instabilities. The theoretical studies reveal that the transition to turbulent states has contributed to significant changes in flow symmetries and transports, and that such a turbulent convection can drive substantial mean flows, which are distinctly different from those in which the convection is dominantly laminar.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 1: Invited Reviews and Working Group Reports; p 47-62
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: Active region seismology is concerned with the determination and interpretation of the interaction of the solar acoustic oscillations with near-surface target structures, such as magnetic flux concentration, sunspots, and plage. Recent observations made with a high spatial resolution and a long temporal duration enabled measurements of the scattering matrix for sunspots and solar active regions to be carried out as a function of the mode properties. Based on this information, the amount of p-mode absorption, partial-wave phase shift, and mode mixing introduced by the sunspot, could be determined. In addition, the possibility of detecting the presence of completely submerged magnetic fields was raised, and new procedures for performing acoustic holography of the solar interior are being developed. The accumulating evidence points to the mode conversion of p-modes to various magneto-atmospheric waves within the magnetic flux concentration as being the unifying physical mechanism responsible for these diverse phenomena.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 1: Invited Reviews and Working Group Reports; p 31-45
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-06-28
    Description: The potential of future data sets from global oscillations network group (GONG) and solar oscillations investigation (SOI) for resolving long-lived azimuthal jets and shearing flows, is investigated. Various artificial data sets are constructed, containing noise resembling that of a one-year observation run. These are inverted using a two dimensional regularized least squares inversion. The ability of this method to form well localized averages of the rotation rate, as measured by the averaging kernels, is investigated using an extensive mode set and subsets. It is shown that it is possible to keep the noise in the solution down to a few nHz in much of the solar interior, while obtaining a reasonable resolution for a GONG-like data set. At low latitudes in the middle of the convection zone, an angular resolution of less than 10 deg and a radial resolution of about 0.04 solar radii, are obtained. The averaging kernels depend on the mode set, and a reduction in the number of modes tends to introduce small-scale near surface structures into the averaging kernels which would adversely affect the inferred rotation rate.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 41-45
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-06-28
    Description: A preliminary inversion procedure that carries out a local area analysis on simulated oscillation data is presented and discussed. The procedure is carried out in order to deduce two dimensional subsurface structures in the horizontal plane, representative of thermal variations, as a function of depth. The aim is the evaluation of an inversion procedure that utilizes information gained from the phase distortion occurring in artificially generated acoustic waves in order to determine the subsurface thermal structure. These distortions would naturally occur as a direct consequence of convective motions in the solar interior.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 155-160
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-06-28
    Description: The local area analysis of five-minute solar oscillations using ring diagrams to determine subphotospheric velocity flows is a tool for convection zone dynamics. In relation to the problem of the large computational task of fitting the rings, a faster method is presented that carries out the ring fitting using data obtained with a high l helioseismometer. Noise sources are eliminated, and a perturbation approach is used to fit the azimuthally averaged spectrum. The parameters determined in this way are held constant while the ring diagram is fitted. The results obtained are presented and discussed.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 141-146
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-06-28
    Description: The effects of a vertical magnetic field on p-mode frequencies, line widths, and eigenfunctions, are examined. A solar model, consisting of a neutrally stable polytropic interior matched to an isothermal chromosphere, is applied. The p-modes are produced by a spatially distributed driver. The atmosphere is threaded by a constant vertical magnetic field. The frequency shifts due to the vertical magnetic field are found to be much smaller than the shifts caused by horizontal fields of similar strength. A large vertical field of 2000 G produces shifts of several nHz. It is found that the frequency shifts decrease with increasing frequency and increase with field strength. The coupling of the acoustic fast mode to the escaping slow modes is inefficient. Constant vertical magnetic field models are therefore incapable of explaining the high level of absorption observed in sunspots and plage.
    Keywords: SOLAR PHYSICS
    Type: ESA, Proceedings of 4th SOHO on Helioseismology. Volume 2: Posters; p 77-82
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-06-28
    Description: We apply a DC-electric field model to the analysis of soft and hard X-ray observations of a solar flare observed by Yohkoh and the Compton Gamma Ray Observatory (CGRO) on 6 September 1992. The flare was observed simultaneously in the soft X-ray Ca XIX line by the Yohkoh Bragg Crystal Spectrometer (BCS) and in hard X-rays (greater than 50 keV) by the CGRO Burst and Transient Spectrometer Experiment (BATSE). A strong stationary component of Ca XIX emission was present at the start of impulsive hard X-ray emission indicating an extended phase of heating prior to the production of energetic nonthermal electrons. We interpret the preflare Ca XIX emission as a signature of Joule heating by field-aligned currents. We relate the temporal variation of impulsive hard X-ray emission to the rate of runaway electron acceleration by the DC-electric field associated with the current. We find that the initial rise in hard X-ray emission is consistent with electron acceleration by a DC-electric field that increased from a preflare value of less than approximately 10(exp -5) V/cm to approximately (9 +/- 1) x 10(exp -5) V/cm at the time of the first hard X-ray peak and then remained constant during the rest of the impulsive phase. We attribute the increase in electric field strength to the formation of a current sheet at the reconnection point of two loop structures. The decrease in hard X-ray emission after flare maximum is consistent with a reduction in the number of runaway electrons due to an increase in coronal density produced by chromospheric evaporation. The increased density quenches the runaway process by enhancing collisional thermalization of electrons. To avoid the generation of an unrealistically large magnetic field, the flaring region must be highly filamented into greater than approximately 10(exp 6) oppositely directed current channels of approximately 30 cm width with an initial preflare current of approximately 3 x 10(exp 10) A per channel.
    Keywords: SOLAR PHYSICS
    Type: NASA-CR-200002 , NAS 1.26:200002 , NIPS-96-07109
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-06-28
    Description: The work reported here pertains only to the first year of research for a three year proposal period. As a prelude to this two dimensional interface element, the one dimensional element was tested and errors were discovered in the code for built-up structures and curved interfaces. These errors were corrected and the benchmark Boeing composite crown panel was analyzed successfully. A study of various splines led to the conclusion that cubic B-splines best suit this interface element application. A least squares approach combined with cubic B-splines was constructed to make a smooth function from the noisy data obtained with random error in the coordinate data points of the Boeing crown panel analysis. Preliminary investigations for the formulation of discontinuous 2-D shell and 3-D solid elements were conducted.
    Keywords: AERODYNAMICS
    Type: NASA-CR-199951 , NAS 1.26:199951 , NIPS-96-07072
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-06-28
    Description: Test flights were conducted to evaluate the capability of Differential Global Positioning System (DGPS) to provide the accuracy and integrity required for International Civil Aviation Organization (ICAO) Category (CAT) III precision approach and landings. These test flights were part of a Federal Aviation Administration (FAA) program to evaluate the technical feasibility of using DGPS based technology for CAT III precision approach and landing applications. An IAI Westwind 1124 aircraft (N24RH) was equipped with DGPS receiving equipment and additional computing capability provided by E-Systems. The test flights were conducted at NASA Ames Research Center's Crows Landing Flight Facility, Crows Landing, California. The flight test evaluation was based on completing 100 approaches and landings. The navigation sensor error accuracy requirements were based on ICAO requirements for the Microwave Landing System (MLS). All of the approaches and landings were evaluated against ground truth reference data provided by a laser tracker. Analysis of these approaches and landings shows that the E-Systems DGPS system met the navigation sensor error requirements for a successful approach and landing 98 out of 100 approaches and landings, based on the requirements specified in the FAA CAT III Level 2 Flight Test Plan. In addition, the E-Systems DGPS system met the integrity requirements for a successful approach and landing or stationary trial for all 100 approaches and landings and all ten stationary trials, based on the requirements specified in the FAA CAT III Level 2 Flight Test Plan.
    Keywords: AERODYNAMICS
    Type: NASA-TM-110368 , NAS 1.15:110368 , A-950096
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-06-28
    Description: This monograph provides an extensive list of formulas for airfoil polynomials. These polynomials provide convenient expansion functions for the description of the downwash and pressure distributions of linear theory for airfoils in both steady and unsteady subsonic flow.
    Keywords: AERODYNAMICS
    Type: NASA-RP-1343 , L-17420 , NAS 1.61:1343
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-06-28
    Description: Low-speed wind-tunnel tests were conducted in the Langley 12-Foot Low-Speed Tunnel on a model of the Boeing Multirole Fighter (BMRF) aircraft. This single-seat, single-engine configuration was intended to be an F-16 replacement that would incorporate many of the design goals and advanced technologies of the F-22. Its mission requirements included supersonic cruise without afterburner, reduced observability, and the ability to attack both air-to-air and air-to-ground targets. So that it would be effective in all phases of air combat, the ability to maneuver at angles of attack up to and beyond maximum lift was also desired. Traditional aerodynamic yaw controls, such as rudders, are typically ineffective at these higher angles of attack because they are usually located in the wake from the wings and fuselage. For this reason, this study focused on investigating forebody-mounted controls that produces yawing moments by modifying the strong vortex flowfield being shed from the forebody at high angles of attack. Two forebody strakes were tested that varied in planform and chordwise location. Various patterns of porosity in the forebody skin were also tested that differed in their radial coverage and chordwise location. The tests were performed at a dynamic pressure of 4 lb/ft(exp 2) over an angle-of-attack range of -4 deg to 72 deg and a sideslip range of -10 deg to 10 deg. Static force data, static pressures on the surface of the forebody, and videotapes of flow-visualization using laser-illuminated smoke were obtained.
    Keywords: AERODYNAMICS
    Type: NASA-CR-4685 , NAS 1.26:4685
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: This paper presents an overview of the complex unsteady vortical flows that comprise the wakes of rotary-wing aircraft; of the effects these tangled vortical structures have on the performance, noise, and vibration; and of some of the recent attempts to measure, predict, and control the phenomena. The main points are illustrated with a number of examples from the recent literature and technical conferences.
    Keywords: AERODYNAMICS
    Type: NASA-TM-110822 , NAS 1.15:110822 , AD-A294465
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-06-28
    Description: An unswept, semispan wing model incorporating a NACA 0012 airfoil section was tested in the Langley 14- by 22-Foot Subsonic Tunnel. This report contains pressure data which document effects of wing configuration and free-stream conditions on wing pressure distributions. The untwisted wing incorporated a full-span, leading-edge Krueger flap and a full-span, single-slotted trailing-edge flap. The trailing-edge flap was tested at a deflection angle of 40 degrees and the Krueger flap at a deflection of 55 degrees. Three wing configurations were tested: cruise, trailing-edge flap only, and Knueger flap and trailing-edge flap deployed. Tests were conducted at free-stream dynamic pressures of 15, 30 and 60 psf, with corresponding chord Reynolds numbers of 1.22 to 2.11 million and Mach numbers of 0.12 to 0.20. Angles of attack presented range from 0 to 20 degrees, depending on wing configuration. The data are presented without analysis.
    Keywords: AERODYNAMICS
    Type: NASA-TM-110148 , NAS 1.15:110148
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-06-28
    Description: This report addresses the development of a multidisciplinary optimization procedure using an efficient semi-analytical sensitivity analysis technique and multilevel decomposition for the design of aerospace vehicles. A semi-analytical sensitivity analysis procedure is developed for calculating computational grid sensitivities and aerodynamic design sensitivities. Accuracy and efficiency of the sensitivity analysis procedure is established through comparison of the results with those obtained using a finite difference technique. The developed sensitivity analysis technique are then used within a multidisciplinary optimization procedure for designing aerospace vehicles. The optimization problem, with the integration of aerodynamics and structures, is decomposed into two levels. Optimization is performed for improved aerodynamic performance at the first level and improved structural performance at the second level. Aerodynamic analysis is performed by solving the three-dimensional parabolized Navier Stokes equations. A nonlinear programming technique and an approximate analysis procedure are used for optimization. The proceduredeveloped is applied to design the wing of a high speed aircraft. Results obtained show significant improvements in the aircraft aerodynamic and structural performance when compared to a reference or baseline configuration. The use of the semi-analytical sensitivity technique provides significant computational savings.
    Keywords: AERODYNAMICS
    Type: NASA-CR-199290 , NAS 1.26:199290
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-06-28
    Description: The effectiveness of steady and pulsed blowing as a method of controlling delta wing vortices during ramp pitching has been investigated in flow visualization experiments conducted in a water tunnel. The recessed angled spanwise blowing technique was utilized for vortex manipulation. This technique was implemented on a beveled 60 delta wing using a pair of blowing ports located beneath the vortex core at 40% chord. The flow was injected primarily in the spanwise direction but was also composed of a component normal to the wing surface. The location of vortex burst was measured as a function of blowing intensity and pulsing frequency under static conditions, and the optimum blowing case was applied at three different wing pitching rates. Experimental results have shown that, when the burst location is upstream of the blowing port, pulsed blowing delays vortex breakdown in static and dynamic cases. Dynamic tests verified the existence of a hysteresis effect and demonstrated the improvements offered by pulsed blowing over both steady blowing and no-blowing scenarios. The application of blowing, at the optimum pulsing frequency, made the vortex breakdown location comparable in static and ramp pitch-up conditions.
    Keywords: AERODYNAMICS
    Type: NIPS-95-05494 , NASA-CR-199624 , NAS 1.26:199624 , AIAA PAPER 95-1817-CP , United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-06-28
    Description: Primarily an experimental effort, this study focuses on the velocity and vorticity fields in the near wake of a hovering rotor. Drag terminology is reviewed, and the theory for separately determining the profile-and-induced-drag components from wake quantities is introduced. Instantaneous visualizations of the flow field are used to center the laser velocimeter (LV) measurements on the vortex core and to assess the extent of the positional mandering of the trailing vortex. Velocity profiles obtained at different rotor speeds and distances behind the rotor blade clearly indicate the position, size, and rate of movement of the wake sheet and the core of the trailing vortex. The results also show the distribution of vorticity along the wake sheet and within the trailing vortex.
    Keywords: AERODYNAMICS
    Type: NASA-TP-3577 , A-950078 , NAS 1.60:3577 , ATCOM-TR-95-A-006
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-06-28
    Description: This report summarizes the research performed by North Carolina State University and NASA Ames Research Center under Cooperative Agreement NCA2-719, 'Numerical Simulation of Supersonic and Hypersonic Inlet Flow Fields". Four distinct rotated upwind schemes were developed and investigated to determine accuracy and practicality. The scheme found to have the best combination of attributes, including reduction to grid alignment with no rotation, was the cell centered non-orthogonal (CCNO) scheme. In 2D, the CCNO scheme improved rotation when flux interpolation was extended to second order. In 3D, improvements were less dramatic in all cases, with second order flux interpolation showing the least improvement over grid aligned upwinding. The reduction in improvement is attributed to uncertainty in determining optimum rotation angle and difficulty in performing accurate and efficient interpolation of the angle in 3D. The CCNO rotational technique will prove very useful for increasing accuracy when second order interpolation is not appropriate and will materially improve inlet flow solutions.
    Keywords: AERODYNAMICS
    Type: NASA-CR-199428 , NAS 1.26:199428
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...